
Information-Aware Type Systems

Philippa Cowderoy

August 30, 2018



What are Information-Aware Type Systems?

An Information-Aware Type System is a type system where:

I It is clear where information is introduced and eliminated

I It is clear (or at least clearer) how information flows within
the type system

This is achieved by using information effects to track where
information is created and destroyed - or if you prefer, where the
system violates conservation of information. We hope inferences
tell us something new!



Why Bother?

Our standard notation hides things from us.

Γ ` Tp : τp
Γ ` Tf : τp → τ r

Γ ` Tf Tp : τ r
App1

Γ ` Tf : τ f
Γ ` Tp : τp

τp → τ r = τ f

Γ ` Tf Tp : τ r
App2

I While we are used to App1, App2 is easier for beginners to
understand – an implicit constraint is made explicit.

I Generating that constraint is an information effect.

I Information-Awareness means more syntax, but makes
possibilities clearer.



How To Make A System Information-Aware

This is just one recipe, but it’s pretty reliable:

I Linear logic variables: one +ve occurrence, one -ve

I Constraints:

I Constraint generation is an information effect
I Constraints give us an abstraction tool
I Constraints help avoid overconstraining data flow

I Duplication effects: track dataflow branches and merges

I Mode analysis: keep track of which way data flows, which
forms of constraints we can solve



Constraints for the Simply-Typed Lambda Calculus

τ = τ Type equality
τ−〈τ lτ r Type duplication

x : τ ∈ Γ Binding in context
Γ′ := Γ ; x : τ Context extension

Γ−〈ΓLΓR Context duplication

Note that the context constraints encode the structural rules. An
alternative interpretation could give us a minimal linear calculus.

Playing with −〈 might lead the adventurous thinker down other
paths entirely!. . .



Information-Aware Simply-Typed λ-Calculus
(unannotated)

x : τ ∈ Γ

Γ ` x : τ
Var

Γf := Γ ; x : τp
Γf ` T : τ r
τ f = τp → τ r

Γ ` λx .T : τ f
Lam

Γ−〈ΓLΓR

ΓL ` Tf : τ f ΓR ` Tp : τp
τp → τ r = τ f

Γ ` Tf Tp : τ r
App



Annotations, Duplication & Bidirectionality

Let’s support annotations!

I We are forced to duplicate a type

I We could duplicate the function type to check then return

I Better: send the annotation both ‘in’ and ‘out’

τa−〈τapτaf

Γf := Γ ; x : τap
Γf ` T : τ r
τ f = τaf→τ r

Γ ` λx : τa . T : τ f
ALam



Different Modes of a Type System

Mode Unidirectional Bidirectional

Γ+ ` T+ : τ+ Type Checking Checking
Γ+ ` T+ : τ− Synthesis
Γ− ` T+ : τ+ Free Variable Types Checked type
Γ− ` T+ : τ− Synthesised Type
Γ+ ` T− : τ+ Proof search

Program Synthesis

I Systems that only support checking modes may not be
algorithms, but they’re typecheckers and not type systems.

I I’m not aiming to actively support program synthesis.
Without syntax direction, it’s search as usual.



→ - The Other Information Effect

I The function arrow → doesn’t appear in the source language,
but it does appear in our types.

I Not simply isomorphic to something in the term
I Part of our (abstract) interpretation of a term

I Information we generate from or create about terms

I I assign two different modes to →
I based on how the solver handles = constraints
I Convention: LHS of = is being ‘assigned to’ in some

form



Modes for → - 1

I τ1+ = τ2− →+ τ3−

I → behaves as a constructor assigned to τ1
I Variable parameters to →+ have -ve mode – they are

being consumed to construct something to match against

I τ1+ →− τ2− = τ3−

I → behaves as a pattern matched against τ3
I Variable parameters with +ve mode act as variable

patterns, producing something to use elsewhere
I Variables are matched against when -ve, but generate no

new local information



Modes for → - 2

During solving:

I →+ creates or introduces information

I →− destroys or eliminates information

Why mention introduction and elimination? Well, →+ appears in
the Lam rule, aka → I . And →− in App, aka → E . The modes
are telling us about introducing and eliminating connectives!



Contextual Behaviour

Context extension and binding constraints also have a relationship.

Read one way:

I Γ′ := Γ ; x : τ introduces the need for a binding

I x : τ ∈ Γ makes use of - or especially in linear and affine
systems eliminates a binding

This can also be read in reverse:

I Using a variable requires it to be bound

I Providing a binding meets that requirement!

Likewise, Γ−〈ΓLΓR can be read as merging ΓL and ΓR.



Information-Aware Simply-Typed λ-Calculus (moded)

Mode: Γ+ ` T+ : τ− (Synthesis or ‘typechecking’)

x− : τ+ ∈ Γ−

Γ+ ` x+ : τ−
Var

Γf + := Γ− ; x− : τp+

Γf − ` T− : τ r+

τ f + = τp− →+ τ r−

Γ+ ` λx+.T+ : τ f −
Lam

Γ−−〈Γf +

Γp+

Γf − ` Tf − : τ f + Γp− ` Tp− : τp+

τp− →− τ r+ = τ f −

Γ+ ` Tf + Tp+ : τ r−
App



Proofs and Symmetries Undone

Conservation of information requires a symmetry which our
information effects can break.

If we restrict ourselves to a linear system then we can hopefully
implement our context constraints with no violations – the
symmetry is between introduction and elimination.

Typings are proofs – what’s the proof theoretic angle on all this?


