

PROOF-THEORETIC SEMANTICS FOR DYNAMIC LOGICS

Alessandra Palmigiano

Joint work with

Sabine Frittella, Giuseppe Greco, Alexander Kurz, Vlasta Sikimic

WWW.APPLIEDLOGIC.TUDELFT.NL

Computer and Information Sciences
University of Strathclyde

6 October 2015

PROOF-THEORETIC SEMANTICS

Theories of meaning	
Denotational (model-theoretic)	Inferential (proof-theoretic)
<u>Tarski</u> : Meaning is out there	<u>Gentzen</u> : Meaning is in RULES

- ▶ Wittgenstein: meaning is use (very influential in philosophy of language)
- ▶ Wansing: meaning is **correct** use!
- ▶ not all proof systems are good environments for an inferential theory of meaning.

GOOD PROOF SYSTEMS FOR DLs: DESIDERATA

- ▶ An **independent** account of dynamic logics:
 - ▶ Proof-theoretic semantic approach;
- ▶ Intuitive, **user-friendly** rules;
- ▶ **Good performances:**
 - ▶ soundness & completeness,
 - ▶ cut-elimination & sub-formula property,
 - ▶ decidability.
- ▶ A **modular** account of dynamic logics:
 - ▶ charting the space of DLs by adding/subtracting rules,
 - ▶ transfer of results with minimal changes.

PROBLEMS: THE CASE STUDY OF DEL

$$\langle \alpha \rangle p \leftrightarrow \text{Pre}(\alpha) \wedge p$$

$$\langle \alpha \rangle (A \vee B) \leftrightarrow \langle \alpha \rangle A \vee \langle \alpha \rangle B$$

$$\langle \alpha \rangle \neg A \leftrightarrow \text{Pre}(\alpha) \wedge \neg \langle \alpha \rangle A$$

$$\langle \alpha \rangle \langle a \rangle A \leftrightarrow \text{Pre}(\alpha) \wedge \bigvee \{ \langle a \rangle \langle \beta \rangle A \mid \alpha a \beta \}$$

1. not closed under **uniform substitution**;
2. use of **meta-linguistic abbreviation** $\text{Pre}(\alpha)$;
3. use of **labels** $\alpha a \beta$.

THE CASE STUDY OF PDL

$$[\alpha] (A \rightarrow B) \rightarrow ([\alpha] A \rightarrow [\alpha] B)$$

$$[\alpha \cup \beta] A \leftrightarrow [\alpha] A \wedge [\beta] A$$

$$[\alpha ; \beta] A \leftrightarrow [\alpha][\beta] A$$

$$[?A] B \leftrightarrow (A \rightarrow B)$$

$$[\alpha] (A \wedge B) \leftrightarrow [\alpha] A \wedge [\alpha] B$$

$$[\alpha^*] A \leftrightarrow A \wedge [\alpha][\alpha^*] A$$

$$A \wedge [\alpha^*] (A \rightarrow [\alpha] A) \rightarrow [\alpha^*] A$$

DISPLAY CALCULI

- ▶ Natural generalization of sequent calculi;
- ▶ sequents $X \vdash Y$, where X, Y **STRUCTURES**:
 $\phi, \phi; \psi \dots, X > Y, \dots$
- ▶ **DISPLAY PROPERTY**:

$$\frac{\frac{Y \vdash X > Z}{X; Y \vdash Z} \quad \frac{}{Y; X \vdash Z}}{X \vdash Y > Z}$$

- ▶ display property: **adjunction** at the structural level.
- ▶ **Canonical proof of cut elimination**

MORE ON STRUCTURAL CONNECTIVES

- One for two:

>	;		{a}	\widehat{a}	{α}	$\widehat{\alpha}$
\succ	\rightarrow	\wedge	\vee	\top	\perp	$\langle a \rangle$

- Again, dynamic adjoints needed for display rules:

$$\frac{X \vdash \{a\} Y}{\widehat{a} X \vdash Y} \quad \frac{\{a\} X \vdash Y}{X \vdash \widehat{a} Y}$$

$$\frac{X \vdash \{\alpha\} Y}{\widehat{\alpha} X \vdash Y} \quad \frac{\{\alpha\} X \vdash Y}{X \vdash \widehat{\alpha} Y}$$

THE MULTI-TYPE APPROACH

- ▶ Ag Act Fnc Fm;
 - ▶ no ancillary symbols; all types are **first-class citizens**;
- ▶ Additional expressivity:
 - ▶ operational connectives **merging different types**:

$$\Delta_1, \blacktriangle_1 : \text{Act} \times \text{Fm} \rightarrow \text{Fm} \quad \langle \alpha \rangle A \rightsquigarrow \alpha \Delta_1 A$$

$$\Delta_2, \blacktriangle_2 : \text{Ag} \times \text{Fm} \rightarrow \text{Fm} \quad \langle a \rangle A \rightsquigarrow a \Delta_2 A$$

$$\Delta_3, \blacktriangle_3 : \text{Ag} \times \text{Fnc} \rightarrow \text{Act}$$

- ▶ Modularity: by adding or subtracting types (Games, strategies, coalitions) one can chart the whole space of dynamic logics.

for $1 \leq i \leq 3$,

	Δ_i	\blacktriangle_i	\rightarrow_i	$\rightarrow\!\rightarrow_i$
	Δ_i	\blacktriangle_i	\rightarrow_i	$\rightarrow\!\rightarrow_i$

A GLIMPSE AT RULES FOR DEL

Single-type, first version: formulas as side conditions (and rules with labels);

$$\text{swap-in}_L \frac{\textcolor{red}{\text{Pre}(\alpha)} ; \{\alpha\}\{a\}X \vdash Y}{\textcolor{red}{\text{Pre}(\alpha)} ; \{a\}\{\beta\}_{\alpha a \beta} X \vdash Y}$$

Single-type, emended: purely structural (but labels still there);

$$\text{swap-in}'_L \frac{\{\alpha\}\{a\}X \vdash Y}{\Phi_\alpha ; \{a\}\{\beta\}_{\alpha a \beta} X \vdash Y}$$

Multi-type: no side conditions and no labels.

$$\text{swap-in}_L \frac{a \blacktriangle_2 (\alpha \blacktriangle_1 X) \vdash Y}{(a \blacktriangle_3 \alpha) \blacktriangle_1 (a \blacktriangle_2 X) \vdash Y}$$

A GLIMPSE AT RULES FOR PDL

$$\omega \Delta \frac{\begin{array}{c} \oplus \ominus \frac{\Pi^\oplus \vdash \Delta}{\Pi \vdash \Delta^\ominus} \\ \left(\begin{array}{c} \Pi^{(n)} \Delta_1 X \vdash Y \mid n \geq 1 \end{array} \right) \end{array}}{\Pi^\oplus \Delta_0 X \vdash Y}$$

CANONICAL CUT ELIMINATION, 1/3

1. structures can disappear, formulas are **forever**;
2. **tree-traceable** formula-occurrences, via suitably defined congruence:
 - ▶ same shape, same position, **same type**, non-proliferation;
3. **principal = displayed** (**Exception**: principal fma's in axioms)
 - ▶ Generaliz.: axioms are **closed** under display rules (when applicable);
4. rules are closed under **uniform substitution** of congruent parameters **within each type**;
5. **reduction strategy** exists when cut formulas are both principal.

SPECIFIC TO MULTI-TYPE SETTING:

6. **type-uniformity** of derivable sequents;
7. **strongly uniform cuts** in each/some type(s).

THM: For any (multi-type) calculus satisfying list above, the cut elimination theorem can be proven.

CANONICAL CUT ELIMINATION, 2/3

Two main cases + subcases.

- (a) Both cut formulas are principal. by 5. (cut is either eliminated or “broken down” into cuts of lower rank).
- (b) At least one cut formula is parametric. Subcase (b1): a_u principal in axiom. Then,

$$\frac{\frac{\frac{\vdots \pi_1}{x \vdash a} \quad \frac{\vdots \pi_2}{a_u \vdash y''[a_{suc}]} }{x \vdash y''[a_{suc}]} \quad (x' \vdash y')[a_u^{pre}, a_{suc}]}{(x' \vdash y')[x^{pre}, a_{suc}]} \rightsquigarrow \frac{\frac{\vdots \pi_1}{x \vdash a} \quad \frac{\vdots \pi_2}{a \vdash y}}{x \vdash y} \quad \vdash \pi_2[x/a_u] \quad x \vdash y$$

CANONICAL CUT ELIMINATION, 3/3

Subcase (b2): a_u principal in other rule. Then, a_u is in display, and hence:

$$\frac{\frac{\frac{\vdash \pi'_2}{a_u \vdash y'} \quad \frac{\vdash \pi_1 \quad \vdash \pi'_2}{x \vdash a \quad a_u \vdash y'} }{x \vdash y'} \quad \frac{\vdash \pi_1 \quad \vdash \pi_2}{x \vdash a \quad a \vdash y}}{x \vdash y} \rightsquigarrow \frac{\vdash \pi_2[x/a]}{x \vdash y}$$

CANONICAL CUT ELIMINATION, 3/3

Subcase (b2): a_u principal in other rule. Then, a_u is in display, and hence:

$$\frac{\frac{\frac{\vdash \pi'_2}{a_u \vdash y'} \quad \frac{\vdash \pi_1 \quad \vdash \pi'_2}{x \vdash a \quad a_u \vdash y'} }{x \vdash y'} \quad \frac{\vdash \pi_1 \quad \vdash \pi_2}{x \vdash a \quad a \vdash y}}{x \vdash y} \rightsquigarrow \frac{\vdash \pi_2[x/a]}{x \vdash y}$$

Subcase (b3): a_u parametric. Then:

$$\frac{\frac{\frac{\vdash \pi'_2}{(x' \vdash y')[a_u]^{pre}} \quad \frac{\vdash \pi_1 \quad \vdash \pi_2}{x \vdash a \quad a \vdash y}}{x \vdash y} \rightsquigarrow \frac{\vdash \pi_2[x/a_u^{pre}]}{x \vdash y}}{\vdash \pi_2[x/a_u^{pre}]}$$

1. S. Frittella, G. Greco, A. Kurz, AP, V. Sikimic, **A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic**, JLC Special issue on Substructural Logic and Information Dynamics (2014), DOI:10.1093/logcom/exu063.
2. S. Frittella, G. Greco, A. Kurz, AP, V. Sikimic, **Multi-type Display Calculus for Dynamic Epistemic Logic**, JLC Special issue on Substructural Logic and Information Dynamics (2014), DOI:10.1093/logcom/exu068.
3. S. Frittella, G. Greco, A. Kurz, AP, **Multi-type Display Calculus for Propositional Dynamic Logic**, JLC Special issue on Substructural Logic and Information Dynamics (2014), DOI:10.1093/logcom/exu064.
4. S. Frittella, G. Greco, A. Kurz, AP, V. Sikimic, **Multi-type Sequent Calculi**, Studia Logica, Proc. Trends in Logic XIII (2014) 81-93.
5. G. Greco, A. Kurz, AP, **Dynamic Epistemic Logic Displayed**, Proc. LORI 2013.