

# The Polymorphic Blame Calculus and Parametricity

Jeremy G. Siek

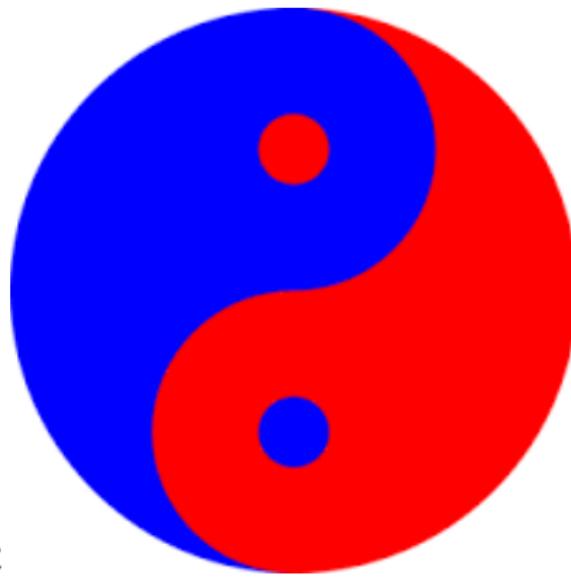
Indiana University, Bloomington



University of Strathclyde  
August 2015



# Integrating static and dynamic typing



Static

Dynamic

# Outline

- ▶ Quick review of gradual typing
- ▶ New: a polymorphic gradually typed lambda calculus
- ▶ Review: Poly. Blame Calculus and Parametricity

# Gradual typing includes dynamic typing

An untyped program:

```
let
  f = λy. 1 + y
  b = λg. g 3
in
  bf
→
4
```

# Gradual typing includes dynamic typing

A buggy untyped program:

```
1  let
2     $f = \lambda y. 1 + y$ 
3     $b = \lambda g. g \text{ true}$ 
4  in
5     $bf$ 
→
blame  $\ell_2$ 
```

Just like dynamic typing, the error is caught at run time.

# Gradual typing includes static typing

A typed program:

```
let
  f =  $\lambda y:\text{int}. 1 + y$ 
  b =  $\lambda g:\text{int} \rightarrow \text{int}. g\ 3$ 
in
  bf
→
  4
```

# Gradual typing includes static typing

An ill-typed program:

```
1  let
2     $f = \lambda y:\text{int}. 1 + y$ 
3     $b = \lambda g:\text{int} \rightarrow \text{int}. g \text{ true}$ 
4  in
5     $bf$ 
```

Just like static typing, the error is caught at compile time.

Error on line 3, the argument `true` is a Boolean, but function `g` expects an `int`.

# Gradual typing provides fine-grained mixing

A partially typed program:

```
let
  f = λy:int. 1 + y
  b = λg. g 3
in
  bf
→
  4
```

# Gradual typing protects type invariants

A buggy, partially typed program:

```
1  let
2    f =  $\lambda y:\text{int}. 1 + y$ 
3    b =  $\lambda g. g \text{ true}$ 
4  in
5    b f
```



blame  $\ell_3$

# Gradually Typed Lambda Calculus

Extends the STLC with a dynamic type, written  $\star$ .

$$\begin{array}{lcl} \text{Types } A, B, C & ::= & \iota \mid A \rightarrow B \mid \star \\ \text{Terms } L, M, N & ::= & c \mid x \mid \lambda x:A. N \mid L M \end{array}$$

Consistency

$$A \sim B$$

$$\frac{}{A \sim \star} \quad \frac{}{\star \sim B} \quad \text{int} \sim \text{int} \quad \frac{A_1 \sim B_1 \quad A_2 \sim B_2}{A_1 \rightarrow A_2 \sim B_1 \rightarrow B_2}$$

Term Typing

$$\Gamma \vdash M : A$$

$$\frac{\dots \quad \frac{\Gamma \vdash L : A \rightarrow B \quad C \sim A}{\Gamma \vdash M : C}}{\Gamma \vdash L M : B} \quad \frac{\Gamma \vdash L : \star \quad \Gamma \vdash M : C}{\Gamma \vdash L M : \star}$$

# Outline

- ▶ Quick review of gradual typing
- ▶ **New: a polymorphic gradually typed lambda calculus**
- ▶ Review: Poly. Blame Calculus and Parametricity

# Gradual typing and polymorphism

Use polymorphic code in an untyped context:

```
let
  pos =  $\lambda x. x > 0$ 
  app =  $\Lambda X. \Lambda Y. \lambda f:X \rightarrow Y. \lambda x:X. f\ x$ 
in
  app pos 1
```

Use untyped code in a polymorphic context:

```
let
  pos : int  $\rightarrow$  bool =  $\lambda x:\text{int}. x > 0$ 
  app =  $\lambda f. \lambda x. f\ x$ 
in
  app int bool pos 1
```

# Gradually Typed Polymorphic Lambda Calculus

Types  $A, B, C ::= \iota \mid A \rightarrow B \mid \star \mid X \mid \forall X. A$

Terms  $L, M, N ::= c \mid x \mid \lambda x:A. N \mid L M \mid \Lambda X. N \mid L A$

Consistency

$A \sim B$

$$\dots \quad \frac{X \in \Gamma}{\Gamma \vdash X \sim X} \quad \frac{\Gamma, X \vdash A \sim B}{\Gamma \vdash \forall X. A \sim \forall X. B}$$

$$\frac{\Gamma, X \vdash A \sim B}{\Gamma \vdash A \sim \forall X. B} \quad \frac{\Gamma, X \vdash A \sim B}{\Gamma \vdash \forall X. A \sim B}$$

Term typing

$$\dots \quad \frac{\Gamma \vdash L : \forall X. B}{\Gamma \vdash L A : B[X \mapsto A]} \quad \frac{\Gamma \vdash L : \star}{\Gamma \vdash L A : \star}$$

# Consistency examples

$$\forall X. X \rightarrow X \sim \forall Y. Y \rightarrow Y$$

$$\forall X. X \rightarrow X \sim \star \quad \star \sim \forall X. X \rightarrow X$$

$$\forall X. X \rightarrow X \sim \star \rightarrow \star \quad \star \rightarrow \star \sim \forall X. X \rightarrow X$$

$$\forall X. X \rightarrow X \not\sim \text{int} \rightarrow \text{int} \quad \text{int} \rightarrow \text{int} \not\sim \forall X. X \rightarrow X$$

$$\forall X. X \rightarrow X \not\sim \text{int} \rightarrow \text{bool} \quad \text{int} \rightarrow \text{bool} \not\sim \forall X. X \rightarrow X$$

# What about converting poly. to simple?

One might also want implicit conversion from polymorphic types to simple types, such as

$$\forall X. X \rightarrow X \Rightarrow \text{int} \rightarrow \text{int}$$

That is a separate concern from gradual typing. We could handle it with a subtyping rule

$$\frac{A[X \mapsto C] <: B}{\forall X. A <: B}$$

Then, for the type checking algorithm, combine subtyping and consistency as in Siek and Taha [2007].

---

*Polymorphic type inference and containment,*

John C. Mitchell, Information and Computation 1988.

*Gradual Type for Objects*, Siek and Taha, ECOOP 2007.

# Translation semantics (cast insertion)

The semantics is defined by translation to the Polymorphic Blame Calculus.

Cast Insertion

$$\boxed{\Gamma \vdash M \rightsquigarrow M' : A}$$

$$\dots \quad \frac{\Gamma \vdash L \rightsquigarrow L' : \star}{\Gamma \vdash L A \rightsquigarrow (L' : \star \xrightarrow{p} \forall X. \star) A : \star}$$

# Outline

- ▶ Quick review of gradual typing
- ▶ New: a polymorphic gradually typed lambda calculus
- ▶ **Review: Poly. Blame Calculus and Parametricity**

# Semantics of casting from poly. to untyped

Recall the example:

```
let
  pos =  $\lambda x. x > 0$ 
  app =  $\Lambda X. \Lambda Y. \lambda f:X \rightarrow Y. \lambda x:X. f\ x$ 
in
  app pos 1
```

So we have the cast:

$$app : \forall X. \forall Y. (X \rightarrow Y) \rightarrow X \rightarrow Y \xrightarrow{p} *$$

The Polymorphic Blame Calculus handles such casts by instantiating with  $*$ .

$$V : (\forall X. A) \xrightarrow{p} B \longrightarrow (V *) : A[X \mapsto *] \xrightarrow{p} B$$

# Semantics of casting from untyped to poly.

Recall the example:

```
let
  pos : int → bool = λx:int. x > 0
  app = λf. λx. f x
in
  app int bool pos 1
```

So we have the cast:

$$app : \star \xrightarrow{p} \forall X. \forall Y. (X \rightarrow Y) \rightarrow X \rightarrow Y$$

The Polymorphic Blame Calculus handles such casts by generalizing.

$$V : A \xrightarrow{p} (\forall X. B) \longrightarrow \Lambda X. (V : A \xrightarrow{p} B) \quad \text{if } X \notin \text{ftv}(A)$$

# Semantics of casts and parametricity

Consider casting the constant function

$$K = \lambda x: \star . \lambda y: \star . x$$

to the following polymorphic types

$$K_1 \equiv K : \star \rightarrow \star \rightarrow \star \xrightarrow{p} \forall X. \forall Y. X \rightarrow Y \rightarrow X$$

$$K_2 \equiv K : \star \rightarrow \star \rightarrow \star \xrightarrow{q} \forall X. \forall Y. X \rightarrow Y \rightarrow Y$$

and the following scenarios:

$$\begin{array}{ll} (K_1 \text{ int bool}) \downarrow \text{false} \longrightarrow^* \downarrow & (K_2 \text{ int bool}) \downarrow \text{false} \longrightarrow^* \\ (K_1 \text{ int int}) \downarrow 2 \longrightarrow^* \downarrow & (K_2 \text{ int int}) \downarrow 2 \longrightarrow^* \end{array}$$

# Instantiation as type substitution

Recall the traditional reduction rule:

$$(\Lambda X. N) A \longrightarrow N[X \mapsto A]$$

$$K_2 \equiv K : \star \rightarrow \star \rightarrow \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \rightarrow Y \rightarrow \textcolor{red}{Y}$$

$$\begin{aligned} & (K_2 \text{ int bool}) \text{ i false} \\ \longrightarrow^* & (K : \star \rightarrow \star \rightarrow \star \stackrel{p}{\Rightarrow} \text{int} \rightarrow \text{bool} \rightarrow \text{bool}) \text{ i false} \\ \longrightarrow^* & \text{i : int} \stackrel{p}{\Rightarrow} \text{bool} \\ \longrightarrow & \text{blame } p \end{aligned}$$

so far so good...

# The problem with type substitution

$$K_2 \equiv K : \star \rightarrow \star \rightarrow \star \xrightarrow{q} \forall X. \forall Y. X \rightarrow Y \rightarrow Y$$

The second scenario for  $K_2$ :

$$\begin{aligned} & (K_2 \text{ int int}) \text{ I 2} \\ \longrightarrow^* & (K : \star \rightarrow \star \rightarrow \star \xrightarrow{p} \text{int} \rightarrow \text{int} \rightarrow \text{int}) \text{ I 2} \\ \longrightarrow^* & \text{I} : \text{int} \xrightarrow{p} \star \xrightarrow{p} \text{int} \\ \longrightarrow & \text{I} \end{aligned}$$

but a polymorphic function of type  $\forall X. \forall Y. X \rightarrow Y \rightarrow Y$   
must return its second argument, not first!

# Solution: don't substitute, seal

$$(\Lambda X. V) A \longrightarrow \nu X \mapsto A. V$$

The example revisited:

$$K_2 \equiv K : \star \rightarrow \star \rightarrow \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \rightarrow Y \rightarrow \textcolor{red}{Y}$$

$$(K_2 \text{ int } \textcolor{red}{int}) \text{ i 2}$$

$$\longrightarrow^* (\nu X \mapsto \text{int}. \nu Y \mapsto \text{int}. K : \star \rightarrow \star \rightarrow \star \stackrel{p}{\Rightarrow} X \rightarrow Y \rightarrow Y) \text{ i 2}$$

$$\longrightarrow^* \nu X \mapsto \text{int}. \nu Y \mapsto \text{int}. \text{ i } : X \Rightarrow \star \stackrel{p}{\Rightarrow} Y$$

→ blame  $p$

# What to do with escaping seals?

$$\begin{aligned} & (\Lambda X. \lambda x:X. x : X \xrightarrow{p} \star) \text{ int } 2 \\ \longrightarrow^* & \nu X \mapsto \text{int. } 2 : X \xrightarrow{p} \star \\ \longrightarrow & \text{ blame } p_\nu \end{aligned}$$

Contrast with

$$\begin{aligned} & (\Lambda X. \lambda x:X. \text{inl } x \text{ as } (X + \text{bool})) \text{ int } 2 \\ \longrightarrow^* & \text{inl } 2 \text{ as } (\text{int} + \text{bool}) \end{aligned}$$

Why not?

$$\nu X \mapsto A. (V : X \xrightarrow{p} \star) \longrightarrow (\nu X \mapsto A. V) : A \xrightarrow{p} \star$$

# Properties of the Polymorphic Blame Calculus

- ✓ Type Safety
- ✓ Blame Theorem
- ✓ Subtyping Theorem (weak version)
- Subtyping Theorem (strong version)
- Parametricity

# Blame Theorem

## Theorem (Blame Theorem)

Let  $M$  be a program with a subterm  $N : A \xrightarrow{p} B$  where the cast is labelled by the only occurrence of  $p$  in  $M$ , and  $\bar{p}$  does not appear in  $M$ .

- If  $A <:^+ B$ , then  $M \not\rightarrow^* \text{blame } p$ .
- If  $A <:^- B$ , then  $M \not\rightarrow^* \text{blame } \bar{p}$ .
- If  $A <:_n B$ , then  $M \not\rightarrow^* \text{blame } p$ .
- If  $B <:_n A$ , then  $M \not\rightarrow^* \text{blame } \bar{p}$ .

# Subtyping Theorem

## Theorem (Subtyping Theorem)

Let  $M$  be a program with a subterm  $N : A \xrightarrow{p} B$  where the cast is labelled by the only occurrence of  $p$  in  $M$ , and  $\bar{p}$  does not appear in  $M$ .

- If  $A <: B$ , then  $M \not\rightarrow^* \text{blame } p$  and  $M \not\rightarrow^* \text{blame } \bar{p}$ .

Weak version:

$$\frac{A[X \mapsto \star] <: B}{(\forall X. A) <: B}$$

(Proved in STOP 2009.)

Strong version:

$$\frac{A[X \mapsto T] <: B}{(\forall X. A) <: B}$$

(Incorrect proof in POPL 2011.)

# Jack of all trades

Conjecture (Jack-of-All-Trades)

*If  $\Delta \vdash V : \forall X. A$  and  $A[X \mapsto C] \prec B$  (and hence  $A[X \mapsto \star] \prec B$ )  
then*

$$(V\ C : A[X \mapsto C] \xrightarrow{p} B) \sqsubseteq (V\ \star : A[X \mapsto \star] \xrightarrow{p} B).$$

# Speculating about parametricity

Logical Relation

Terms

$$E[A]\delta k = \{(M, N) \mid \exists VW. M \Downarrow_j V, N \Downarrow_j W, (V, W) \in V[A]\delta(k-j)\}$$

Values

$$V[\text{int}]\delta k = \{(n, n) \mid n \in \mathbf{Z}\}$$

$$V[A_1 + A_2]\delta k = \{(\text{inj}_i V, \text{inj}_i W) \mid i \in 1..2, (V, W) \in V[A_i]\delta k\}$$

...

$$V[\forall X. A]\delta k = \{(V_1, V_2) \mid \forall R. (V_1[\cdot], V_2[\cdot]) \in E[A]\delta(X \mapsto R)k\}$$

$$V[X]\delta k = \delta(X) k$$

$$V[\star]\delta(1 + k) = \{(V : G \Rightarrow \star, W : G \Rightarrow \star) \mid (V, W) \in V[G]\delta k\}$$

# Parametricity

Conjecture (Soundness of the Logical Relation)

*If  $\Delta; \Gamma \vdash M \approx N : A$ , then  $\Delta; \Gamma \vdash M =_{ctx} N : A$ .*

Conjecture (Fund. Theorem of Logical Relations)

*If  $\Delta; \Gamma \vdash M : A$ , then  $\Delta; \Gamma \vdash M \approx M : A$ .*

