
Fibrational Units of
Measure

Timothy Revell

and N. Ghani, R. Atkey, S. Staton

University of Strathclyde

1

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Motivation

• Units of Measure m, s, kg...etc

• Used for measurement, e.g., X is twice as much as a metre

• Single quantity can have many different units, e.g., metres,
inches, nautical mile, ...etc.

• Class of representations is a dimension, e.g., Length (L),
Mass (M), Time (T)

• Normally pick out base units for dimensions, e.g., SI Base
units include kg, m, s, K ,...etc
Derived Units kgm−2s−2

2

Dimensional Analysis

• +, −, ≤ of two quantities with different dimensions gives a
dimension error

• ×, ÷ of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

3

Dimensional Analysis

• +, −, ≤ of two quantities with different dimensions gives a
dimension error

• ×, ÷ of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

3

Dimensional Analysis

• +, −, ≤ of two quantities with different dimensions gives a
dimension error

• ×, ÷ of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

3

Dimensional Analysis

• +, −, ≤ of two quantities with different dimensions gives a
dimension error

• ×, ÷ of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

3

Dimensional Analysis

• +, −, ≤ of two quantities with different dimensions gives a
dimension error

• ×, ÷ of two quantities with different dimensions is OK, but
gives new units

Quantification of units allows us to express this.

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

3

Background

• Relational Parametricity and Units of Measure
by A. J. Kennedy

• Introduces type system and relational semantics

• ... But no category theory.

4

Background

• Relational Parametricity and Units of Measure
by A. J. Kennedy

• Introduces type system and relational semantics

• ... But no category theory.

4

Background

• Relational Parametricity and Units of Measure
by A. J. Kennedy

• Introduces type system and relational semantics

• ... But no category theory.

4

Background

• Relational Parametricity and Units of Measure
by A. J. Kennedy

• Introduces type system and relational semantics

• ... But no category theory.

4

Outline

• Type System for Units of Measure

• Categorical Semantics

• Examples and Theorems

• Parametricity

5

A Type System for Units of
Measure

Unit Context ∆ = u1, ..., un

Types

e ∈ Ab(∆)

∆ ` e
∆ ` e

∆ ` num(e) Type

∆ ` T Type ∆ ` U Type
∆ ` T × U Type

∆ ` T Type ∆ ` U Type
∆ ` T → U Type

∆, u ` T Type
∆ ` ∀u.T Type

6

A Type System for Units of
Measure

Unit Context ∆ = u1, ..., un

Types

e ∈ Ab(∆)

∆ ` e
∆ ` e

∆ ` num(e) Type

∆ ` T Type ∆ ` U Type
∆ ` T × U Type

∆ ` T Type ∆ ` U Type
∆ ` T → U Type

∆, u ` T Type
∆ ` ∀u.T Type

6

A Type System for Units of
Measure

Unit Context ∆ = u1, ..., un

Types

e ∈ Ab(∆)

∆ ` e
∆ ` e

∆ ` num(e) Type

∆ ` T Type ∆ ` U Type
∆ ` T × U Type

∆ ` T Type ∆ ` U Type
∆ ` T → U Type

∆, u ` T Type
∆ ` ∀u.T Type

6

A Type System for Units of
Measure

Unit Context ∆ = u1, ..., un

Types

e ∈ Ab(∆)

∆ ` e
∆ ` e

∆ ` num(e) Type

∆ ` T Type ∆ ` U Type
∆ ` T × U Type

∆ ` T Type ∆ ` U Type
∆ ` T → U Type

∆, u ` T Type
∆ ` ∀u.T Type

6

A Type System for Units of
Measure

Typing Context Γ = x1 : T1, ..., xm : Tm

Terms

Usual STλC

and

∆ ` Γ ctxt ∆, u, Γ ` t : T
∆; Γ ` Λu.t : ∀u.T

∆ ` e ∆, Γ ` t : ∀u.T
∆; Γ ` te : T [e/u]

7

A Type System for Units of
Measure

Typing Context Γ = x1 : T1, ..., xm : Tm

Terms

Usual STλC

and

∆ ` Γ ctxt ∆, u, Γ ` t : T
∆; Γ ` Λu.t : ∀u.T

∆ ` e ∆, Γ ` t : ∀u.T
∆; Γ ` te : T [e/u]

7

A Type System for Units of
Measure

Typing Context Γ = x1 : T1, ..., xm : Tm

Terms

Usual STλC

and

∆ ` Γ ctxt ∆, u, Γ ` t : T
∆; Γ ` Λu.t : ∀u.T

∆ ` e ∆, Γ ` t : ∀u.T
∆; Γ ` te : T [e/u]

7

Some Constants

Then add constants, popular choices include...

• 0 : ∀u.num(u)

• 1 : num(1)

• + : ∀u.num(u)→ num(u)→ num(u)

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

8

Some Constants

Then add constants, popular choices include...

• 0 : ∀u.num(u)

• 1 : num(1)

• + : ∀u.num(u)→ num(u)→ num(u)

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

8

Some Constants

Then add constants, popular choices include...

• 0 : ∀u.num(u)

• 1 : num(1)

• + : ∀u.num(u)→ num(u)→ num(u)

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

8

Some Constants

Then add constants, popular choices include...

• 0 : ∀u.num(u)

• 1 : num(1)

• + : ∀u.num(u)→ num(u)→ num(u)

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

8

Some Constants

Then add constants, popular choices include...

• 0 : ∀u.num(u)

• 1 : num(1)

• + : ∀u.num(u)→ num(u)→ num(u)

• × : ∀u1.∀u2.num(u1)→ num(u2)→ num(u1 · u2)

8

Where are the Fibrations?

9

Fibrational Semantics

A fibration p : E → B with enough structure such that

• B - Unit contexts and expressions

• E - Types and terms

10

Fibrational Semantics

A fibration p : E → B with enough structure such that

• B - Unit contexts and expressions

• E - Types and terms

10

Fibrational Semantics

A fibration p : E → B with enough structure such that

• B - Unit contexts and expressions

• E - Types and terms

10

Fibrational Semantics

A fibration p : E → B with enough structure such that

• B - Unit contexts and expressions

• E - Types and terms

10

A Bit More Detail ...
Start with a fibration p : E → B

• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure

◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.

◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

A Bit More Detail ...
Start with a fibration p : E → B
• G ∈ Ab(B) using Abelian Group Object

• J∆ ` eK : G|∆| → G

◦ i.e. Ju1, u2 ` u1 · u−1
2 K(g1, g2) = g1 · g−1

2

• J∆; Γ ` T TypeK ∈ EJ∆K

◦ Fibred CCC structure
◦ Let num ∈ EG, then J∆ ` num(e)K = J∆ ` eK∗num.
◦ Quantification given by π∗ a ∀, where π : J∆, uK→ J∆K.

• Terms define morphisms J∆; Γ ` t : T K : JΓK→ JT K ∈ EJ∆K .

Definition
We call (p,G, num) a UoM-fibration.

11

...Or More Concisely

Definition
A UoM-fibration (p : E → B,G, num) is given by

• A λ1-fibration p : E → B
• An exponentiable Abelian group object G and

• An object num ∈ EG

12

...Or More Concisely

Definition
A UoM-fibration (p : E → B,G, num) is given by

• A λ1-fibration p : E → B
• An exponentiable Abelian group object G and

• An object num ∈ EG

12

...Or More Concisely

Definition
A UoM-fibration (p : E → B,G, num) is given by

• A λ1-fibration p : E → B

• An exponentiable Abelian group object G and

• An object num ∈ EG

12

...Or More Concisely

Definition
A UoM-fibration (p : E → B,G, num) is given by

• A λ1-fibration p : E → B
• An exponentiable Abelian group object G and

• An object num ∈ EG

12

...Or More Concisely

Definition
A UoM-fibration (p : E → B,G, num) is given by

• A λ1-fibration p : E → B
• An exponentiable Abelian group object G and

• An object num ∈ EG

12

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G
◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G
◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G
◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G

◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G
◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

UoM-Fibration Examples

• Syntax of UoM (p : E → LAb, 1, num)
where E = Types and Terms

• UoM-Fibrations from the Usual Fibrations
Codomain, Suboject and Relations fibration over Set are
λ1-fibrations with simple products.

◦ Choose Abelian group object, G
◦ Choose object in fibre above G

• Unit Erasure Semantics (p : E → 1, ∗, num)
e.g. E = cpo and num = Q⊥

13

Theorems About
UoM-Fibrations

Theorem

• (p : E → B,G,X) UoM-fibration

• A finite products

• F : A → B product preserving functor

• G′ ∈ A an Abelian group object with

FG′ = G

Then (F ∗p,G′, (G′,X)) is a UoM-fibration.

F ∗E - E

A

F ∗p

?

F
- B

p

?

14

Theorems About
UoM-Fibrations

Theorem

• (p : E → B,G,X) UoM-fibration

• A finite products

• F : A → B product preserving functor

• G′ ∈ A an Abelian group object with

FG′ = G

Then (F ∗p,G′, (G′,X)) is a UoM-fibration.

F ∗E - E

A

F ∗p

?

F
- B

p

?

14

Theorems About
UoM-Fibrations

Theorem

• (p : E → B,G,X) UoM-fibration

• A finite products

• F : A → B product preserving functor

• G′ ∈ A an Abelian group object with

FG′ = G

Then (F ∗p,G′, (G′,X)) is a UoM-fibration.

F ∗E - E

A

F ∗p

?

F
- B

p

?

14

Theorems About
UoM-Fibrations

Theorem

• (p : E → B,G,X) UoM-fibration

• A finite products

• F : A → B product preserving functor

• G′ ∈ A an Abelian group object with

FG′ = G

Then (F ∗p,G′, (G′,X)) is a UoM-fibration.

F ∗E - E

A

F ∗p

?

F
- B

p

?

14

Theorems About
UoM-Fibrations ctd...

Theorem
Any UoM-fibration can be converted into a UoM-fibration with LAb

in the base.

F (1) = G

F ∗E - E

LAb

F ∗p

?

F
- B

p

?

15

Theorems About
UoM-Fibrations ctd...

Theorem
Any UoM-fibration can be converted into a UoM-fibration with LAb

in the base.

F (1) = G

F ∗E - E

LAb

F ∗p

?

F
- B

p

?

15

Theorems About
UoM-Fibrations ctd...

Theorem
Any UoM-fibration can be converted into a UoM-fibration with LAb

in the base.

F (1) = G

F ∗E - E

LAb

F ∗p

?

F
- B

p

?

15

Another Example
Recall an Abelian group G can be thought of as a category G

• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗

• G(∗, ∗) = G
A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,

• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|

• φg : |φ| → |φ|.
Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration

16

Another Example
Recall an Abelian group G can be thought of as a category G
• Ob(G) = ∗
• G(∗, ∗) = G

A G-Set is a functor φ : G → Set, i.e.,
• φ∗ ∈ Set, which we denote |φ|
• φg : |φ| → |φ|.

Definition
We call the functor p : Ab-Set→ Ab the Ab-Set fibration,
where Ab-SetG = [G,Set]

Theorem
The Ab-Set fibration is a λ1-fibration with simple products. Hence,
for choices G ∈ Ab, num ∈ Ab-SetG

(p : Ab-Set→ Ab,G, num) is a UoM-fibration
16

Theorem About Fibrations

Theorem
Let E and B be categories with finite products.

• Suppose that [] : B → Cat is a product preserving functor.

• p : E → B is a fibration with EX := [X]→ D and hence
reindexing is given by precomposition

◦ i.e., for any f : X → Y ∈ B, f ∗(φ : [Y]→ D) = φ ◦ [f].

Then, the reindexing of any projection map πX : X × Y → X has a
right adjoint π∗

X
a Ran[π] , which satisfies the Beck-Chevalley

condition.

17

Theorem About Fibrations

Theorem
Let E and B be categories with finite products.

• Suppose that [] : B → Cat is a product preserving functor.

• p : E → B is a fibration with EX := [X]→ D and hence
reindexing is given by precomposition

◦ i.e., for any f : X → Y ∈ B, f ∗(φ : [Y]→ D) = φ ◦ [f].

Then, the reindexing of any projection map πX : X × Y → X has a
right adjoint π∗

X
a Ran[π] , which satisfies the Beck-Chevalley

condition.

17

Theorem About Fibrations

Theorem
Let E and B be categories with finite products.

• Suppose that [] : B → Cat is a product preserving functor.

• p : E → B is a fibration with EX := [X]→ D and hence
reindexing is given by precomposition

◦ i.e., for any f : X → Y ∈ B, f ∗(φ : [Y]→ D) = φ ◦ [f].

Then, the reindexing of any projection map πX : X × Y → X has a
right adjoint π∗

X
a Ran[π] , which satisfies the Beck-Chevalley

condition.

17

Theorem About Fibrations

Theorem
Let E and B be categories with finite products.

• Suppose that [] : B → Cat is a product preserving functor.

• p : E → B is a fibration with EX := [X]→ D and hence
reindexing is given by precomposition

◦ i.e., for any f : X → Y ∈ B, f ∗(φ : [Y]→ D) = φ ◦ [f].

Then, the reindexing of any projection map πX : X × Y → X has a
right adjoint π∗

X
a Ran[π] , which satisfies the Beck-Chevalley

condition.

17

Theorem About Fibrations

Theorem
Let E and B be categories with finite products.

• Suppose that [] : B → Cat is a product preserving functor.

• p : E → B is a fibration with EX := [X]→ D and hence
reindexing is given by precomposition

◦ i.e., for any f : X → Y ∈ B, f ∗(φ : [Y]→ D) = φ ◦ [f].

Then, the reindexing of any projection map πX : X × Y → X has a
right adjoint π∗

X
a Ran[π] , which satisfies the Beck-Chevalley

condition.

17

Sketch Proof

Lemma
For π : X × Y → X in B and φ : [X]× [Y]→ D in EX×Y

then
(Ran[π]φ)x = lim

y∈[Y]
φ(x , y)

18

Sketch Proof

Lemma
For π : X × Y → X in B and φ : [X]× [Y]→ D in EX×Y

then

(Ran[π]φ)x = lim
y∈[Y]

φ(x , y)

18

Sketch Proof

Lemma
For π : X × Y → X in B and φ : [X]× [Y]→ D in EX×Y

then
(Ran[π]φ)x = lim

y∈[Y]
φ(x , y)

18

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show: For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show:

For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show: For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show: For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show: For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Sketch Proof
Keep in mind: (Ran[π]φ)x = limy∈[Y] φ(x , y)

Want to show: For any f : X → X ′ in B and
ψ : [X ′]× [Y]→ D in E

X ′×Y

(RanπX (f × id)∗ψ)x ∼= (f ∗RanπX ′ψ)x

Use Lemma:

(RanπX (f × id)∗ψ)x ∼= lim
y∈Y

(f × id)∗φ(x , y) ∼= lim
y∈Y

φ(fx , y)

(f ∗RanπX ′ψ)x ∼= lim
y∈Y

φ(fx , y)

19

Summary of Last Few
Slides

• If fibration such that reindexing is given by precomposition

• AND right adjoints are given by right Kan extensions

• Then quantification satisfies BC

• We use this to show the Ab-Set fibration is a UoM-fibration

20

Summary of Last Few
Slides

• If fibration such that reindexing is given by precomposition

• AND right adjoints are given by right Kan extensions

• Then quantification satisfies BC

• We use this to show the Ab-Set fibration is a UoM-fibration

20

Summary of Last Few
Slides

• If fibration such that reindexing is given by precomposition

• AND right adjoints are given by right Kan extensions

• Then quantification satisfies BC

• We use this to show the Ab-Set fibration is a UoM-fibration

20

Summary of Last Few
Slides

• If fibration such that reindexing is given by precomposition

• AND right adjoints are given by right Kan extensions

• Then quantification satisfies BC

• We use this to show the Ab-Set fibration is a UoM-fibration

20

Summary of Last Few
Slides

• If fibration such that reindexing is given by precomposition

• AND right adjoints are given by right Kan extensions

• Then quantification satisfies BC

• We use this to show the Ab-Set fibration is a UoM-fibration

20

Results in the Ab-Set
Fibration

Lemma
Suppose u ` S,T Type, then

|J∀u.S → T K| ∼= Nat(JSK, JT K)

Proof.
By end formula for a Kan extension.

21

Results in the Ab-Set
Fibration

Lemma
Suppose u ` S,T Type, then

|J∀u.S → T K| ∼= Nat(JSK, JT K)

Proof.
By end formula for a Kan extension.

21

Results in the Ab-Set
Fibration

Lemma
Suppose u ` S,T Type, then

|J∀u.S → T K| ∼= Nat(JSK, JT K)

Proof.
By end formula for a Kan extension.

21

Results in the Ab-Set
Fibration ctd...

Lemma
Let t : ∀u.num(u)→ num(un) for some m, n ∈ N,

then for x ∈ |num(u)|

JtK(g · x) = gn · (JtKx) ∀g ∈ G

Proof.
Use previous lemma to see JtK ∈ G-Set(num(u), num(un))
Naturality gives result.

22

Results in the Ab-Set
Fibration ctd...

Lemma
Let t : ∀u.num(u)→ num(un) for some m, n ∈ N,
then for x ∈ |num(u)|

JtK(g · x) = gn · (JtKx) ∀g ∈ G

Proof.
Use previous lemma to see JtK ∈ G-Set(num(u), num(un))
Naturality gives result.

22

Results in the Ab-Set
Fibration ctd...

Lemma
Let t : ∀u.num(u)→ num(un) for some m, n ∈ N,
then for x ∈ |num(u)|

JtK(g · x) = gn · (JtKx) ∀g ∈ G

Proof.
Use previous lemma to see JtK ∈ G-Set(num(u), num(un))

Naturality gives result.

22

Results in the Ab-Set
Fibration ctd...

Lemma
Let t : ∀u.num(u)→ num(un) for some m, n ∈ N,
then for x ∈ |num(u)|

JtK(g · x) = gn · (JtKx) ∀g ∈ G

Proof.
Use previous lemma to see JtK ∈ G-Set(num(u), num(un))
Naturality gives result.

22

Results in the Ab-Set
Fibration ctd...

Corollary
There is no non-trivial term of type ∀u.num(u2)→ num(u).

Proof.
Consider (p : Ab-Set→ Ab,Z2,Z2),
Then if there were a term t : ∀u.num(u2)→ num(u), then

JtK(g2 · x) = g · (JtKx) ∀g ∈ Z2

Which does not hold, because

If JtK0 = 1 then JtK(1 + 1 + 0) = 1 + JtK(0)

If JtK1 = 1 then JtK(1 + 1 + 1) = 1 + JtK(1)

23

Results in the Ab-Set
Fibration ctd...

Corollary
There is no non-trivial term of type ∀u.num(u2)→ num(u).

Proof.
Consider (p : Ab-Set→ Ab,Z2,Z2),

Then if there were a term t : ∀u.num(u2)→ num(u), then

JtK(g2 · x) = g · (JtKx) ∀g ∈ Z2

Which does not hold, because

If JtK0 = 1 then JtK(1 + 1 + 0) = 1 + JtK(0)

If JtK1 = 1 then JtK(1 + 1 + 1) = 1 + JtK(1)

23

Results in the Ab-Set
Fibration ctd...

Corollary
There is no non-trivial term of type ∀u.num(u2)→ num(u).

Proof.
Consider (p : Ab-Set→ Ab,Z2,Z2),
Then if there were a term t : ∀u.num(u2)→ num(u), then

JtK(g2 · x) = g · (JtKx) ∀g ∈ Z2

Which does not hold, because

If JtK0 = 1 then JtK(1 + 1 + 0) = 1 + JtK(0)

If JtK1 = 1 then JtK(1 + 1 + 1) = 1 + JtK(1)

23

Results in the Ab-Set
Fibration ctd...

Corollary
There is no non-trivial term of type ∀u.num(u2)→ num(u).

Proof.
Consider (p : Ab-Set→ Ab,Z2,Z2),
Then if there were a term t : ∀u.num(u2)→ num(u), then

JtK(g2 · x) = g · (JtKx) ∀g ∈ Z2

Which does not hold, because

If JtK0 = 1 then JtK(1 + 1 + 0) = 1 + JtK(0)

If JtK1 = 1 then JtK(1 + 1 + 1) = 1 + JtK(1)

23

Results in the Ab-Set
Fibration ctd...

Corollary
There is no non-trivial term of type ∀u.num(u2)→ num(u).

Proof.
Consider (p : Ab-Set→ Ab,Z2,Z2),
Then if there were a term t : ∀u.num(u2)→ num(u), then

JtK(g2 · x) = g · (JtKx) ∀g ∈ Z2

Which does not hold, because

If JtK0 = 1 then JtK(1 + 1 + 0) = 1 + JtK(0)

If JtK1 = 1 then JtK(1 + 1 + 1) = 1 + JtK(1)

23

Parametric UoM-Fibrations

• B - unit erasure semantics
• R : LAb → B product preserving functor

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

Rel(E)n = {(n,B,P) | B ∈ B, P ∈ ER(n)×B×B}

24

Parametric UoM-Fibrations
• B - unit erasure semantics

• R : LAb → B product preserving functor

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

Rel(E)n = {(n,B,P) | B ∈ B, P ∈ ER(n)×B×B}

24

Parametric UoM-Fibrations
• B - unit erasure semantics
• R : LAb → B product preserving functor

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

Rel(E)n = {(n,B,P) | B ∈ B, P ∈ ER(n)×B×B}

24

Parametric UoM-Fibrations
• B - unit erasure semantics
• R : LAb → B product preserving functor

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

Rel(E)n = {(n,B,P) | B ∈ B, P ∈ ER(n)×B×B}

24

Parametric UoM-Fibrations
• B - unit erasure semantics
• R : LAb → B product preserving functor

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

Rel(E)n = {(n,B,P) | B ∈ B, P ∈ ER(n)×B×B}
24

Parametric UoM-Fibrations
ctd...

Theorem
(r : Rel(E)→ LAb, 1, num), for a choice of num, is a UoM-fibration.

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

25

Parametric UoM-Fibrations
ctd...

Theorem
(r : Rel(E)→ LAb, 1, num), for a choice of num, is a UoM-fibration.

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

25

Parametric UoM-Fibrations
ctd...

Theorem
(r : Rel(E)→ LAb, 1, num), for a choice of num, is a UoM-fibration.

Rel(E) - E

LAb × B

p

? R ×∆- B × B × B
_× _× _- B

u

?

LAb

?
1
?

25

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Why Parametric?

For ∆ ` T Type, where |∆| = n

JT K = (n, JT K0, JT K1)

with JT K0 ∈ B and JT K1 ∈ EGn×JT K0×JT K0
.

• JT K0 as the unit-erasure
semantics of T

• JT K1 as the relational
semantics of T .

1

JΓK1

j
⇓ JtK1

JT K1

*
Pn

1

=

?
JΓK0

j
⇓ JtK0

JT K0

*
B

p′

?

26

Conclusions and Future
Work

• Units of Measure can be given a fibrational semantics

• Nice model using G-sets can exploit naturality properties of
UoM

• There exist parametric UoM-fibrations

27

Conclusions and Future
Work

• Units of Measure can be given a fibrational semantics

• Nice model using G-sets can exploit naturality properties of
UoM

• There exist parametric UoM-fibrations

27

Conclusions and Future
Work

• Units of Measure can be given a fibrational semantics

• Nice model using G-sets can exploit naturality properties of
UoM

• There exist parametric UoM-fibrations

27

Conclusions and Future
Work

• Units of Measure can be given a fibrational semantics

• Nice model using G-sets can exploit naturality properties of
UoM

• There exist parametric UoM-fibrations

27

Conclusions and Future
Work

• Look more at role of G-sets c.f. nominal sets

• Invariance properties and symmetries

• ...write thesis...

28

Conclusions and Future
Work

• Look more at role of G-sets c.f. nominal sets

• Invariance properties and symmetries

• ...write thesis...

28

Conclusions and Future
Work

• Look more at role of G-sets c.f. nominal sets

• Invariance properties and symmetries

• ...write thesis...

28

Conclusions and Future
Work

• Look more at role of G-sets c.f. nominal sets

• Invariance properties and symmetries

• ...write thesis...

28

Thanks for listening.

timothy.revell@strath.ac.uk @timothyrevell
29

	Fibrational Units of Measure

