Fibrational Units of Measure

Timothy Revell

and N. Ghani, R. Atkey, S. Staton

University of Strathclyde

• Units of Measure *m*, *s*, *kg*...*etc*

- Units of Measure *m*, *s*, *kg*...*etc*
- Used for measurement, e.g., X is twice as much as a metre

- Units of Measure *m*, *s*, *kg*...*etc*
- Used for measurement, e.g., X is twice as much as a metre
- Single quantity can have many different units, e.g., metres, inches, nautical mile, ...etc.

- Units of Measure *m*, *s*, *kg*...*etc*
- Used for measurement, e.g., X is twice as much as a metre
- Single quantity can have many different units, e.g., metres, inches, nautical mile, ...etc.
- Class of representations is a *dimension*, e.g., Length (*L*), Mass (*M*), Time (*T*)

- Units of Measure *m*, *s*, *kg*...*etc*
- Used for measurement, e.g., X is twice as much as a metre
- Single quantity can have many different units, e.g., metres, inches, nautical mile, ...etc.
- Class of representations is a *dimension*, e.g., Length (*L*), Mass (*M*), Time (*T*)
- Normally pick out base units for dimensions, e.g., SI Base units include kg, m, s, K,...etc Derived Units kgm⁻²s⁻²

+, −, ≤ of two quantities with different dimensions gives a dimension error

- +, −, ≤ of two quantities with different dimensions gives a dimension error
- ×, ÷ of two quantities with different dimensions is OK, but gives new units

- +, −, ≤ of two quantities with different dimensions gives a dimension error
- ×, ÷ of two quantities with different dimensions is OK, but gives new units

Quantification of units allows us to express this.

- +, −, ≤ of two quantities with different dimensions gives a dimension error
- ×, ÷ of two quantities with different dimensions is OK, but gives new units

Quantification of units allows us to express this.

• $\times : \forall u_1. \forall u_2. num(u_1) \rightarrow num(u_2) \rightarrow num(u_1 \cdot u_2)$

• Relational Parametricity and Units of Measure by A. J. Kennedy

- Relational Parametricity and Units of Measure by A. J. Kennedy
- Introduces type system and relational semantics

- Relational Parametricity and Units of Measure by A. J. Kennedy
- Introduces type system and relational semantics
- ... But no category theory.

Outline

- Type System for Units of Measure
- Categorical Semantics
- Examples and Theorems
- Parametricity

Unit Context $\Delta = u_1, ..., u_n$

Unit Context $\Delta = u_1, ..., u_n$

Types

$$rac{oldsymbol{e}\in\mathsf{Ab}(\Delta)}{\Deltadasholdsymbol{e}oldsymbol{e}}$$

 $\frac{\Delta \vdash e}{\Delta \vdash num(e) \text{ Type}}$

Unit Context $\Delta = u_1, ..., u_n$

Types

$$rac{oldsymbol{e}\in\mathsf{Ab}(\Delta)}{\Deltadasholdsymbol{e}oldsymbol{e}}$$

 $\frac{\Delta \vdash T \text{ Type } \Delta \vdash U \text{ Type }}{\Delta \vdash T \times U \text{ Type }}$

Unit Context $\Delta = u_1, ..., u_n$

Types

$$rac{oldsymbol{e}\in\mathsf{Ab}(\Delta)}{\Deltadasholdsymbol{e}oldsymbol{e}}$$

 $\frac{\Delta \vdash e}{\Delta \vdash num(e)}$ Type

 $\frac{\Delta \vdash T \text{ Type } \Delta \vdash U \text{ Type }}{\Delta \vdash T \times U \text{ Type }}$

 $egin{array}{cccc} \Deltadash T \ { t Type} & \Deltadash U \ { t Type} \ \ \Deltadash T o U \ { t Type} \ \end{array}$

 $\Delta, u \vdash T \text{ Type}$ $\Delta \vdash \forall u.T \text{ Type}$

Typing Context $\Gamma = x_1 : T_1, ..., x_m : T_m$

Typing Context $\Gamma = x_1 : T_1, ..., x_m : T_m$

Terms

Usual ST λ C

Typing Context $\Gamma = x_1 : T_1, ..., x_m : T_m$

Terms

Usual ST λ C

and

 $\frac{\Delta \vdash \Gamma \operatorname{ctxt} \ \Delta, u, \Gamma \vdash t : T}{\Delta; \Gamma \vdash \Lambda u.t : \forall u.T} \qquad \frac{\Delta \vdash e \ \Delta, \Gamma \vdash t : \forall u.T}{\Delta; \Gamma \vdash te : T[e/u]}$

Then add constants, popular choices include...

• 0 : ∀*u*.*num*(*u*)

- 0 : ∀*u*.*num*(*u*)
- 1 : *num*(1)

- 0 : ∀*u*.*num*(*u*)
- 1 : *num*(1)
- + : $\forall u.num(u) \rightarrow num(u) \rightarrow num(u)$

- 0 : ∀*u*.*num*(*u*)
- 1 : *num*(1)
- + : $\forall u.num(u) \rightarrow num(u) \rightarrow num(u)$
- $\times : \forall u_1. \forall u_2. num(u_1) \rightarrow num(u_2) \rightarrow num(u_1 \cdot u_2)$

Where are the Fibrations?

A fibration $p: \mathcal{E} \to \mathcal{B}$ with enough structure such that

A fibration $p: \mathcal{E} \to \mathcal{B}$ with enough structure such that

• $\ensuremath{\mathcal{B}}$ - Unit contexts and expressions

A fibration $p: \mathcal{E} \to \mathcal{B}$ with enough structure such that

- $\ensuremath{\mathcal{B}}$ Unit contexts and expressions
- \mathcal{E} Types and terms

A Bit More Detail ...

Start with a fibration $p : \mathcal{E} \to \mathcal{B}$

A Bit More Detail ...

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

• $G \in Ab(\mathcal{B})$ using Abelian Group Object
Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} o G$$

Start with a fibration $p : \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

Start with a fibration $p : \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

•
$$\llbracket\Delta; \Gamma \vdash T$$
 Type $\rrbracket \in \mathcal{E}_{\llbracket\Delta\rrbracket}$

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

• $G \in Ab(\mathcal{B})$ using Abelian Group Object

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

•
$$\llbracket \Delta; \Gamma \vdash T$$
 Type $\rrbracket \in \mathcal{E}_{\llbracket \Delta}$

• Fibred CCC structure

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

- $\llbracket \Delta; \Gamma \vdash T \text{ Type} \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$
 - Fibred CCC structure
 - Let num $\in \mathcal{E}_G$, then $\llbracket \Delta \vdash num(e) \rrbracket = \llbracket \Delta \vdash e \rrbracket^*$ num.

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

- $\llbracket \Delta; \Gamma \vdash T \text{ Type} \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$
 - Fibred CCC structure
 - Let num $\in \mathcal{E}_G$, then $\llbracket \Delta \vdash num(e) \rrbracket = \llbracket \Delta \vdash e \rrbracket^*$ num.
 - Quantification given by $\pi^* \dashv \forall$, where $\pi : \llbracket \Delta, u \rrbracket \to \llbracket \Delta \rrbracket$.

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

- $\llbracket \Delta; \Gamma \vdash T \text{ Type} \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$
 - Fibred CCC structure
 - Let num $\in \mathcal{E}_G$, then $\llbracket \Delta \vdash num(e) \rrbracket = \llbracket \Delta \vdash e \rrbracket^*$ num.
 - Quantification given by $\pi^* \dashv \forall$, where $\pi : \llbracket \Delta, u \rrbracket \to \llbracket \Delta \rrbracket$.
- Terms define morphisms $\llbracket \Delta; \Gamma \vdash t : T \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket T \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$.

Start with a fibration $p: \mathcal{E} \to \mathcal{B}$

• $G \in Ab(\mathcal{B})$ using Abelian Group Object

•
$$\llbracket \Delta \vdash e \rrbracket : G^{|\Delta|} \to G$$

• i.e.
$$[\![u_1, u_2 \vdash u_1 \cdot u_2^{-1}]\!](g_1, g_2) = g_1 \cdot g_2^{-1}$$

- $\llbracket \Delta; \Gamma \vdash T \text{ Type} \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$
 - Fibred CCC structure
 - Let num $\in \mathcal{E}_G$, then $\llbracket \Delta \vdash num(e) \rrbracket = \llbracket \Delta \vdash e \rrbracket^*$ num.
 - Quantification given by $\pi^* \dashv \forall$, where $\pi : \llbracket \Delta, u \rrbracket \to \llbracket \Delta \rrbracket$.
- Terms define morphisms $\llbracket \Delta; \Gamma \vdash t : T \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket T \rrbracket \in \mathcal{E}_{\llbracket \Delta \rrbracket}$.

Definition

We call (p, G, num) a UoM-fibration.

...Or More Concisely

...Or More Concisely

Definition A *UoM-fibration* ($p : \mathcal{E} \to \mathcal{B}, G$, num) is given by

... Or More Concisely

Definition

- A *UoM-fibration* ($p : \mathcal{E} \rightarrow \mathcal{B}, G$, num) is given by
 - A λ_1 -fibration $p : \mathcal{E} \to \mathcal{B}$

...Or More Concisely

Definition

A *UoM-fibration* ($p : \mathcal{E} \rightarrow \mathcal{B}, G$, num) is given by

- A λ_1 -fibration $p: \mathcal{E} \to \mathcal{B}$
- An exponentiable Abelian group object G and

... Or More Concisely

Definition

A UoM-fibration ($p: \mathcal{E} \rightarrow \mathcal{B}, G, num$) is given by

- A λ_1 -fibration $p: \mathcal{E} \to \mathcal{B}$
- An exponentiable Abelian group object G and
- An object num $\in \mathcal{E}_{G}$

• Syntax of UoM $(p : \mathcal{E} \rightarrow L_{Ab}, 1, num)$ where $\mathcal{E} = Types$ and Terms

- Syntax of UoM $(p : \mathcal{E} \rightarrow L_{Ab}, 1, num)$ where $\mathcal{E} = Types$ and Terms
- UoM-Fibrations from the Usual Fibrations Codomain, Suboject and Relations fibration over Set are λ_1 -fibrations with simple products.

- Syntax of UoM $(p : \mathcal{E} \rightarrow L_{Ab}, 1, num)$ where $\mathcal{E} = Types$ and Terms
- UoM-Fibrations from the Usual Fibrations Codomain, Suboject and Relations fibration over Set are λ_1 -fibrations with simple products.
 - Choose Abelian group object, G

- Syntax of UoM $(p : \mathcal{E} \rightarrow L_{Ab}, 1, num)$ where $\mathcal{E} = Types$ and Terms
- UoM-Fibrations from the Usual Fibrations Codomain, Suboject and Relations fibration over Set are λ_1 -fibrations with simple products.
 - Choose Abelian group object, G
 - Choose object in fibre above G

- Syntax of UoM $(p : \mathcal{E} \rightarrow L_{Ab}, 1, num)$ where $\mathcal{E} = Types$ and Terms
- UoM-Fibrations from the Usual Fibrations Codomain, Suboject and Relations fibration over Set are λ_1 -fibrations with simple products.
 - Choose Abelian group object, G
 - Choose object in fibre above G
- Unit Erasure Semantics $(p : \mathcal{E} \to 1, *, \text{num})$ e.g. $\mathcal{E} = \text{cpo}$ and $\text{num} = \mathbb{Q}_{\perp}$

Theorem

- $(p: \mathcal{E} \rightarrow \mathcal{B}, G, X)$ UoM-fibration
- *A finite products*
- $F: \mathcal{A} \to \mathcal{B}$ product preserving functor
- $G' \in \mathcal{A}$ an Abelian group object with

$$FG' = G$$

Theorem

- $(p: \mathcal{E} \rightarrow \mathcal{B}, G, X)$ UoM-fibration
- \mathcal{A} finite products
- $F: \mathcal{A} \to \mathcal{B}$ product preserving functor
- $G' \in \mathcal{A}$ an Abelian group object with

$$FG' = G$$

Then $(F^*p, G', (G', X))$ is a UoM-fibration.

Theorem

- $(p: \mathcal{E} \rightarrow \mathcal{B}, G, X)$ UoM-fibration
- *A finite products*
- $F: \mathcal{A} \to \mathcal{B}$ product preserving functor
- $G' \in \mathcal{A}$ an Abelian group object with

$$FG' = G$$

Then $(F^*p, G', (G', X))$ is a UoM-fibration.

Theorems About UoM-Fibrations ctd...

Theorems About UoM-Fibrations ctd...

Theorem

Any UoM-fibration can be converted into a UoM-fibration with L_{Ab} in the base.

Theorems About UoM-Fibrations ctd...

Theorem

Any UoM-fibration can be converted into a UoM-fibration with L_{Ab} in the base.

p

Recall an Abelian group G can be thought of as a category \mathcal{G}

Recall an Abelian group G can be thought of as a category \mathcal{G}

•
$$Ob(\mathcal{G}) = *$$

Recall an Abelian group G can be thought of as a category $\mathcal G$

•
$$Ob(\mathcal{G}) = *$$

•
$$\mathcal{G}(*,*) = \mathbf{G}$$

Recall an Abelian group G can be thought of as a category \mathcal{G}

- $Ob(\mathcal{G}) = *$
- $\mathcal{G}(*,*) = \mathbf{G}$

A *G*-Set is a functor $\phi : \mathcal{G} \rightarrow$ Set, i.e.,

Recall an Abelian group G can be thought of as a category $\mathcal G$

- $Ob(\mathcal{G}) = *$
- $\mathcal{G}(*,*) = G$

A *G*-Set is a functor $\phi : \mathcal{G} \rightarrow$ Set, i.e.,

• $\phi * \in \text{Set}$, which we denote $|\phi|$

Recall an Abelian group G can be thought of as a category $\mathcal G$

- $Ob(\mathcal{G}) = *$
- $\mathcal{G}(*,*) = \mathbf{G}$

A *G*-Set is a functor $\phi : \mathcal{G} \rightarrow$ Set, i.e.,

- $\phi * \in \text{Set}$, which we denote $|\phi|$
- $\phi \boldsymbol{g}: |\phi| \rightarrow |\phi|.$

Recall an Abelian group G can be thought of as a category \mathcal{G}

- $Ob(\mathcal{G}) = *$
- $\mathcal{G}(*,*) = \mathbf{G}$

A *G*-Set is a functor $\phi : \mathcal{G} \rightarrow$ Set, i.e.,

• $\phi * \in$ Set, which we denote $|\phi|$

•
$$\phi \boldsymbol{g}: |\phi| \to |\phi|.$$

Definition

We call the functor $p : Ab-Set \rightarrow Ab$ the Ab-Set fibration, where $Ab-Set_{\mathcal{G}} = [\mathcal{G}, Set]$

Recall an Abelian group G can be thought of as a category \mathcal{G}

- $Ob(\mathcal{G}) = *$
- $\mathcal{G}(*,*) = \mathbf{G}$

A *G*-Set is a functor $\phi : \mathcal{G} \rightarrow$ Set, i.e.,

- $\phi * \in$ Set, which we denote $|\phi|$
- $\phi \boldsymbol{g}: |\phi| \to |\phi|.$

Definition

We call the functor p : Ab-Set \rightarrow Ab the Ab-Set fibration, where Ab-Set $_{\mathcal{G}} = [\mathcal{G}, Set]$

Theorem

The Ab-Set fibration is a λ_1 -fibration with simple products. Hence, for choices $\mathcal{G} \in Ab$, num $\in Ab$ -Set_{\mathcal{G}}

 $(p: Ab-Set \rightarrow Ab, G, num)$ is a UoM-fibration

Theorem About Fibrations

Theorem About Fibrations

Theorem Let \mathcal{E} and \mathcal{B} be categories with finite products.
Theorem About Fibrations

Theorem

Let \mathcal{E} and \mathcal{B} be categories with finite products.

• Suppose that $[_]:\mathcal{B}\to \mathsf{Cat}$ is a product preserving functor.

Theorem About Fibrations

Theorem

Let ${\mathcal E}$ and ${\mathcal B}$ be categories with finite products.

- Suppose that $[_]: \mathcal{B} \to Cat$ is a product preserving functor.
- *p* : *E* → *B* is a fibration with *E_X* := [*X*] → *D* and hence reindexing is given by precomposition

Theorem About Fibrations

Theorem

Let \mathcal{E} and \mathcal{B} be categories with finite products.

- Suppose that $[_]: \mathcal{B} \to Cat$ is a product preserving functor.
- *p* : *E* → *B* is a fibration with *E_X* := [X] → *D* and hence reindexing is given by precomposition

 $\circ \text{ i.e., for any } f: X \to Y \in \mathcal{B}, \ f^*(\phi: [Y] \to \mathcal{D}) = \phi \circ [f].$

Then, the reindexing of any projection map $\pi_X : X \times Y \to X$ has a right adjoint $\pi_X^* \dashv Ran_{[\pi]}$, which satisfies the Beck-Chevalley condition.

Lemma

For $\pi: X \times Y \to X$ in \mathcal{B} and $\phi: [X] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{X \times Y}$ then

Lemma

For $\pi: X \times Y \to X$ in \mathcal{B} and $\phi: [X] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{X \times Y}$ then

$$(\operatorname{Ran}_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$$

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Want to show:

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Want to show: For any $f: X \to X'$ in \mathcal{B} and $\psi: [X'] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{X' \times Y}$

 $(\operatorname{Ran}_{\pi_X}(f \times \operatorname{id})^*\psi) x \cong (f^* \operatorname{Ran}_{\pi_{X'}} \psi) x$

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Want to show: For any $f: X \to X'$ in \mathcal{B} and $\psi: [X'] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{x' \times Y}$

$$(\operatorname{Ran}_{\pi_X}(f \times id)^*\psi) x \cong (f^*\operatorname{Ran}_{\pi_{X'}}\psi) x$$

Use Lemma:

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Want to show: For any $f: X \to X'$ in \mathcal{B} and $\psi: [X'] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{X' \times Y}$

$$(\operatorname{Ran}_{\pi_X}(f \times id)^*\psi) x \cong (f^*\operatorname{Ran}_{\pi_{X'}}\psi) x$$

Use Lemma:

$$(\operatorname{Ran}_{\pi_X}(f \times \operatorname{id})^*\psi)x \cong \lim_{y \in Y}(f \times \operatorname{id})^*\phi(x, y) \cong \lim_{y \in Y}\phi(fx, y)$$

Keep in mind: $(Ran_{[\pi]}\phi)x = \lim_{y \in [Y]} \phi(x, y)$

Want to show: For any $f: X \to X'$ in \mathcal{B} and $\psi: [X'] \times [Y] \to \mathcal{D}$ in $\mathcal{E}_{X' \times Y}$

$$(\operatorname{Ran}_{\pi_X}(f \times id)^*\psi) x \cong (f^*\operatorname{Ran}_{\pi_{X'}}\psi) x$$

Use Lemma:

$$(Ran_{\pi_X}(f \times id)^*\psi)x \cong \lim_{y \in Y} (f \times id)^*\phi(x, y) \cong \lim_{y \in Y} \phi(fx, y)$$

$$(f^*Ran_{\pi_{X'}}\psi)x \cong \lim_{y\in Y}\phi(fx,y)$$

• If fibration such that reindexing is given by precomposition

- If fibration such that reindexing is given by precomposition
- AND right adjoints are given by right Kan extensions

- If fibration such that reindexing is given by precomposition
- AND right adjoints are given by right Kan extensions
- Then quantification satisfies BC

- If fibration such that reindexing is given by precomposition
- AND right adjoints are given by right Kan extensions
- Then quantification satisfies BC
- We use this to show the Ab-Set fibration is a UoM-fibration

Results in the Ab-Set

Fibration

Results in the Ab-Set Fibration

Lemma Suppose $u \vdash S, T$ Type, then

 $|\llbracket \forall u.S \to T \rrbracket| \cong Nat(\llbracket S \rrbracket, \llbracket T \rrbracket)$

Results in the Ab-Set Fibration

Lemma Suppose $u \vdash S, T$ Type, then

 $|\llbracket \forall u.S \to T \rrbracket| \cong \textit{Nat}(\llbracket S \rrbracket, \llbracket T \rrbracket)$

Proof.

By end formula for a Kan extension.

Lemma Let $t: \forall u.num(u) \rightarrow num(u^n)$ for some $m, n \in \mathbb{N}$,

Lemma

Let $t: \forall u.num(u) \rightarrow num(u^n)$ for some $m, n \in \mathbb{N}$, then for $x \in |num(u)|$

 $\llbracket t
rbracket (g \cdot x) = g^n \cdot (\llbracket t
rbracket x) \quad \forall g \in G$

Lemma

Let $t: \forall u.num(u) \rightarrow num(u^n)$ for some $m, n \in \mathbb{N}$, then for $x \in |num(u)|$

$$\llbracket t
rbracket (g \cdot x) = g^n \cdot (\llbracket t
rbracket x) \quad \forall g \in G$$

Proof.

Use previous lemma to see $\llbracket t \rrbracket \in G$ -Set(num(u), num(u^n))

Lemma

Let $t: \forall u.num(u) \rightarrow num(u^n)$ for some $m, n \in \mathbb{N}$, then for $x \in |num(u)|$

$$\llbracket t
rbracket (g \cdot x) = g^n \cdot (\llbracket t
rbracket x) \quad \forall g \in G$$

Proof.

Use previous lemma to see $[t] \in G$ -Set(num(u), num(u^n)) Naturality gives result.

Corollary

There is no non-trivial term of type $\forall u.num(u^2) \rightarrow num(u)$.

Corollary

There is no non-trivial term of type $\forall u.num(u^2) \rightarrow num(u)$.

Proof. Consider ($p: Ab-Set \rightarrow Ab, \mathbb{Z}_2, \mathbb{Z}_2$),

Corollary

There is no non-trivial term of type $\forall u.num(u^2) \rightarrow num(u)$.

Proof.

Consider ($p: Ab-Set \rightarrow Ab, \mathbb{Z}_2, \mathbb{Z}_2$),

Then if there were a term $t: \forall u.num(u^2) \rightarrow num(u)$, then

$$\llbracket t
rbracket (g^2 \cdot x) = g \cdot (\llbracket t
rbracket x) \ \forall g \in \mathbb{Z}_2$$

Corollary

There is no non-trivial term of type $\forall u.num(u^2) \rightarrow num(u)$.

Proof.

Consider (p : Ab-Set $\rightarrow Ab, \mathbb{Z}_2, \mathbb{Z}_2$),

Then if there were a term $t: \forall u.num(u^2) \rightarrow num(u)$, then

$$\llbracket t
rbracket (g^2 \cdot x) = g \cdot (\llbracket t
rbracket x) \ \forall g \in \mathbb{Z}_2$$

Which does not hold, because

If
$$[t]0 = 1$$
 then $[t](1 + 1 + 0) = 1 + [t](0)$

Corollary

There is no non-trivial term of type $\forall u.num(u^2) \rightarrow num(u)$.

Proof.

Consider ($p: Ab-Set \rightarrow Ab, \mathbb{Z}_2, \mathbb{Z}_2$),

Then if there were a term $t: \forall u.num(u^2) \rightarrow num(u)$, then

$$\llbracket t
rbracket (g^2 \cdot x) = g \cdot (\llbracket t
rbracket x) \ \forall g \in \mathbb{Z}_2$$

Which does not hold, because

If
$$[t] 0 = 1$$
 then $[t] (1 + 1 + 0) = 1 + [t] (0)$
If $[t] 1 = 1$ then $[t] (1 + 1 + 1) = 1 + [t] (1)$

• B - unit erasure semantics

- B unit erasure semantics
- $R: L_{Ab} \rightarrow \mathcal{B}$ product preserving functor

- B unit erasure semantics
- $R: L_{Ab} \rightarrow \mathcal{B}$ product preserving functor

- B unit erasure semantics
- $R: L_{Ab} \rightarrow \mathcal{B}$ product preserving functor

 $\textit{Rel}(\mathcal{E})_n = \{(n, B, P) \mid B \in \mathcal{B}, \ P \in \mathcal{E}_{\textit{R}(n) \times B \times B}\}$

ctd...

ctd...

Theorem

 $(\mathit{r}:\textit{Rel}(\mathcal{E}) \rightarrow L_{Ab}, 1, num),$ for a choice of num, is a UoM-fibration.
Parametric UoM-Fibrations

ctd...

Theorem

 $(r: \text{Rel}(\mathcal{E}) \rightarrow L_{Ab}, 1, \text{num})$, for a choice of num, is a UoM-fibration.

For $\Delta \vdash T$ Type, where $|\Delta| = n$

For $\Delta \vdash T$ Type, where $|\Delta| = n$

 $\llbracket T \rrbracket = (n, \llbracket T \rrbracket_0, \llbracket T \rrbracket_1)$

For $\Delta \vdash T$ Type, where $|\Delta| = n$

For $\Delta \vdash T$ Type, where $|\Delta| = n$

For $\Delta \vdash T$ Type, where $|\Delta| = n$

 $\llbracket T \rrbracket = (n, \llbracket T \rrbracket_0, \llbracket T \rrbracket_1)$ with $\llbracket T \rrbracket_0 \in \mathcal{B}$ and $\llbracket T \rrbracket_1 \in \mathcal{E}_{G^n \times \llbracket T \rrbracket_0 \times \llbracket T \rrbracket_0}$.

• $[T]_0$ as the unit-erasure semantics of *T*

For $\Delta \vdash T$ Type, where $|\Delta| = n$

- [[T]]₀ as the unit-erasure semantics of T
- $[T]_1$ as the relational semantics of *T*.

For $\Delta \vdash T$ Type, where $|\Delta| = n$

- $\llbracket T \rrbracket_0$ as the unit-erasure semantics of *T*
- $[T]_1$ as the relational semantics of *T*.

• Units of Measure can be given a fibrational semantics

- Units of Measure can be given a fibrational semantics
- Nice model using G-sets can exploit naturality properties of UoM

- Units of Measure can be given a fibrational semantics
- Nice model using G-sets can exploit naturality properties of UoM
- There exist parametric UoM-fibrations

• Look more at role of G-sets c.f. nominal sets

- Look more at role of G-sets c.f. nominal sets
- Invariance properties and symmetries

- Look more at role of G-sets c.f. nominal sets
- Invariance properties and symmetries
- ...write thesis...

Thanks for listening.

timothy.revell@strath.ac.uk

@timothyrevell