
The Polymorphic Blame Calculus
and Parametricity

Jeremy G. Siek

Indiana University, Bloomington

University of Strathclyde
August 2015

1 / 31

Integrating static and dynamic typing

Static Dynamic

2 / 31

Outline

I Quick review of gradual typing
I New: a polymorphic gradually typed lambda calculus
I Review: Poly. Blame Calculus and Parametricity

3 / 31

Gradual typing includes dynamic typing

An untyped program:

let
f = λy. 1 + y
h = λg. g 3

in
h f

−→
4

4 / 31

Gradual typing includes dynamic typing

A buggy untyped program:

1 let
2 f = λy. 1 + y
3 h = λg. g true
4 in
5 h f

−→
blame `2

Just like dynamic typing, the error is caught at run time.

5 / 31

Gradual typing includes static typing

A typed program:

let
f = λy:int. 1 + y
h = λg:int→int. g 3

in
h f

−→
4

6 / 31

Gradual typing includes static typing

An ill-typed program:

1 let
2 f = λy:int. 1 + y
3 h = λg:int→int. g true
4 in
5 h f

Just like static typing, the error is caught at compile time.

Error on line 3, the argument true is a Boolean, but function
g expects an int.

7 / 31

Gradual typing provides fine-grained mixing

A partially typed program:

let
f = λy:int. 1 + y
h = λg. g 3

in
h f

−→
4

8 / 31

Gradual typing protects type invariants

A buggy, partially typed program:

1 let
2 f = λy:int. 1 + y
3 h = λg. g true
4 in
5 h f

−→
blame `3

9 / 31

Gradually Typed Lambda Calculus

Extends the STLC with a dynamic type, written ?.

Types A,B,C ::= ι | A→B | ?
Terms L,M,N ::= c | x | λx:A.N | L M

Consistency A ∼ B

A ∼ ? ? ∼ B
int ∼ int

A1 ∼ B1 A2 ∼ B2

A1→A2 ∼ B1→B2

Term Typing Γ ` M : A

· · ·
Γ ` L : A→B C ∼ A

Γ ` M : C
Γ ` L M : B

Γ ` L : ?
Γ ` M : C

Γ ` L M : ?

10 / 31

Outline

I Quick review of gradual typing
I New: a polymorphic gradually typed lambda calculus
I Review: Poly. Blame Calculus and Parametricity

11 / 31

Gradual typing and polymorphism
Use polymorphic code in an untyped context:

let
pos = λx. x > 0
app = ΛX.ΛY . λf :X→Y . λx:X. f x

in
app pos 1

Use untyped code in a polymorphic context:

let
pos : int→bool = λx:int. x > 0
app = λf . λx. f x

in
app int bool pos 1

12 / 31

Gradually Typed Polymorphic Lambda Calculus

Types A,B,C ::= ι | A→B | ? | X | ∀X.A
Terms L,M,N ::= c | x | λx:A.N | L M | ΛX.N | L A

Consistency A ∼ B

· · · X ∈ Γ
Γ ` X ∼ X

Γ,X ` A ∼ B
Γ ` ∀X.A ∼ ∀X.B

Γ,X ` A ∼ B
Γ ` A ∼ ∀X.B

Γ,X ` A ∼ B
Γ ` ∀X.A ∼ B

Term typing

· · · Γ ` L : ∀X.B
Γ ` L A : B[X 7→A]

Γ ` L : ?
Γ ` L A : ?

13 / 31

Consistency examples

∀X.X→X ∼ ∀Y .Y→Y

∀X.X→X ∼ ? ? ∼ ∀X.X→X

∀X.X→X ∼ ?→ ? ?→? ∼ ∀X.X→X

∀X.X→X 6∼ int→int int→int 6∼ ∀X.X→X

∀X.X→X 6∼ int→bool int→bool 6∼ ∀X.X→X

14 / 31

What about converting poly. to simple?
One might also want implicit conversion from polymorphic
types to simple types, such as

∀X.X→X ⇒ int→int

That is a separate concern from gradual typing. We could
handle it with a subtyping rule

A[X 7→C] <: B
∀X.A <: B

Then, for the type checking algorithm, combine subtyping
and consistency as in Siek and Taha [2007].
1 2

1Polymorphic type inference and containment,
John C. Mitchell, Information and Computation 1988.

2Gradual Type for Objects, Siek and Taha, ECOOP 2007.
15 / 31

Translation semantics (cast insertion)

The semantics is defined by translation to the Polymorphic
Blame Calculus.

Cast Insertion Γ ` M ; M ′ : A

· · · Γ ` L ; L′ : ?
Γ ` L A ; (L′ : ?

p⇒ ∀X. ?) A : ?

16 / 31

Outline

I Quick review of gradual typing
I New: a polymorphic gradually typed lambda calculus
I Review: Poly. Blame Calculus and Parametricity

17 / 31

Semantics of casting from poly. to untyped
Recall the example:

let
pos = λx. x > 0
app = ΛX.ΛY . λf :X→Y . λx:X. f x

in
app pos 1

So we have the cast:

app : ∀X.∀Y . (X→Y)→X→Y
p⇒ ?

The Polymorphic Blame Calculus handles such casts by
instantiating with ?.

V : (∀X.A)
p⇒ B −→ (V ?) : A[X 7→?] p⇒ B

3
3Blame for All. Ahmed et al. POPL 2011

18 / 31

Semantics of casting from untyped to poly.
Recall the example:

let
pos : int→bool = λx:int. x > 0
app = λf . λx. f x

in
app int bool pos 1

So we have the cast:

app : ?
p⇒ ∀X.∀Y . (X→Y)→X→Y

The Polymorphic Blame Calculus handles such casts by
generalizing.

V : A
p⇒ (∀X.B) −→ ΛX. (V : A

p⇒ B) if X /∈ ftv(A)

19 / 31

Semantics of casts and parametricity

Consider casting the constant function

K = λx: ? . λy: ? . x

to the following polymorphic types

K1 ≡ K : ?→ ?→? p⇒ ∀X.∀Y .X→Y→X
K2 ≡ K : ?→ ?→? q⇒ ∀X.∀Y .X→Y→Y

and the following scenarios:

(K1 int bool) 1 false −→∗ 1

(K1 int int) 1 2 −→∗ 1

(K2 int bool) 1 false −→∗

(K2 int int) 1 2 −→∗

20 / 31

Instantiation as type substition
Recall the traditional reduction rule:

(ΛX.N) A −→ N [X 7→A]

K2 ≡ K : ?→ ?→? q⇒ ∀X.∀Y .X→Y→Y

(K2 int bool) 1 false

−→∗(K : ?→ ?→? p⇒ int→bool→bool) 1 false

−→∗1 : int⇒ ?
p⇒ bool

−→blame p

so far so good...

21 / 31

The problem with type substitution

K2 ≡ K : ?→ ?→? q⇒ ∀X.∀Y .X→Y→Y

The second scenario for K2:

(K2 int int) 1 2

−→∗(K : ?→ ?→? p⇒ int→int→int) 1 2

−→∗1 : int⇒ ?
p⇒ int

−→1

but a polymorphic function of type ∀X.∀Y .X→Y→Y
must return its second argument, not first!

22 / 31

Solution: don’t substitute, seal

(ΛX.V) A −→ νX 7→A. V

The example revisited:

K2 ≡ K : ?→ ?→? q⇒ ∀X.∀Y .X→Y→Y

(K2 int int) 1 2

−→∗ (νX 7→int. νY 7→int. K : ?→ ?→? p⇒ X→Y→Y) 1 2

−→∗ νX 7→int. νY 7→int. 1 : X ⇒ ?
p⇒ Y

−→ blame p

4
4Types are not sets, James H. Morris, Jr., POPL 1973.

23 / 31

What to do with escaping seals?

(ΛX. λx:X. x : X
p⇒ ?) int 2

−→∗ νX 7→int. 2 : X
p⇒ ?

−→ blame pν

Contrast with

(ΛX. λx:X. inl x as (X + bool)) int 2
−→∗ inl 2 as (int + bool)

Why not?

νX 7→A. (V : X
p⇒ ?) −→ (νX 7→A. V) : A

p⇒ ?

24 / 31

Properties of the Polymorphic Blame Calculus

X Type Safety

X Blame Theorem

X Subtyping Theorem (weak version)

2 Subtyping Theorem (strong version)

2 Parametricity

25 / 31

Blame Theorem

Theorem (Blame Theorem)
Let M be a program with a subterm N : A

p⇒ B where the cast is
labelled by the only occurrence of p in M, and p does not appear
in M.

I If A <:+ B, then M 6−→∗ blame p.
I If A <:− B, then M 6−→∗ blame p.
I If A <:n B, then M 6−→∗ blame p.
I If B <:n A, then M 6−→∗ blame p.

26 / 31

Subtyping Theorem
Theorem (Subtyping Theorem)
Let M be a program with a subterm N : A

p⇒ B where the cast is
labelled by the only occurrence of p in M, and p does not appear
in M.

I If A <: B, then M 6−→∗ blame p and M 6−→∗ blame p.

Weak version:
A[X 7→?] <: B
(∀X.A) <: B

(Proved in STOP 2009.)

Strong version:
A[X 7→T] <: B
(∀X.A) <: B

(Incorrect proof in POPL 2011.)
27 / 31

Jack of all trades

Conjecture (Jack-of-All-Trades)
If ∆ ` V : ∀X.A and A[X 7→C] ≺ B (and hence A[X 7→?] ≺ B)
then

(V C : A[X 7→C]
p⇒ B) v (V ? : A[X 7→?] p⇒ B).

28 / 31

Speculating about parametricity
Logical Relation

Terms

E[A]δk = {(M,N) | ∃VW .M⇓jV ,N⇓jW , (V ,W) ∈ V [A]δ(k−j)}

Values

V [int]δk = {(n, n) | n ∈ Z}
V [A1 + A2]δk = {(injiV , injiW) | i ∈ 1..2, (V ,W) ∈ V [Ai]δk}

· · ·
V [∀X.A]δk = {(V1,V2) | ∀R. (V1[·],V2[·]) ∈ E[A]δ(X 7→ R)k}

V [X]δk = δ(X) k
V [?]δ(1 + k) = {(V : G⇒ ?,W : G⇒ ?) | (V ,W) ∈ V [G]δk}

29 / 31

Parametricity

Conjecture (Soundness of the Logical Relation)
If ∆; Γ ` M ≈ N : A, then ∆; Γ ` M =ctx N : A.

Conjecture (Fund. Theorem of Logical Relations)
If ∆; Γ ` M : A, then ∆; Γ ` M ≈ M : A.

30 / 31

31 / 31

