What are Information-Aware Type Systems?

An Information-Aware Type System is a type system where:

- It is clear where information is introduced and eliminated
- It is clear (or at least clearer) how information flows within the type system

This is achieved by using *information effects* to track where information is created and destroyed - or if you prefer, where the system violates *conservation of information*. We hope inferences tell us something new!
Why Bother?

Our standard notation hides things from us.

\[
\begin{align*}
\Gamma \vdash Tp : \tau p \\
\Gamma \vdash Tf : \tau p \rightarrow \tau r \\
\hline
\Gamma \vdash Tf \ Tp : \tau r
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash Tf : \tau f \\
\Gamma \vdash Tp : \tau p \\
\tau p \rightarrow \tau r = \tau f \\
\hline
\Gamma \vdash Tf \ Tp : \tau r
\end{align*}
\]

▶ While we are used to \textit{App1}, \textit{App2} is easier for beginners to understand – an implicit constraint is made explicit.

▶ Generating that constraint is an information effect.

▶ Information-Awareness means more syntax, but makes possibilities clearer.
How To Make A System Information-Aware

This is just one recipe, but it’s pretty reliable:

▶ Linear logic variables: one +ve occurrence, one -ve
▶ Constraints:
 ▶ Constraint generation is an information effect
 ▶ Constraints give us an abstraction tool
 ▶ Constraints help avoid *overconstraining* data flow
▶ Duplication effects: track dataflow branches and merges
▶ Mode analysis: keep track of which way data flows, which forms of constraints we can solve
Constraints for the Simply-Typed Lambda Calculus

\[\tau = \tau \] \quad \text{Type equality}

\[\tau \leftarrow \tau' \] \quad \text{Type duplication}

\[x : \tau \in \Gamma \] \quad \text{Binding in context}

\[\Gamma' := \Gamma ; x : \tau \] \quad \text{Context extension}

\[\Gamma \leftarrow \Gamma_L \Gamma_R \] \quad \text{Context duplication}

Note that the context constraints encode the structural rules. An alternative interpretation could give us a minimal linear calculus.

Playing with \(\leftarrow \) might lead the adventurous thinker down other paths entirely!...
Information-Aware Simply-Typed λ-Calculus (unannotated)
Annotations, Duplication & Bidirectionality

Let’s support annotations!

- We are forced to duplicate a type
- We could duplicate the function type to check then return
- Better: send the annotation both ‘in’ and ‘out’

\[
\begin{align*}
\tau a & \xrightarrow{\tau ap} \\
\Gamma f & := \Gamma ; x : \tau ap \\
\Gamma f & \vdash T : \tau r \\
\tau f & = \tau af \rightarrow \tau r \\
\Gamma \vdash \lambda x : \tau a . T : \tau f & \text{ ALam}
\end{align*}
\]
Different Modes of a Type System

<table>
<thead>
<tr>
<th>Mode</th>
<th>Unidirectional</th>
<th>Bidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma^+ \vdash T^+ : \tau^+$</td>
<td>Type Checking</td>
<td>Checking</td>
</tr>
<tr>
<td>$\Gamma^+ \vdash T^+ : \tau^-$</td>
<td></td>
<td>Synthesis</td>
</tr>
<tr>
<td>$\Gamma^- \vdash T^+ : \tau^+$</td>
<td>Free Variable Types</td>
<td>Checked type</td>
</tr>
<tr>
<td>$\Gamma^- \vdash T^+ : \tau^-$</td>
<td></td>
<td>Synthesised Type</td>
</tr>
<tr>
<td>$\Gamma^+ \vdash T^- : \tau^+$</td>
<td>Proof search</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Synthesis</td>
<td></td>
</tr>
</tbody>
</table>

- Systems that only support checking modes may not be algorithms, but they’re typecheckers and not type systems.
- I’m not aiming to actively support program synthesis. Without syntax direction, it’s search as usual.
The Other Information Effect

- The function arrow \rightarrow doesn’t appear in the source language, but it does appear in our types.
 - Not simply isomorphic to something in the term
 - Part of our (abstract) interpretation of a term

- Information we generate from or create about terms

- I assign two different modes to \rightarrow
 - Based on how the solver handles $=\,$ constraints
 - Convention: LHS of $=\,$ is being ‘assigned to’ in some form
Modes for $\rightarrow - 1$

- $\tau^1_+ = \tau^2_- \rightarrow^+ \tau^3_-$
 - \rightarrow behaves as a *constructor* assigned to τ^1
 - Variable parameters to \rightarrow^+ have -ve mode – they are being consumed to construct something to match against

- $\tau^1_+ \rightarrow^- \tau^2_- = \tau^3_-$
 - \rightarrow behaves as a *pattern* matched against τ^3
 - Variable parameters with +ve mode act as variable patterns, producing something to use elsewhere
 - Variables are matched against when -ve, but generate no new local information
Modes for $\rightarrow - 2$

During solving:

- \rightarrow^+ creates or introduces information
- \rightarrow^- destroys or eliminates information

Why mention introduction and elimination? Well, \rightarrow^+ appears in the Lam rule, aka $\rightarrow I$. And \rightarrow^- in App, aka $\rightarrow E$. The modes are telling us about introducing and eliminating connectives!
Contextual Behaviour

Context extension and binding constraints also have a relationship.

Read one way:

▷ $\Gamma' := \Gamma ; \; x : \tau$ introduces the need for a binding

▷ $x : \tau \in \Gamma$ makes use of - or especially in linear and affine systems eliminates a binding

This can also be read in reverse:

▷ Using a variable requires it to be bound

▷ Providing a binding meets that requirement!

Likewise, $\Gamma \leftarrow_{\Gamma_L}^{\Gamma_R}$ can be read as merging Γ_L and Γ_R.
Information-Aware Simply-Typed λ-Calculus (moded)

Mode: $\Gamma^+ \vdash T^+ : \tau^-$ (Synthesis or ‘typechecking’)

$$
\begin{align*}
\frac{x^- : \tau^+ \in \Gamma^-}{\Gamma^+ \vdash x^+ : \tau^-} & \text{Var}
\end{align*}
$$

$$
\begin{align*}
\frac{\Gamma f^+ := \Gamma^- ; x^- : \tau p^+}{\Gamma f^- \vdash T^- : \tau r^+}
\end{align*}
$$

$$
\begin{align*}
\frac{\tau f^+ = \tau p^- \to^+ \tau r^-}{\Gamma^+ \vdash \lambda x^+. T^+ : \tau f^-} & \text{Lam}
\end{align*}
$$

$$
\begin{align*}
\frac{\Gamma^- \leftarrow \langle \Gamma f^+ \right
angle \Gamma p^+ \\
\Gamma f^- \vdash T f^- : \tau f^+ \Gamma p^- \vdash T p^- : \tau p^+}{\tau p^- \to^- \tau r^+ = \tau f^-} & \text{App}
\end{align*}
$$

$$
\begin{align*}
\frac{\Gamma^+ \vdash T f^+ T p^+ : \tau r^-}{\Gamma^+ \vdash T f^+ T p^+ : \tau r^-}
\end{align*}
$$
Proofs and Symmetries Undone

Conservation of information requires a symmetry which our
information effects can break.

If we restrict ourselves to a linear system then we can hopefully
implement our context constraints with no violations – the
symmetry is between introduction and elimination.

Typings are proofs – what's the proof theoretic angle on all this?