
Information Effects for
Understanding Type Systems

Or: how someone else found the maths to justify my dogma

Philippa Cowderoy

August 23, 2016



What are effects?

Effects can be seen in relation to models of computing:

General computing Anything to do with the real world
Functional programming Mutation, control effects...

Total programming Non-termination
Logic programming Exposing the solver (eg cut)



Information Effects

Work on reversible programming at Indiana produced Π, a
combinator language in which computing is performed by
isomorphism. New effect class:

General computing Anything to do with the real world
Functional programming Mutation, control effects...

Total programming Non-termination
Logic programming Exposing the solver (eg cut)

Isomorphic programming Information Effects

Named for conservation of information in quantum mechanics,
information effects create or destroy information and thus violate
isomorphism.



CLP in terms of Prolog

Constraint Logic Programming in a Prolog-like language can be
achieved through two simple steps:

I Where Prolog would unify, introduce an equality constraint

I Describe new kinds of constraints and their solver, start
introducing them

I Strictly optional: Interaction with the solver other than telling
it about constraints or asking for the solution to a complete
problem

I ”Complete problem” might be a difficult (region-like!) notion
if you’re getting everything done through equality constraints
per se though



Modes

I A predicate’s modes describe how its parameters may be
instantiated before and after evaluating it. Different modes
may be implemented differently.

I Prolog-style logic programming is ‘just’ constraint logic
programming with only syntactic equality constraints

I modes should cover other constraints in some meaningful
sense, state of the art unclear (to me, anyway)

I Example modes for the equality constraint:
I binding/assignment: take an uninstantiated parameter on the

left and a fully instantiated one on the right
I equality predicate in most programming languages: is an

equality constraint between two ground parameters satisfiable?



Dogma

I No data-structure manipulation except using constraints
I Makes all manipulation an info effect

I Linearity stops us hiding things
I Search is bad, don’t make choices outside constraint solving

I Even better if the constraint solver makes no choices!

I These three things pretty much guarantee we’ll fit on top of a
suitable relative of Π

I Prove your type inference works by doing elaboration
I But that’d take up too much space for today



Constraints for the Simply-Typed Lambda Calculus

τ = τ Type equality
τ−〈τlτr Type duplication

x : τ ∈ Γ Binding in context
Γ′ := x : τ ; Γ Context extension

Γ−〈ΓL
ΓR

Context duplication

Note that the context constraints encode the structural rules. An
alternative interpretation could give us a minimal linear calculus.



Some Possible Modes

τ = τ Anything subsumed by inout = inout

x : τ ∈ Γ ground : out = ground
Γ′ := x : τ ; Γ out := ground : in; ground

Γ−〈ΓL
ΓR

in−〈outout - duplicate

x : τ ∈ Γ ground : inout = inout
Γ′ := x : τ ; Γ inout := ground : inout; inout

Γ−〈ΓL
ΓR

out−〈inin - merge

So given a contextless term, we can find the context(s) that make
it type.



Tediously Simply-Typed λ-Calculus (unannotated)

x : τ ∈ Γ

Γ ` x : τ
Var

Γf := x : τp ; Γ
Γf ` T : τr
τf = τp → τr

Γ ` λx .T : τf
Lam

Γ−〈ΓL
ΓR

ΓL ` Tf : τf ΓR ` Tp : τp
τp → τr = τf

Γ ` Tf Tp : τr
App



Introducing Modes - and Eliminating

We can give precise modes to the = constraints in the Lam and
App rules:

I Lam’s τf = τp → τr has a mode out = in→ in

I App’s τp → τr = τf has a mode in→ out = in

I These modes tell us that Lam introduces → and App
eliminates it!

I A similar relationship holds between Γ′ := x : τ ; Γ and
x : τ ∈ Γ - most obvious in a linear calculus, but we can still
view Var as eliminating Lam’s bindings while App propagates
copies



Supporting Annotations

τa−〈
τap
τaf

Γf := x : τap ; Γ
Γf ` T : τr
τf = τaf → τr

Γ ` λx : τa . T : τf
ALam

I That duplication constraint demonstrates bidirectional
dataflow - inwards to the body, outwards to the return type.

I More complex systems exploit this by mixing modes/directions
in their typing rules



Implementation?

given = (<$)

infixl 3 ‘given‘

type Judgement = Context -> ConstraintGen Type

lam :: Identifier -> Judgement -> Judgement

lam x jb c = withTV (\tf -> withTV (\tp ->

withTV (\tr -> withCV (\cf ->

f tf tp tr cf))))

where f tf tp tr cf =

tf ‘given‘ cf ‘ctxtExt‘ (x, tp) & c *>

tr <<- jb cf *>

tf ‘eqCon‘ tp :-> tr



Implementation Meets Specification

So the Lam rule:

Γf := x : τp ; Γ
Γf ` T : τr
τf = τp → τr

Γ ` λx .T : τf
Lam

With all the binding noise removed, is implemented by:

lam x jb c = ...

tf ‘given‘ cf ‘ctxtExt‘ (x, tp) & c *>

tr <<- jb cf *>

tf ‘eqCon‘ tp :-> tr



Constraints for an ML-style System

Variables are now bound to polytypes/type schemes: σ ::= ∀t̄.τ

τ = τ Monotype equality

x : σ ∈ Γ Binding in context
Γ′ := x : σ; Γ Context extension

σ ≥ τ Type subsumption/instantiation
τ ≤Γ σ Generalisation in context

Instantiation and generalisation have a similar relationship to
binding usage and extension. Their satisfaction predicates are
n-ary versions of Milner’s Inst and Gen rules.



Not to Over-generalise...
Variable usage and lambdas need to account for polymorphism:

x : σ ∈ Γ
σ ≥ τ

Γ ` x : τ
Var

Γf := x : ∀.τp ; Γ
Γf ` T : τr
τf = τp → τr

Γ ` λx .T : τf
Lam

And this leaves room for let-generalisation to be useful:

Γ−〈Γx
Γtemp

Γtemp−〈Γb
Γgen

Γx ` Tx : τx
τx ≤Γgen σ

Γ′ := x : σ; Γb

Γ′ ` Tb : τb

Γ ` let x = Tx in Tb : τb
Let



I Can’t Believe It’s Not Hindley-Milner!

9 out of 10 cats couldn’t tell this system from Hindley-Milner:

I “Looks like Hindley-Milner to me”

I “Er, yeah, I reckon so?”

I “Mrow!” (tr: more!)

But one asked an important question:

“Wait, does this have principal typings?”

H-M cannot have principal typings. Can 9 out of 10 cats be wrong?



What Is a Universal?
Nothing but a miserable little1 pile of intersections!

Let’s take a constraint store and try some informal rewriting:

σ ≥ τ1 ∧ σ ≥ τ2 ∧ σ ≥ τ3

To: σ ≥ (τ1 ∧ τ2 ∧ τ3) - but that doesn’t entirely make sense.

But σ ≥ (τ1 ∧ τ2 ∧ τ3) is an entirely valid and even useful
subsumption relationship! Why?

There’s intersection types hidden in them thar constraints!
Not part of the object language - an extra-logical notion?

1it’s only a countable infinity



Surveying One’s Principalities

I If this system doesn’t have principal types, I shall be highly
embarrassed.

I If a ‘typing’ is the constraint generation phase, this system
must have principal typings.

I Everything is either syntax-directed or handled by constraints.
I Let’s call this ‘principal typings up to constraint solving’.

I A poor constraint system may yield no desirable properties!

I Highly non-compositional and counter-intuitive results.
I I hear some theorem provers are like this...

I Due to the solver’s extra-logical intersection types, this system
has principal typings per se.

I Must remember to carry solver state in your typing/proof! Or
reason effectfully?



The Essence of Module Systems?

Module systems in the ML family seem to be essentially about
piping bits of context around to check that bits of term can be
plumbed in safely later.

Someone once asked why we can’t let modules say only what they
need from other modules rather than a known signature.

Good question - if I’m part of a team working on something in
parallel I might have to work out what my component needs before
I know what somebody else’s can provide (and maybe give a trivial
stopgap for testing)!



Module Systems, Rephrased and Constrained

Suppose we make the module system about constraints on
contexts (and the types in them) rather than just contexts?

Our module system can ask questions (eg using intersections) that
the core language can’t! And we may be able to introduce
matching module language constructs where they would be unsafe
in a given core language.

Or someone might make the module language a DSL to ensure
these constraints were safe within it.

If I had the energy to do a PhD, a quick demo first-order module
system would be on the todo list.



Modularity for Free

Even without this, principal typings already give us a degree of
modular typechecking.
If we work in this style and have a confluent solver, we’re free to
check portions of the AST and just keep track of the resulting
solver state alongside the types at the ‘edges’ of our AST
fragment. Working on ASTs with holes is not an issue!



Constraints in Context

Something I meant to talk to Adam Gundry about again:

Chunks of context, telescopes etc tend to match up with blocks of
metavariables in the constraint store.

More accurately: we could have regioned constraint stores with
regions corresponding to parts of the context and thus the source
AST.

A variant on the properties given by principal typings - but an
important one!



Solving Constrained by Context?

Relatedly: when you translate the Gen rule into a Constraint
Handling Rule, the guard needs a non-logical condition - ‘have all
the relevant variables been solved for?’, or as some would put it, ‘is
this a forced move yet?’

This breaks standard proof techniques for confluence of CHRs.
And we’d like to know we both get an answer and always get the
same answer.

Thankfully, we can show this works by constructing a
precongruence on the variables, showing dataflow limitations with
top-level scope at one end and the variables for inner-most blocks
forming the leaves.



Only So Congruent

Why a precongruence and not a congruence?

Accepting symmetry would model circular dependencies.
Well-known examples include:

I Failing the occurs check and regularly getting the hump with
infinite types

I OCaml tried it (amongst others). I don’t plan on joining them.

I Trying to typecheck polymorphic recursion the unannotated,
undecidable way

It seems that here, congruences imply unfortunate infinities.


