Information-Aware Type Systems

Philippa Cowderoy

August 30, 2018

What are Information-Aware Type Systems?

An Information-Aware Type System is a type system where:
» It is clear where information is introduced and eliminated
» It is clear (or at least clearer) how information flows within
the type system

This is achieved by using information effects to track where
information is created and destroyed - or if you prefer, where the
system violates conservation of information. We hope inferences
tell us something new!

Why Bother?

Our standard notation hides things from us.

M=Tf:7f

F=Tp:7p '=Tp:7p

Fr=Tf.:7p — 7r TP — Tr=r1f
: pp —App2

F=TF Tp:7r F=TFTp:71r

» While we are used to Appl, App?2 is easier for beginners to
understand — an implicit constraint is made explicit.

» Generating that constraint is an information effect.

» Information-Awareness means more syntax, but makes
possibilities clearer.

How To Make A System Information-Aware

This is just one recipe, but it's pretty reliable:
» Linear logic variables: one +ve occurrence, one -ve
» Constraints:

» Constraint generation is an information effect
» Constraints give us an abstraction tool
» Constraints help avoid overconstraining data flow

» Duplication effects: track dataflow branches and merges

> Mode analysis: keep track of which way data flows, which
forms of constraints we can solve

Constraints for the Simply-Typed Lambda Calculus

T =1 Type equality
7" Type duplication

x:7 €[Binding in context
M:=T;x:7 Context extension
—F5 Context duplication

Note that the context constraints encode the structural rules. An
alternative interpretation could give us a minimal linear calculus.

Playing with — might lead the adventurous thinker down other
paths entirely!. ..

Information-Aware Simply-Typed A-Calculus

(unannotated)
f:=r;x:7p
Mf=T:71r
x:TEFV Tf:Tp—>TrL
Thxir CFaxT :rof
T

ML= TF:7f RETp:7p
TP — Tr =71f
Fr=TfTp:71r

App

Annotations, Duplication & Bidirectionality

Let's support annotations!

» We are forced to duplicate a type
» We could duplicate the function type to check then return
» Better: send the annotation both ‘in” and ‘out’
ra(%
f:=rI;x:71ap
MeT:7r
7f = Taf =>1r

Fr-Mx:7a.T : 7f

AlLam

Different Modes of a Type System

Mode Unidirectional Bidirectional
=777 Type Checking Checking
rMre=7t.7" Synthesis
=777 Free Variable Types Checked type
r=7Tt:7" Synthesised Type
=777 Proof search

Program Synthesis

» Systems that only support checking modes may not be
algorithms, but they're typecheckers and not type systems.

> I'm not aiming to actively support program synthesis.
Without syntax direction, it's search as usual.

— - The Other Information Effect

» The function arrow — doesn’t appear in the source language,
but it does appear in our types.

» Not simply isomorphic to something in the term
» Part of our (abstract) interpretation of a term

» Information we generate from or create about terms

> | assign two different modes to —
» based on how the solver handles = constraints
» Convention: LHS of = is being ‘assigned to’ in some
form

Modes for — - 1

> 71T =727 T 737
» — behaves as a constructor assigned to 71

» Variable parameters to —* have -ve mode — they are
being consumed to construct something to match against

> 71T 5~ 727 = 73"
> — behaves as a pattern matched against 73
» Variable parameters with 4+ve mode act as variable
patterns, producing something to use elsewhere
» Variables are matched against when -ve, but generate no
new local information

Modes for — - 2

During solving:
» 1 creates or introduces information

» —~ destroys or eliminates information

Why mention introduction and elimination? Well, —T appears in
the Lam rule, aka — /. And —~ in App, aka — E. The modes
are telling us about introducing and eliminating connectives!

Contextual Behaviour

Context extension and binding constraints also have a relationship.

Read one way:
» [":=T; x: 7 introduces the need for a binding

» x:7 €[makes use of - or especially in linear and affine
systems eliminates a binding

This can also be read in reverse:
» Using a variable requires it to be bound

» Providing a binding meets that requirement!

Likewise, F—(F,L? can be read as merging 'L and TR.

Information-Aware Simply-Typed A-Calculus (moded)

Mode: T F T : 7= (Synthesis or ‘typechecking’)

Mt =r";x :7p"

=T :7r"
x_:7'+€F_V Tft =71p —>+Tr_L
M hxtir o T R Tr
_
Mf~FTf :7ft Tp FTp :7p"
TP = Trt =71f"
+ Tt - App
=T Tp"7r

Proofs and Symmetries Undone

Conservation of information requires a symmetry which our
information effects can break.

If we restrict ourselves to a linear system then we can hopefully
implement our context constraints with no violations — the
symmetry is between introduction and elimination.

Typings are proofs — what's the proof theoretic angle on all this?

