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Motivation

e Units of Measure m, s, kg...etc
e Used for measurement, e.g., X is twice as much as a metre

e Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

e Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

o Normally pick out base units for dimensions, e.g., S| Base
units include kg, m, s, K,...etc
Derived Units kgm—2s2
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Dimensional Analysis

e +, —, < of two quantities with different dimensions gives a
dimension error

e X, + of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

o X :Yuy.Nua.num(uy) — num(uz) — num(uy - Uz)
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Background

e Relational Parametricity and Units of Measure
by A. J. Kennedy

e Introduces type system and relational semantics
e ... But no category theory.



Outline

Type System for Units of Measure
Categorical Semantics

Examples and Theorems

Parametricity
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Types
e € Ab(A) Al-e
At e A+ num(e) Type
AFTType A UType AFTType A UType
AFTx UType AFT— UType
A ub T Type

AFVYu.T Type
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Typing Context T=xy: T1,....Xm : T,y

Terms
Usual STAC

and

AFTectxt AuTHE:T AFe ATFLt:VUT

AT HAut:Yu.T A THte: Tle/u]
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Some Constants

Then add constants, popular choices include...
e 0:Yu.num(u)
e 1:num(1)
e + :Yu.num(u) — num(u) — num(u)

o X :Vuy.Vua.num(u1) — num(uz) — num(uy - Up)
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Fibrational Semantics

A fibration p : £ — B with enough structure such that
e I3 - Unit contexts and expressions
o £ - Types and terms
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Start with a fibrationp : £ — B
e G € Ab(B) using Abelian Group Object
e [AFe:GA =G

o ie [u, et u-uy'1(91,92) =919
o [A;T T Type] € &,
o Fibred CCC structure

o Letnum € &g, then [A F num(e)] = [A F e]*num.
o Quantification given by 7* 4V, where 7 : [A, u] — [A].

o Terms define morphisms [A; T = t: T]: [[] — [T] € £,

Definition
We call (p, G,num) a UoM-fibration.
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..Or More Concisely

Definition

A UoM-fibration (p : £ — B, G,num) is given by
e A \i-fibrationp: & — B
e An exponentiable Abelian group object G and
e Anobject num € &,
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UoM-Fibration Examples

e Syntax of UoM (p: & — Lap, 1, num)
where £ = Types and Terms

e UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
A1 -fibrations with simple products.

o Choose Abelian group object, G
o Choose object in fibre above G

e Unit Erasure Semantics (p: £ — 1,%,num)
e.g. £ =cpoand num = Q,
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Theorems About
UoM-Fibrations

Theorem
o (p: & — B, G, X) UoM-fibration
e A finite products
e F: A — B product preserving functor
e G' € A an Abelian group object with

FG =G

Then (F*p, G, (G, X)) is a UoM-fibration.

F*&

Fp
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Theorems About
UoM-Fibrations ctd...

Theorem

Any UoM-fibration can be converted into a UoM-fibration with Lay,
in the base.

F*E &
|
F(1)=G F'p p
I—Ab B
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Another Example

Recall an Abelian group G can be thought of as a category G
e Ob(G) =
e G(x,x) =G
A G-Setis a functor ¢ : G — Set, i.e.,
e ¢x € Set, which we denote |¢|
° #g: ¢ — |4l
Definition
We call the functor p : Ab-Set — Ab the Ab-Set fibration,
where Ab-Setg = [G, Set]

Theorem
The Ab-Set fibration is a A1 -fibration with simple products. Hence,
for choices G € Ab, num € Ab-Setg

(p : Ab-Set — Ab, G,num) is a UoM-fibration
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Theorem About Fibrations

Theorem
Let £ and B be categories with finite products.
e Suppose that|_]| : B — Cat is a product preserving functor.
e p: & — Bis afibration with £x := [X] — D and hence
reindexing is given by precomposition
o ie,foranyf: X —=YeB, f(¢:[Y]—=>D)=¢olf].
Then, the reindexing of any projection map m, : X x Y — X has a

right adjoint w; 4 Ran,) , which satisfies the Beck-Chevalley
condition.
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Lemma
For m: XxY —=Xin B and ¢:[X]x[Y]—=D in &,
then

Ranpaé)x = lim o(x,

(Raniz1¢) yemfb( y)
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Sketch Proof

Keep in mind: (Ran;;¢)x = lim,c[y; ¢(x, y)

Want to show: Forany f: X — X' in B and
v X x[Y]=D in &,

(Rang, (f x id)*y)x = (f*Rany,,y)x
Use Lemma:

(Ranw, (f  id)"y)x = im (f x d)"6(x,y) = lim 6(fx. y)

(f*Rang,,v)x = }I/g/ o(fx,y)
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Summary of Last Few
Slides

If fibration such that reindexing is given by precomposition
AND right adjoints are given by right Kan extensions

Then quantification satisfies BC

We use this to show the Ab-Set fibration is a UoM-fibration
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Results in the Ab-Set
Fibration

Lemma
Suppose ut S, T Type, then

[[Vu.S — T]| = Nat([S], [T])

Proof.
By end formula for a Kan extension.
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Lemma
Let t:Vu.num(u) — num(u™) for some m,n e N,
then for x € |num(u)|

[tl(g-x)=g"-([]x) VgeG

Proof.
Use previous lemma to see [t] € G-Set(num(u), num(u"))
Naturality gives result.
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Corollary
There is no non-trivial term of type Yu.num(u?) — num(u).

Proof.
Consider (p : Ab-Set — Ab, Zy, Z»),
Then if there were a term t : Yu.num(u?) — num(u), then

[t1(9%- x) = g- ([t]x) Vg € Z>
Which does not hold, because

If [fJo=1 then [tJ(1+1+0)=1+[t](0)
If [t]1=1 then [tJ(1+1+1)=1+[t](1)
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Parametric UoM-Fibrations

e J3 - unit erasure semantics
e R: La, — B product preserving functor

Rel(&) &
p u
Y R A Y
Lap X B s BxBxB _X_X_B
A Y

Rel(€)n ={(n,B,P) | Be B, P ¢ gR(n)xBxB}
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Parametric UoM-Fibrations

ctd...

Theorem

(r: Rel(€) — Lab, 1,num), for a choice of num, is a UoM-fibration.

Rel(€)

p

Y

LAbXB

Lao

Rx A

BxBxB

£

u

Y

B
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For A+ T Type, where |A| =n

[TT = (n,[Tlo, [TTh)
with [[T]]o € Band IIT]]1 S 6G"><HT]]0><|IT]]0'

e [T]o as the unit-erasure
semantics of T

e [T]; as the relational
semantics of T.



Why Parametric?

For A+ T Type, where |A| =n

[TT = (n,[Tlo, [TTh)
with [[T]]o € Band IIT]]1 S 6G"><HT]]0><|IT]]0'

[l

e [T]o as the unit-erasure 1 [t P,
semantics of T

<

_ [T+
e [T]1 as the relational = o

semantics of T. [Fo
1 [t B
\_/
[Tlo

>
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e Units of Measure can be given a fibrational semantics

e Nice model using G-sets can exploit naturality properties of
UoM
e There exist parametric UoM-fibrations
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Conclusions and Future
Work

e Look more at role of G-sets c.f. nominal sets
e Invariance properties and symmetries
e ..write thesis...



Thanks for listening.

timothy.revell@strath.ac.uk @timothyrevell
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