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Plan of talk

• Elementary toposes and Grothendieck toposes

• Realizability toposes

• Fibered categories

• Characterizing realizability toposes
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Elementary toposes and Grothendieck toposes
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Elementary toposes

Definition (Lawvere, ca. 1970)

An elementary topos is a category E with

• finite limits

• exponential objects BA for A,B ∈ E (cartesian closed)

• a subobject classifier, i.e. a morphism t : 1→ Ω such that for every
monomorphism m : U � A there exists χ : A→ Ω making

U //
��

m

��

1

t
��

A
χ
// Ω

a pullback.
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Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:
1 Introduced around 1960 by G. as categories of sheaves on a site
2 Characterized 1963 by Giraud as locally small∞-pretoposes with a

separating set of objects
3 Equivalently: elementary topos E admitting a (necessarily unique)

bounded geometric morphism E → Set
4 Inspired by 3, define a Grothendieck topos over an (elementary) base

topos S as a bounded geometric morphism E → S

What do all these words mean??
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Locally small, separating set

• C is called locally small, if the ‘homsets’ C(A,B) are really sets, as
opposed to proper classes

• A separating set of objects in C is a family (Ci )i∈I of objects indexed by
a set I such that for all parallel pairs f , g : A→ B we have

(∀i ∈ I ∀h : Ci → A . fh = gh)⇒ f = g.
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∞-Pretoposes
Regular categories

∞-pretopos = exact∞-extensive category

= effective regular∞-extensive category

Definition

A regular category is a category with finite limits and pullback-stable
regular-epi/mono factorizations.

A

e �� ��
f
// B

U
??

m

??
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∞-Pretoposes
Exact categories

• An equivalence relation in a f.l. category C is a jointly monic pair
r1, r2 : R → A such that for all X ∈ C, the set

{(r1x , r2x) | x : X → R}

is an equivalence relation on C(X ,A)

• The kernel pair of any morphism f : A→ B – given by the pullback

X
r1
//

r2 ��

A
f��

A f // B

is always an equivalence relation

Definition

An exact (or effective regular) category is a regular category in which every
equivalence relation is a kernel pair.
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∞-Pretoposes
Extensive categories

Assume C has finite limits and small coproducts

• Coproducts in C are called disjoint, if the squares

0
��

// Ai

��
Aj //

∐
i∈I Ai

(i 6= j) and
Ai

��

// Ai

��
Ai //

∐
i∈I Ai

are always pullbacks

• Coproducts in C are called stable, if for any f : B →
∐

i∈I Ai , the family

(Bi
σi−→ B)i∈I given by pullbacks

Bi

��

σi // B
f��

Ai // ∐
i∈I Ai

represents B as coproduct of the Bi

Definition

An∞-(l)extensive category is a category C with finite limits and disjoint and
stable small coproducts.
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∞-Pretoposes

Examples

• Complete lattices (A,≤) viewed as categories have finite limits and small
coproducts, but these are not disjoint – coproducts are stable precisely
for complete Heyting algebras

• Top (topological spaces) and Cat (small categories) are∞-extensive but
not regular

• Monadic categories over Set are always exact and have small
coproducts, but are rarely extensive

Definition

An∞-pretopos is a category which is exact and∞-extensive.

Examples

• Grothendieck toposes

• the category of small presheaves on Set
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Geometric morphisms

• A geometric morphism E → S between toposes E and S is an
adjunction

(∆ : S → E) a (Γ : E → S)

of f.l.p. functors (∆ is the ‘inverse image part’; Γ the ‘direct image part’)

• (∆ a Γ) is called bounded, if there exists B ∈ E such that for every
E ∈ E there exists a subquotient span B ×∆(S) � •� E

• It is called localic if it is bounded by 1

• If ∆ a Γ : E → Set, then we necessarily have

∆(J) =
∑
j∈J

1 and Γ(A) = E(1,A)

for J ∈ Set and A ∈ E

11 / 35



Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:
1 Introduced around 1960 by G. as categories of sheaves on a site
2 Characterized 1963 by Giraud as locally small∞-pretoposes with a

separating set of objects
3 Equivalently: elementary topos E admitting a (necessarily unique)

bounded geometric morphism E → Set
4 Inspired by 3, define a Grothendieck topos over an (elementary) base

topos S as a bounded geometric morphism E → S

Remark

Without the bound in 3, E need not be cocomplete. Example: subcategory of
Ẑ on actions with uniform bound on the size of orbits.
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Realizability toposes
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Realizability toposes

• Were introduced in 1980 by Hyland, Johnstone, and Pitts

• Not Grothendieck toposes

• Most well known: Hyland’s effective topos Eff – ‘Universe of
constructive recursive mathematics’

• usually constructed via triposes
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Partial combinatory algebras

Definition

A PCA is a set A with a partial binary operation

(− · −) : A×A⇀ A

having elements k , s ∈ A such that

(i) k ·x ·y = x (ii) s·x ·y↓ (iii) s·x ·y ·z � x ·z·(y ·z)

for all x , y , z ∈ A.

Example

First Kleene algebra: (N, ·) with

n·m ' φn(m) for n,m ∈ N,

where (φn)n∈N is an effective enumeration of partial recursive functions.
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Fibrations from PCAs

PCA A gives rise to indexed preorders fam(A), rt(A) : Setop → Ord.

• Family fibration: fam(A)(J) = (AJ ,≤), with

ϕ ≤ ψ :⇔ ∃e ∈ A ∀j ∈ J . e·ϕ(j) = ψ(i)

for ϕ,ψ : J → A.

• Realizability tripos: rt(A)(J) = ((PA)J ,≤), with

ϕ ≤ ψ :⇔ ∃e ∈ A ∀j ∈ J ∀a ∈ ϕ(j) . e·a ∈ ψ(i)

for ϕ,ψ : J → PA.

Observations

• fam(A) has indexed finite meets

• rt(A) models full 1st order logic

• both have generic predicates

• rt(A) is free cocompletion of fam(A) under ∃ (Hofstra 2006)
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Realizability toposes

Definition

• The realizability topos RT(A) over A is the category of partial
equivalence relations and compatible functional relations in A (details
omitted)

• The constant objects functor ∆ : Set→ RT(A) maps J ∈ Set to
(J, δJ ) (discrete/diagonal equivalence relation)

• RT(A) is never a Grothendieck topos (except for the trivial pca)

• ∆ is bounded by 1, but not the inverse image part of a geometric
morphism

• it makes sense to compare constant objects functors and inverse image
functors, since both are instances of the same construction in the
context of triposes
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Fibered Categories
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∆ and gluing fibrations

Goal: Understand inverse image functors

(∆ : Set→ E) a Γ

and constant objects functors

∆ : Set→ RT(A)

better by looking at their gluing fibrations, defined by the pullback

Gl∆(E) //

gl∆(E)

��

E↓E

cod(E)

��
Set ∆ // E
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Fibered category theory

References

• Jean Bénabou, Fibered categories and the foundations of naive
category theory, 1985

• Thomas Streicher, Fibred categories à la Jean Bénabou, unpublished,
1999-2012

• Peter Johnstone, Sketches of an Elephant, 2003

Idea/Philosophy

• Elementary category theory: finitary conditions, first order axiomatizable,
no size conditions, avoid ZFC (f.l. category, elementary topos)

• Naive category theory: not concerned about formal, foundational
aspects, use size conditions and make reference to Set freely

• Bénabou proposes fibrations to reconcile both, fibrations allow to
express ‘non-finitary conditions’ in an elementary manner

• generalize and form analogies from family fibrations
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Family fibrations

Definition

Let C be a category.

• The category Fam(C) has families (Ci )i∈I of objects of C as objects; a
morphism (Ci )i∈I → (Dj )j∈J is a pair

(u : I → J, (fi : Ci → Dui )i∈I .

• The family fibration of C is the functor

fam(C) : Fam(C) → Set
(Ci )i∈I 7→ I

(u, (fi )i∈I) 7→ u

mapping (Ci )i∈I fam(C) : Fam(C)→ Set of a category C is the fibration
having
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Local smallness

Definition

Let P : X→ B be a fibration, I ∈ B, X ,Y ∈ P(I). A family of morphisms

from X to Y is a span X •coo f //Y where P(c) = P(f ) and c is
cartesian. P is called locally small, if for every pair X ,Y ∈ P(I) there exists
a universal family of morphisms (terminal among such spans).

•

�� **

//

• //

''

X

J

**
��

Y

hom(X ,Y ) // I

Lemma

A category C is locally small, iff fam(C) is locally small in the above sense.
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Finite limit fibrations

... towards extensive fibratiions and Moens’ theorem

Definition

Let B be a f.l. category. A finite limit fibration on B is a fibration P : X→ B
satisfying either of the following equivalent definitions.

• X has finite limits and P preserves them

• All fibers P(I) have finite limits, and they are preserved under reindexing

Lemma

A category C has finite limits iff fam(C) is a finite limit fibration.
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Extensive fibrations

Let P : X→ C be a finite limit fibration.

• P is said to have internal sums, if it is also an opfibration
(Pop : Xop → Cop is a fibration), and cocartesian maps in X are stable
under pullback along cartesian maps (‘Beck-Chevalley condition’)

• P is said to have stable internal sums, if cocartesian maps are stable
under pullback along arbitrary maps in X
• Internal sums are called disjoint, if the mediating arrow m in the diagram

A
σ

�����

A m //

id 00

id ..

R

??

��

S

A
σ

?????

is cocartesian for every cocartesian map σ : A→ S in X
• An extensive fibration is a finite-limit fibration with stable disjoint

internal sums.

Lemma

A category C is∞-extensive iff fam(C) is extensive.
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Moens’ theorem

• Fundamental fib’s cod(D) : D↓D→ D of f.l. cat’s are extensive

• Extensive fib’s are stable under pullback along f.l.p. functors ∆ : C→ D
• Thus, gluing fibrations gl∆(D) : Gl∆(D)→ C are extensive

Theorem (Moens’ theorem)

The assignment ∆ 7→ gl∆(D) = ∆∗cod(D) gives rise to a biequivalence

ExtFib(C) ' C�Lex

between the 2-category ExtFib(C) of extensive fibrations on C and the
pseudo-co-slice 2-category C�Lex of f.l. categories under C.

ExtFib(C)→ C�Lex

The functor corresponding to a fibration P : X→ C is given by

∆ : C → X(1)

C 7→
∑

C 1

1 //����� ∑
C 1

C // 1
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Gluing fibrations for Grothendieck toposes and realizability toposes

• For Grothendieck toposes E with geometric morphism ∆ a Γ : E → Set,
we have

gl∆(E) ' fam(E)

• Thus, when studying Grothendieck toposes ∆ a Γ : E → Set relative to a
base topos S, the fibration gl∆(E) is an adequate substitute for the family
fibration

• For realizability toposes with c.o.f. ∆ : Set→ RT(A), the fibrations
gl∆(RT(A)) and fam(RT(A)) are different

• We will see just how different
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Gluing and local smallness

Theorem

If ∆ : S → E is a f.l.p. functor between toposes, then gl∆(E) is a locally small
fibration iff ∆ has a right adjoint

• Thus, gluing fibrations gl∆(RT(A)) of realizability toposes are not locally
small

We have two ways of looking at realizability toposes

• From the point of view of ordinary CT, toposes RT(A) are locally small,
but not cocomplete

• Viewed as gluing fibrations, they have small sums, but are not locally
small
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Characterizing Realizability Toposes

28 / 35



Motivation

• Peter Johnstone pointed out the lack of a ‘Giraud style’ theorem for
realizability toposes

• It seemed easier to characterize the gluing fibrations gl∆(RT(A)) (or
equivalently the functors ∆ : Set→ RT(A)) than the ‘bare’ toposes

• Fibrationally realizability toposes resemble presheaf toposes
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Moens’ theorem for fibered pretoposes

• A pre-stack is a fibration P : X→ R on a regular category R where the
reindexing functors e∗ : P(I)→ P(J) are full and faithful for all regular
epis e : J � I

• All fibrations on Set are pre-stacks with AC, and without still most

• A fibered pretopos is an extensive pre-stack P : X→ R with exact
fibers

• fam(E) is a fibered pretopos iff E is an∞-pretopos

Theorem (Moens’ theorem for fibered pretoposes)

The assignment ∆ 7→ gl(∆) gives rise to a biequivalence

PretopFib(R) ' R�Ex

between the 2-category PretopFib(R) of fibered pretoposes on R and the
pseudo-co-slice 2-category R�Ex of exact categories under C.
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Fibered presheaf construction

Theorem

Let R be a regular category The forgetful functor

PretopFib(R)→ Lex(R),

where Lex(R) is the category of finite-limit pre-stacks on R, has a left
biadjoint C 7→ Ĉ , called fibered presheaf construction.

• If C is a small category with finite limits, then ̂fam(C) = fam(SetC
op

)

• For any PCA A we have ̂fam(A) = gl∆(RT(A))

31 / 35



Characterization of fibrations of presheaves

Which fibered pretoposes P : X→ R are of the form X ' Ĉ ?

Theorem (Bunge 77)

A locally small∞-pretopos E is a presheaf topos iff it has a separating family
of indecomposable projective objects.

In a similar way, we can show:

Theorem

A fibered pretopos X : |X | → R is a fibration of presheaves iff

• the subfibration of X on indecomposable projectives is closed under
finite limits, and

• Every X ∈ |X | can be covered by an internal sum of indecomposable
projectives.

... where indecomposable projectives in fibrations are defined on the next
slide
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Indecomposables and projectives
Let X : |X | → R be a fibered pretopos.

Definition

• Call P ∈ |X | projective , if given c, e, f as in the diagram

•
d _��

g
//
........ Y

e����
P •coo f // X

where c is cartesian and e is vertical and a regular epimorphism in its
fiber, we can fill in d , g with d epicartesian such that the square
commutes.

• Call X ∈ |X | indecomposable, if for every diagram

X∗ c //

%%
m
��..
.

.

.

X

Y
d
//���� ∑

Y

in |X | where c is cartesian and d is cocartesian, there exists a unique
mediating arrow m.
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Characterizing fibered realizability toposes

With a bit of work one can prove the following

Theorem

Gluing fibrations gl∆(RT(A)) of realizability toposes can be characterized as
fibered pretoposes P : X→ Set such that

• P is a fibered cocompletion (previous theorem)

• the fibers of P are lccc

• The subfibration Q ⊆ P on indecomposable projectives is posetal, has a
discrete generic predicate, and Q(1) ' 1

[discrete means right orthogonal to cartesian maps over surjective functions]
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Characterizing fibered realizability toposes

In realizability toposes, we have (RT(A)(1,−) : RT(A)→ Set) a ∆, thus the
global sections functor is uniquely determined and does not contain
additional information. Thus, our analysis yields a characterization of ‘bare’
toposes after all:

Theorem

A locally small category E is equivalent to a realizability topos RT(A) over a
PCA A, if and only if

1 E is exact and locally cartesian closed,
2 E has enough projectives, and the subcategory Proj(E) of projectives is

closed under finite limits,
3 the global sections functor Γ : E → Set has a right adjoint ∆ factoring

through Proj(E), and
4 there exists a separated and discrete projective D ∈ E such that for all

projectives P ∈ E there exists a closed u : P → D.
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