The Polymorphic Blame Calculus
and Parametricity

Jeremy G. Siek

Indiana University, Bloomington

University of Strathclyde
August 2015

Integrating static and dynamic typing

Static Dynamic

Outline

» Quick review of gradual typing
» New: a polymorphic gradually typed lambda calculus

» Review: Poly. Blame Calculus and Parametricity

Gradual typing includes dynamic typing

An untyped program:
let
f=XM.1+4y
h=MXg.g3
in
hf

@l

Gradual typing includes dynamic typing

A buggy untyped program:
1 let
2 f=XM.1+y
3 h= \g.g true
4 1in
s hf
—
blame /,

Just like dynamic typing, the error is caught at run time.

Gradual typing includes static typing

A typed program:

let

f=MXpint.1+y

h = Ag:int—int.g 3
in

hf

—
4

Gradual typing includes static typing

An ill-typed program:
1 let
2 f=Mpint. 14y
3 h = M\g:int—int.g true
4 1in
5 hf

Just like static typing, the error is caught at compile time.

Error on line 3, the argument true is a Boolean, but function
g expects an int.

Gradual typing provides fine-grained mixing

A partially typed program:

let
f=Mpint. 14y
h=M)g.g3
in
hf
N

4

Gradual typing protects type invariants

A buggy, partially typed program:

1 let
2 f=MXpint. 14y
3 h =)\g.g true
4 1in
s hf
H

blame /;

Gradually Typed Lambda Calculus

Extends the STLC with a dynamic type, written .

Types A,B,C 1= 1|A—B]|~*
Terms LLM,N == c|x|A.N|LM

Consistency A~B

int ~ int A ~B A~ B,
A~ % * ~ B A,—A, ~B,—B,

Term Typing

I'rL:A—=B C~A 'EL:%
'=M:C 'M:C
I'FLM:B 'L M:x

Outline

» Quick review of gradual typing
» New: a polymorphic gradually typed lambda calculus

» Review: Poly. Blame Calculus and Parametricity

Gradual typing and polymorphism

Use polymorphic code in an untyped context:

let

pos = Ax.x > o

app = AX.AY N X—=Y. e X. f x
in

app pos 1

Use untyped code in a polymorphic context:

let
pos : int—bool = A\x:int.x > o
app = N x.f x

in

app int bool pos 1

Gradually Typed Polymorphic Lambda Calculus

Types A,B,C 1= | X |VX.A
Terms L,M,N := |AX.N|LA
Consistency
Xerl INXHFA~B
X ~X '-VX.A~VX.B
I XFA~B I X+A~B

I'FA~VX.B I'FVX.A~B
Term typing

I'+L:VX.B I'HL:%
I'FLA: BX—A| 'FLA:%

Consistency examples

VX. X=X ~ VY. Y=Y

VX . X—X ~ %
VX. X=X ~ x— %
VX.X—X o4 int—int

VX.X—X o¢ int—bool

*~VX. X—X
*—k ~ VX X—X
int—int £ VX. X—X

int—bool ¥ VX. X—X

What about converting poly. to simple?

One might also want implicit conversion from polymorphic
types to simple types, such as

VX. X—X = int—int

That is a separate concern from gradual typing. We could
handle it with a subtyping rule
A[X—C] <: B
VX.A <:B

Then, for the type checking algorithm, combine subtyping
and consistency as in Siek and Taha [2007].

Polymorphic type inference and containment,
John C. Mitchell, Information and Computation 19gg.
Gradual Type for Objects, Siek and Taha, ECOOP 2007.

Translation semantics (cast insertion)

The semantics is defined by translation to the Polymorphic
Blame Calculus.

Cast Insertion THM~M A

'L~ L%
THELA~ (L% 2 VX %) A

Outline

» Quick review of gradual typing
» New: a polymorphic gradually typed lambda calculus

» Review: Poly. Blame Calculus and Parametricity

Semantics of casting from poly. to untyped

Recall the example:

let

pos = Ax.x > o
app = AX.AY N X—=Y X . fx

in
app pos 1

So we have the cast:
app VX VY. (X=Y)=X-Y B«
The Polymorphic Blame Calculus handles such casts by

instantiating with *.

V:VX.A) L B— (V) AX—>+] 2 B

Blame for All. Ahmed et al. POPL 2011

Semantics of casting from untyped to poly.

Recall the example:

let
pos : int—bool = Ax:int.x > o
app = N x.f x

in

app int bool pos 1
So we have the cast:

app - * B VX VY. (X=Y)=X—Y

The Polymorphic Blame Calculus handles such casts by

generalizing.

VAL (VX B — AX.(V:ALB) ifX¢fv(A)

Semantics of casts and parametricity

Consider casting the constant function
K=X¢x.\y:x.x
to the following polymorphic types

K. =K: %% —x 2 VYX.VY. XY X
K, =K : %> x =% > YX. VY. XYY

and the following scenarios:

(K, int bool) 1 false —* 1 (K, int bool) 1 false —*

(K, int int) 1 2 —* 1 (K, int int) 1 2 —*

Instantiation as type substition

Recall the traditional reduction rule:

(AX.N) A — N[X—A]

K, =K : %% —x > YX. VY. XYY

(K, int bool) 1 false
—*(K : x— x % £ int—bool—+bool) 1 false
—*1:int = x & bool

—blame p

so far so good...

The problem with type substitution

K, =K : %% —x > YX. VY. XYY

The second scenario for K,:

(K, int int) 1 2
—" (K %= x =k L int—int—int) 1 2
— 3*1:int = & int

—1

but a polymorphic function of type VX.VY. X—Y =Y

must return its second argument, not first!

Solution: don’t substitute, seal

(A X.V)A — vX—A. V

The example revisited:

K, =K : %% =% 2 VYX VY. XYY

(K, int int) 1 2
—" (vX—int. vY—int. K : x— x —* L X—=Y—=Y)12

— v yX—int. Y —int. 1 X =+« B Y
— blamep

Types are not sets, James H. Morris, Jr., POPL 1973.

23/ 31

What to do with escaping seals?

(AX.)\x:X.x:X:p>*) int 2
—* yXint. 2 X D«
— blamep,

Contrast with

(AX. Ax:X.inlxas (X + bool)) int 2
—* inl2as (int + bool)

Why not?

VXA (VX220 — XA V) A4S«

Properties of the Polymorphic Blame Calculus

v' Type Safety

v' Blame Theorem

v" Subtyping Theorem (weak version)
O Subtyping Theorem (strong version)

O Parametricity

Blame Theorem

Theorem (Blame Theorem)

Let M be a program with a subterm N : A 2 B where the cast is
labelled by the only occurrence of p in M, and p does not appear
in M.

IfA <t B, then M /—* blame p.

IfA <.~ B, then M /—* blame}.

IfA <, B, then M /—* blame p.

IfB <:, A, then M /—* blamep.

v

v

v

v

Subtyping Theorem

Theorem (Subtyping Theorem)

Let M be a program with a subterm N : A 2 B where the cast is
labelled by the only occurrence of p in M, and p does not appear
in M.
» IfA <: B, then M #—* blame p and M /—"* blamep.

Weak version:

A[X—+| <: B

(VX.A) <: B
(Proved in STOP 2009.)

Strong version:

AX—T|<:B
(VX.A) <: B
(Incorrect proof in POPL 2011.)

Jack of all trades

Conjecture (Jack-of-All-Trades)

IfAFV :VX.A and A[X—C] < B (and hence A[X+—*] < B)
then

(VC:AX—Cl2 B) T (Vx:AX—+ 2 B).

Speculating about parametricity

Logical Relation

Terms
E[A)ok = {(M,N) | 3VW.M{;V,N|;W,(V, W) € V[A]é(k—)}
Values

Vl]int]ok = {(n,n) | n € Z}
VIA, 4+ A,]ok = {(inj,V,inj,W) | i € 1..2,(V, W) € V[A,]ok}

VIVX. Alok = {(V,, Vi) | VR. (V,[], Vi[]) € E[AJ6(X — R)k}
VIX]ok = 6(X) k
VIS(1+ k) = {(V: G = W:G=«) | (V,W) € V[Glok}

Parametricity

Conjecture (Soundness of the Logical Relation)
IfFA;\TEM~N : A, then A;T M =, N : A

Conjecture (Fund. Theorem of Logical Relations)
IFATFM: A, then AT F M~ M: A,

31/31

