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Elementary toposes and Grothendieck toposes



Elementary toposes

Definition (Lawvere, ca. 1970)
An elementary topos is a category £ with
o finite limits
e exponential objects B” for A, B € £ (cartesian closed)
e a subobject classifier, i.e. a morphism t : 1 — Q such that for every
monomorphism m : U — A there exists y : A — Q making

U——

Ii

A*>

a pullback.



Grothendieck toposes

Grothendieck toposes
Grothendieck toposes can equivalently be defined in the following ways:
@ Introduced around 1960 by G. as categories of sheaves on a site
@ Characterized 1963 by Giraud as locally small co-pretoposes with a
separating set of objects
@ Equivalently: elementary topos £ admitting a (necessarily unique)
bounded geometric morphism £ — Set
@ Inspired by 3, define a Grothendieck topos over an (elementary) base
topos S as a bounded geometric morphism £ — S



Grothendieck toposes

Grothendieck toposes
Grothendieck toposes can equivalently be defined in the following ways:
@ Introduced around 1960 by G. as categories of sheaves on a site

@ Characterized 1963 by Giraud as locally small co-pretoposes with a
separating set of objects

@ Equivalently: elementary topos £ admitting a (necessarily unique)
bounded geometric morphism & — Set

@ Inspired by 3, define a Grothendieck topos over an (elementary) base
topos S as a bounded geometric morphism £ — S

What do all these words mean??



Locally small, separating set

e C is called locally small, if the ‘homsets’ C(A, B) are really sets, as
opposed to proper classes

¢ A separating set of objects in C is a family (C;);<, of objects indexed by
a set / such that for all parallel pairs f,g : A — B we have

(Vielvh:C —A.th=gh)y=f=g.



oo-Pretoposes

Regular categories

oo-pretopos = exact co-extensive category
= effective regular co-extensive category

Definition

A regular category is a category with finite limits and pullback-stable
regular-epi/mono factorizations.



oo-Pretoposes

Exact categories

e An equivalence relation in a f.l. category C is a jointly monic pair
ri,r2 - R — Asuch that for all X € C, the set

{(nx,rpx)| x: X — R}

is an equivalence relation on C(X, A)
e The kernel pair of any morphism f : A — B —given by the pullback

is always an equivalence relation

Definition

An exact (or effective regular) category is a regular category in which every
equivalence relation is a kernel pair.



oo-Pretoposes

Extensive categories

Assume C has finite limits and small coproducts
e Coproducts in C are called disjoint, if the squares

0—= A A —= A
v v (i#j) and v v
Aj > H/e/Af A = Hie/Af

are always pullbacks

e Coproducts in C are called stable, if forany 7 : B — ][, A;, the family

B L> B
(B ™ B)ie/ givenby pulbacks |~ |/
Ai = i, A

represents B as coproduct of the B;

Definition

An oco-(l)extensive category is a category C with finite limits and disjoint and

stable small coproducts.



oo-Pretoposes

Examples

e Complete lattices (A, <) viewed as categories have finite limits and small
coproducts, but these are not disjoint — coproducts are stable precisely
for complete Heyting algebras

o Top (topological spaces) and Cat (small categories) are cc-extensive but
not regular

e Monadic categories over Set are always exact and have small
coproducts, but are rarely extensive

Definition
An oco-pretopos is a category which is exact and co-extensive.

Examples
e Grothendieck toposes
e the category of small presheaves on Set



Geometric morphisms

A geometric morphism £ — S between toposes € and S is an
adjunction

(A:S—=EAT:E—=S)
of f.I.p. functors (A is the ‘inverse image part’; [ the ‘direct image part’)

(A HT) is called bounded, if there exists B € £ such that for every
E € & there exists a subquotient span B x A(S) <~ e — E

It is called localic if it is bounded by 1
If AT : & — Set, then we necessarily have

A=D1 and T(A) =&(1,A)
jed

forJcSetand Ac &
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Grothendieck toposes can equivalently be defined in the following ways:
@ Introduced around 1960 by G. as categories of sheaves on a site

@ Characterized 1963 by Giraud as locally small co-pretoposes with a
separating set of objects
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@ Inspired by 3, define a Grothendieck topos over an (elementary) base
topos S as a bounded geometric morphism £ — S



Grothendieck toposes

Grothendieck toposes
Grothendieck toposes can equivalently be defined in the following ways:
@ Introduced around 1960 by G. as categories of sheaves on a site

@ Characterized 1963 by Giraud as locally small co-pretoposes with a
separating set of objects

@ Equivalently: elementary topos £ admitting a (necessarily unique)
bounded geometric morphism £ — Set

@ Inspired by 3, define a Grothendieck topos over an (elementary) base
topos S as a bounded geometric morphism £ — S

Remark

Without the bound in 3, £ need not be cocomplete. Example: subcategory of
7 on actions with uniform bound on the size of orbits.



Realizability toposes



Realizability toposes

Were introduced in 1980 by Hyland, Johnstone, and Pitts
Not Grothendieck toposes

e Most well known: Hyland’s effective topos &ff — ‘Universe of
constructive recursive mathematics’

usually constructed via triposes



Partial combinatory algebras

Definition
A PCA is a set A with a partial binary operation

() AxA—~ A
having elements k, s € A such that
(1) k-x-y =x (i) s-x-yl (i) s-x-y-z X x-z-(y-2)
forall x, y,z € A.
Example
First Kleene algebra: (IV, -) with
n-m =~ ¢n(m) for n,m € N,

where (¢n)nen is an effective enumeration of partial recursive functions.



Fibrations from PCAs

PCA A gives rise to indexed preorders fam(.A),rt(A) : Set®® — Ord.

e Family fibration: fam(A)(J) = (A7, <), with
<y &= ZFJecAVjed.ep(j)=1(i)

for o, : J — A.
e Realizability tripos: rt(.A)(J) = ((PA)’, <), with

p<Y &= TJec AVjedVac p(j).eac (i)

for o, : J — PA.

Observations
o fam(A) has indexed finite meets
e rt(.A) models full 1st order logic
e both have generic predicates
e 1t(.A) is free cocompletion of fam(.A) under 3 (Hofstra 2006)



Realizability toposes

Definition

e The realizability topos RT(.A) over A is the category of partial
equivalence relations and compatible functional relations in A (details
omitted)

e The constant objects functor A : Set — RT(.4) maps J € Set to
(J, 64) (discrete/diagonal equivalence relation)

e RT(.A) is never a Grothendieck topos (except for the trivial pca)
e A is bounded by 1, but not the inverse image part of a geometric
morphism

e it makes sense to compare constant objects functors and inverse image
functors, since both are instances of the same construction in the
context of triposes



Fibered Categories



A and gluing fibrations

Goal: Understand inverse image functors
(A:Set— &) AT
and constant objects functors
A : Set — RT(A)
better by looking at their gluing fibrations, defined by the pullback

Gla(&) ——=E&lE

_
glA(E‘)\L imd(s)

Set 2 ¢



Fibered category theory

References

e Jean Bénabou, Fibered categories and the foundations of naive
category theory, 1985

e Thomas Streicher, Fibred categories a la Jean Bénabou, unpublished,
1999-2012

e Peter Johnstone, Sketches of an Elephant, 2003

Idea/Philosophy

e Elementary category theory: finitary conditions, first order axiomatizable,
no size conditions, avoid ZFC (f.l. category, elementary topos)

e Naive category theory: not concerned about formal, foundational
aspects, use size conditions and make reference to Set freely

e Bénabou proposes fibrations to reconcile both, fibrations allow to
express ‘non-finitary conditions’ in an elementary manner

e generalize and form analogies from family fibrations



Family fibrations

Definition
Let C be a category.

e The category Fam(C) has families (C;);c, of objects of C as objects; a
morphism (C;)ic; — (Dj)jey is a pair

(u:1—J,(f: Ci — Dy)ie-

e The family fibration of C is the functor

fam(C) : Fam(C) — Set
(Ciiel = /
( (fI)IE/) = u

mapping (Ci)je; fam(C) : Fam(C) — Set of a category C is the fibration
having



Local smallness

Definition
Let P: X — B be a fibration, / € B, X, Y € P(/). A family of morphisms

from X to Y is a span X=Se 'Y where P(c) = P(f)and cis
cartesian. P is called locally small, if for every pair X, Y € P(/) there exists
a universal family of morphisms (terminal among such spans).

\
hom(X, Y) /

Lemma

A category C is locally small, iff fam(C) is locally small in the above sense.



Finite limit fibrations

... towards extensive fibratiions and Moens’ theorem
Definition
Let B be a f.I. category. A finite limit fibration on B is a fibration P : X — B
satisfying either of the following equivalent definitions.
e X has finite limits and P preserves them

e All fibers P(/) have finite limits, and they are preserved under reindexing

Lemma

A category C has finite limits iff fam(C) is a finite limit fibration.



Extensive fibrations

Let P : X — C be a finite limit fibration.

e P is said to have internal sums, if it is also an opfibration
(P : X°° — C°" is a fibration), and cocartesian maps in X are stable
under pullback along cartesian maps (‘Beck-Chevalley condition’)

e P is said to have stable internal sums, if cocartesian maps are stable
under pullback along arbitrary maps in X

e Internal sums are called disjoint, if the mediating arrow m in the diagram

id A

id

is cocartesian for every cocartesian map o : A — Sin X

e An extensive fibration is a finite-limit fibration with stable disjoint
internal sums.

Lemma

A category C is co-extensive iff fam(C) is extensive.



Moens’ theorem

e Fundamental fib’s cod(D) : D/ — D of f.I. cat’s are extensive
e Extensive fib’s are stable under pullback along f.I.p. functors A : C — D
e Thus, gluing fibrations gl (D) : Gla (D) — C are extensive

Theorem (Moens’ theorem)
The assignment A — gl (D) = A”cod(ID) gives rise to a biequivalence
ExtFib(C) ~ C/Lex

between the 2-category ExtFib(C) of extensive fibrations on C and the
pseudo-co-slice 2-category C //Lex of f.I. categories under C.

ExtFib(C) — C/Lex
The functor corresponding to a fibration P : X — C is given by

A:C — X(1) T3 01

C — > .1 c 1



Gluing fibrations for Grothendieck toposes and realizability toposes

For Grothendieck toposes £ with geometric morphism A 4T : £ — Set,
we have
glr (&) ~ fam(€)

e Thus, when studying Grothendieck toposes A 4T : £ — Set relative to a
base topos S, the fibration gl (£) is an adequate substitute for the family
fibration

For realizability toposes with c.o.f. A : Set — RT(.A), the fibrations
gl (RT(A)) and fam(RT(.A)) are different

e We will see just how different



Gluing and local smallness

Theorem

IfA .S — £ is aflp. functor between toposes, then gl (£) is a locally small
fibration iff A has a right adjoint

e Thus, gluing fibrations gl (RT(.A)) of realizability toposes are not locally
small

We have two ways of looking at realizability toposes
e From the point of view of ordinary CT, toposes RT(.A) are locally small,
but not cocomplete
e Viewed as gluing fibrations, they have small sums, but are not locally
small



Characterizing Realizability Toposes



Motivation

e Peter Johnstone pointed out the lack of a ‘Giraud style’ theorem for
realizability toposes

o It seemed easier to characterize the gluing fibrations gl , (RT(.A)) (or
equivalently the functors A : Set — RT(.A)) than the ‘bare’ toposes

e Fibrationally realizability toposes resemble presheaf toposes



Moens’ theorem for fibered pretoposes

e A pre-stack is a fibration P : X — R on a regular category R where the
reindexing functors e* : P(/) — P(J) are full and faithful for all regular
epise:J — |

e All fibrations on Set are pre-stacks with AC, and without still most

¢ A fibered pretopos is an extensive pre-stack P : X — R with exact
fibers

o fam(&) is a fibered pretopos iff £ is an co-pretopos
Theorem (Moens’ theorem for fibered pretoposes)
The assignment A — gl(A) gives rise to a biequivalence
PretopFib(R) ~ R /Ex

between the 2-category PretopFib(R) of fibered pretoposes on R and the
pseudo-co-slice 2-category R /| Ex of exact categories under C.



Fibered presheaf construction

Theorem
Let R be a regular category The forgetful functor
PretopFib(R) — Lex(R),
where Lex(R) is the category of finite-limit pre-stacks on R, has a left

biadjoint ¢+ ¢ , called fibered presheaf construction.

o If Cis a small category with finite limits, then fam(C) = fam(Set"")

e For any PCA A we have fam(A) = gl (RT(A))



Characterization of fibrations of presheaves

Which fibered pretoposes P : X — R are of the form 2~ ~ ¢ ?

Theorem (Bunge 77)

A locally small ~o-pretopos & is a presheaf topos iff it has a separating family
of indecomposable projective objects.

In a similar way, we can show:

Theorem
A fibered pretopos 2 : |.2"| — R is a fibration of presheaves iff

o the subfibration of 2" on indecomposable projectives is closed under
finite limits, and

e Every X € |27| can be covered by an internal sum of indecomposable
projectives.

... where indecomposable projectives in fibrations are defined on the next
slide



Indecomposables and projectives
Let 2" : |.2°| — RR be a fibered pretopos.
Definition
e Call P € |2°| projective , if given c, e, f as in the diagram

e
d &e
Pl e—_"ox

where c is cartesian and e is vertical and a regular epimorphism in its
fiber, we can fill in d, g with d epicartesian such that the square
commutes.

e Call X € | 2| indecomposable, if for every diagram

X5~ X

"\

Y+HEF>ZY

in |.2°| where c is cartesian and d is cocartesian, there exists a unique
mediating arrow m.



Characterizing fibered realizability toposes

With a bit of work one can prove the following

Theorem

Gluing fibrations gl (RT(.A)) of realizability toposes can be characterized as
fibered pretoposes P : X — Set such that

e Pis a fibered cocompletion (previous theorem)
e the fibers of P are lccc

e The subfibration Q@ C P on indecomposable projectives is posetal, has a
discrete generic predicate, and Q(1) ~ 1

[discrete means right orthogonal to cartesian maps over surjective functions]



Characterizing fibered realizability toposes

In realizability toposes, we have (RT(A)(1,—) : RT(A) — Set) - A, thus the
global sections functor is uniquely determined and does not contain
additional information. Thus, our analysis yields a characterization of ‘bare’
toposes after all:

Theorem

A locally small category € is equivalent to a realizability topos RT(.A) over a
PCA A, if and only if

@ £ is exact and locally cartesian closed,

@ ¢& has enough projectives, and the subcategory Proj(£) of projectives is
closed under finite limits,

@ the global sections functor I' : £ — Set has a right adjoint A factoring
through Proj(&), and

@ there exists a separated and discrete projective D € £ such that for all
projectives P € £ there exists a closed u : P — D.



