
1/22

Event Structures and Games

Glynn Winskel

Strathclyde101, 26 November 2020

Event structures, a model based on causal dependency of events - concurrent
analogue of trees. Locality causal dependency.
 Broad applications, in security protocols, systems biology, weak memory,
partial-order model checking, distributed computation, logic, semantics, ...

Distributed games, with behaviour based on event structures, rather than trees.
Aim: to generalise domain theory, tackle its anomalies and limitations
w.r.t. concurrency and quantitative aspects; repair the divides between
denotational vs. operational, semantic vs. algorithmic.
Ways to compose winning and optimal strategies structural game theory.

2/22

A (basic) Petri net

3/22

Unfolding a Petri net

4/22

Unfolding a Petri net

5/22

Unfolding a Petri net

6/22

Unfolding a Petri net

7/22

Unfolding a Petri net

8/22

Unfolding a Petri net

9/22

Unfolding a Petri net

10/22

Unfolding a Petri net

11/22

Unfolding a Petri net

12/22

Unfolding a Petri net

13/22

An occurrence net

14/22

An event structure

15/22

Event structures - the formal definition of the simplest kind

Definition

An event structure comprises pE ,§,#q, consisting of a set of events E
- partially ordered by §, the causal dependency relation, and
- a binary irreflexive symmetric relation, the conflict relation,
which satisfy te 1

| e 1
§ eu is finite and e#e 1

§ e2
ùñ e#e2 .

Two events are concurrent when neither in conflict nor causally related.

� �

�

_LLR_LLR

�

�
ZZe _LLR

�

Definition

The finite configurations, CpEq, of an event structure E consist of those finite
subsets x Ñ E which are
Consistent: @e, e 1

P x . pe#e 1
q and

Down-closed: @e, e 1. e 1
§ e P x ùñ e 1

P x .

16/22

Maps of event structures

Definition

A map of event structures f : E Ñ E 1

is a partial function on events f : E á E 1 such that

for all x P CpEq, fx P CpE 1
q and

if e1, e2 P x and f pe1q “ f pe2q, then e1 “ e2. (local injectivity)

Semantics of synchronising processes [Hoare, Milner] can be expressed in terms
of universal constructions on event structures;
in games, pullbacks and partial-total factorisation play a central role.

Relations between models via adjunctions.
E.g. the event-structure unfolding of a basic Petri net is a right adjoint.
Coreflection of event structures in stable families v useful for constructions.

Strong bisimulation via open maps, defined diagrammatically.
 Preheaf models for concurrency ...

Symmetry as “self bisimulation” helps compensate for the overly-concrete
nature of models for concurrency. E.g., unfolding of Petri nets with
multiplicities defined universally only up to symmetry.

16/22

Maps of event structures

Definition

A map of event structures f : E Ñ E 1

is a partial function on events f : E á E 1 such that

for all x P CpEq, fx P CpE 1
q and

if e1, e2 P x and f pe1q “ f pe2q, then e1 “ e2. (local injectivity)

Maps preserve concurrency, and locally reflect causal dependency:

@x P CpEq, e1, e2 P x . f pe1q § f pe2q ùñ e1 § e2 .

Semantics of synchronising processes [Hoare, Milner] can be expressed in terms
of universal constructions on event structures;
in games, pullbacks and partial-total factorisation play a central role.

Relations between models via adjunctions.
E.g. the event-structure unfolding of a basic Petri net is a right adjoint.
Coreflection of event structures in stable families v useful for constructions.

Strong bisimulation via open maps, defined diagrammatically.
 Preheaf models for concurrency ...

Symmetry as “self bisimulation” helps compensate for the overly-concrete
nature of models for concurrency. E.g., unfolding of Petri nets with
multiplicities defined universally only up to symmetry.

16/22

Maps of event structures

Definition

A map of event structures f : E Ñ E 1

is a partial function on events f : E á E 1 such that

for all x P CpEq, fx P CpE 1
q and

if e1, e2 P x and f pe1q “ f pe2q, then e1 “ e2. (local injectivity)

Semantics of synchronising processes [Hoare, Milner] can be expressed in terms
of universal constructions on event structures;
in games, pullbacks and partial-total factorisation play a central role.

Relations between models via adjunctions.
E.g. the event-structure unfolding of a basic Petri net is a right adjoint.
Coreflection of event structures in stable families v useful for constructions.

Strong bisimulation via open maps, defined diagrammatically.
 Preheaf models for concurrency ...

Symmetry as “self bisimulation” helps compensate for the overly-concrete
nature of models for concurrency. E.g., unfolding of Petri nets with
multiplicities defined universally only up to symmetry.

17/22

Remark: Petri nets as containers (Thanks Fredrik!)

A basic Petri net with events E and conditions B can be seen as a pair of
containers, one associating

events with their preconditions: pE ô Preq where Pre : E Ñ PpBq

events with their postconditions: pE ô Postq where Post : E Ñ PpBq

(Its initial marking identified with the postconds of a distinguished initial event)

A (total) map p⌘,�q : N Ñ N 1 of basic Petri nets can be reformulated as a pair
of container maps :

p⌘,�1q : pE ô Preq Ñ pE 1
ô Pre 1

q

p⌘,�2q : pE ô Postq Ñ pE 1
ô Post 1

q

(with ⌘ : E Ñ E 1 preserving initial events, ...)

Quantum Petri nets are being used to formalise quantum strategies.

18/22

Pullbacks - for composing processes with a common interface

Total maps f : A Ñ C and g : B Ñ C have pullbacks in the category of event
structures:

A ^ B
⇡1

||

⇡2

""
A

f
""

B

g
||

C

19/22

Pullbacks - for composing processes with a common interface

Total maps f : A Ñ C and g : B Ñ C have pullbacks in the category of event
structures:

x ^ y A ^ B

⇡1

||

⇡2

""
x A

f
""

B

g
||

y

C

Finite configurations of A ^ B correspond to the composite bijections

x ^ y : x – fx “ gy – y

between configurations x P CpAq and y P CpBq s.t. fx “ gy which are
secured bijections, i.e. for which the transitive relation generated on x ^ y by

pa, bq § pa1, b1
q if a §A a1 or b §B b1

is a partial order.

20/22

Defined part of a map - for hiding

A partial map
f : E Ñ E 1

of event structures has partial-total factorization as a composition

E
p
›ÑD

t
›ÑE 1

where t : D Ñ E 1 is the defined part of f .

21/22

Games, a paradigm for interaction [Conway, Joyal]

The dichotomy Player vs. Opponent has many readings:
Team of Players vs. Team of Opponents; Allies vs. Enemies;
Prover vs. Disprover; Process vs. Environment

Operations on (2-party) games:

Dual game GK - interchange the role of Player and Opponent;
Counter-strategy = strategy for Opponent = strategy for Player in dual game.

Parallel composition of games GkH.

A strategy (for Player) from a game G to a game H is a strategy in GKkH.
A strategy (for Player) from a game H to a game K is a strategy in HKkK .

Compose by letting them play against each other in the common game H.

The Copycat strategy in GKkG , so from G to G ...

22/22

Concurrent games

Games and strategies are represented by event structures with polarity, an
event structure where events carry a polarity ‘ / a (Player/Opponent).

Maps are those of event structures which preserve polarity.

Dual, BK, of an event structure with polarity B is a copy of the event structure
B with a reversal of polarities; this switches the roles of Player and Opponent.

(Simple) Parallel composition: AkB , by consistent juxtaposition.

A strategy from a game A to a game B is a strategy in AKkB, written

� : A ` //B

23/22

A strategy in a game A is a special total map � : S Ñ A, e.g.

S ‘ ‘

a

_LLR

a

_LLR
configurations of S = “states of play”

�

✏✏

A ‘

a a

configurations of A = “positions of the game”

The strategy: answer either move of Opponent by the Player move.

24/22

When games are trees

S ‘

a

> 99D

�

✏✏

A a

‘

�
ZZe

‘

a

�
ZZe > 99D

The strategy: force Opponent to get stuck.

25/22

Copycat strategy from A to A

AK A

ā2 a ‘ a2

ā1 ‘

_LLR

a

_LLR

a1

CCA

AK A

ā2 a � ,,2‘ a2

ā1 ‘

_LLR

a

_LLR

�llr a1

25/22

Copycat strategy from A to A

CCA

AK A

ā2 a � ,,2‘ a2

ā1 ‘

_LLR

a

_LLR

�llr a1

26/22

Composition of strategies � : A ` //B and ⌧ : B ` //C

To compose

S

�

✏✏
AKkB

T

⌧

✏✏
BKkC

synchronise complementary moves over common game B via pullback:

T ~ S

zz
⌧~�

✏✏

$$
SkC

�kC ##

AkT

Ak⌧{{
AkBkC

; then hide synchronisations via

partial-total factorisation:

before hiding T ~ S

⌧~�

✏✏

// TdS

⌧d�

✏✏
AKkBkC // AKkC

after hiding

Conditions on a strategy are those needed to make copycat identity
w.r.t. composition.

26/22

Composition of strategies � : A ` //B and ⌧ : B ` //C

To compose

S

�

✏✏
AKkB

T

⌧

✏✏
BKkC

synchronise complementary moves over common game B via pullback; then
hide synchronisations via partial-total factorisation:

before hiding T ~ S

⌧~�

✏✏

// TdS

⌧d�

✏✏
AKkBkC // AKkC

after hiding

Conditions on a strategy are those needed to make copycat identity
w.r.t. composition.

27/22

For copycat to be identity w.r.t. composition

a strategy in a game A has to be � : S Ñ A, a total map of event structures
with polarity, which is

(i) whenever �x Ñ´ y in CpAq there is a unique x 1
P CpSq s.t.

x Ñ x 1 & �x 1
“ y , i.e. x_

�

✏✏

Ñ x 1
_

�

✏✏
�x Ñ´ y ,

A strategy should be receptive to Opponent moves allowed by the game.

(ii) whenever y Ñ` �x in CpAq there is a (necessarily unique) x 1
P CpSq s.t.

x 1
Ñ x & �x 1

“ y , i.e. x 1
_

�

✏✏

Ñ x_

�

✏✏
y Ñ` �x .

A strategy should only adjoin immediate causal dependencies a _ ‘.

27/22

For copycat to be identity w.r.t. composition

a strategy in a game A has to be � : S Ñ A, a total map of event structures
with polarity, which is

(i) whenever �x Ñ´ y in CpAq there is a unique x 1
P CpSq s.t.

x Ñ x 1 & �x 1
“ y , i.e. x_

�

✏✏

Ñ x 1
_

�

✏✏
�x Ñ´ y ,

A strategy should be receptive to Opponent moves allowed by the game.

(ii) whenever y Ñ` �x in CpAq there is a (necessarily unique) x 1
P CpSq s.t.

x 1
Ñ x & �x 1

“ y , i.e. x 1
_

�

✏✏

Ñ x_

�

✏✏
y Ñ` �x .

A strategy should only adjoin immediate causal dependencies a _ ‘.

 compact-closed bicategory of concurrent games and strategies.

28/22

Strategies as profunctors

Defining the Scott order on configurations of A

y ÑA x i↵ y Ö´
¨ Ñ

`
¨ Ö

´
¨ ¨ ¨ Ö

´
¨ Ñ

` x

we obtain a partial order and a factorization system: x

D!z . y

Ñ

Ö´ z .

Ñ
`

Proposition z P CpCCAq i↵ z2 ÑA z1.

Theorem Strategies � correspond to discrete fibrations, i.e.,

D!x 1. x 1
_

�“
✏✏

ÑS x_

�“
✏✏

y ÑA �x ,

which preserve Ö
´, Ñ` and H. So strategies � : A ` //B correspond to

(certain) profunctors �“ : pCpAq,ÑAq ` // pCpBq,ÑBq .

 Lax functors from strategies to profunctors, and to Scott domains ...

29/22

A language for concurrent strategies

Types: Games A, B, C , . . . with operations AK, AkB, sums
∞

iPI Ai ,
recursively-defined types, . . .

A term
x1 : A1, ¨ ¨ ¨ , xm : Am $ t % y1 : B1, ¨ ¨ ¨ , yn : Bn ,

denotes a strategy from A1k ¨ ¨ ¨ kAm to B1k ¨ ¨ ¨ kBn .

-
--
-A1

Am

B1

Bn

.

.

.

.

.

.

Idea: t denotes a strategy S Ñ ~AKk~B.
The term t describes witnesses, finite configurations of S , to a relation between
finite configurations ~x of ~A and ~y of ~B. Cf. profunctors.

29/22

A language for concurrent strategies

Types: Games A, B, C , . . . with operations AK, AkB, sums
∞

iPI Ai ,
recursively-defined types, . . .

A term
x1 : A1, ¨ ¨ ¨ , xm : Am $ t % y1 : B1, ¨ ¨ ¨ , yn : Bn ,

denotes a strategy from A1k ¨ ¨ ¨ kAm to B1k ¨ ¨ ¨ kBn .

-
--
-A1

Am

B1

Bn

.

.

.

.

.

.

Copycat x : A $ y ÑA x % y : A and other terms “wiring in” causality.

29/22

A language for concurrent strategies

Types: Games A, B, C , . . . with operations AK, AkB, sums
∞

iPI Ai ,
recursively-defined types, . . .

A term
x1 : A1, ¨ ¨ ¨ , xm : Am $ t % y1 : B1, ¨ ¨ ¨ , yn : Bn ,

denotes a strategy from A1k ¨ ¨ ¨ kAm to B1k ¨ ¨ ¨ kBn .

-
--
-A1

Am

B1

Bn

.

.

.

.

.

.

Copycat x : A $ y ÑA x % y : A and other terms “wiring in” causality.

Composition � $ t % � � $ u % H

� $ D�. r t k u s % H
Duality A, � $ t % �

� $ t % AK,�

29/22

A language for concurrent strategies

Types: Games A, B, C , . . . with operations AK, AkB, sums
∞

iPI Ai ,
recursively-defined types, . . .

A term
x1 : A1, ¨ ¨ ¨ , xm : Am $ t % y1 : B1, ¨ ¨ ¨ , yn : Bn ,

denotes a strategy from A1k ¨ ¨ ¨ kAm to B1k ¨ ¨ ¨ kBn .

-
--
-A1

Am

B1

Bn

.

.

.

.

.

.

Copycat x : A $ y ÑA x % y : A and other terms “wiring in” causality.

Composition � $ t % � � $ u % H

� $ D�. r t k u s % H
Duality A, � $ t % �

� $ t % AK,�

t

Feedback � �

A � $ Dx : A, y : AK. r x ÑA y k t s % �

29/22

A language for concurrent strategies

Types: Games A, B, C , . . . with operations AK, AkB, sums
∞

iPI Ai ,
recursively-defined types, . . .

A term
x1 : A1, ¨ ¨ ¨ , xm : Am $ t % y1 : B1, ¨ ¨ ¨ , yn : Bn ,

denotes a strategy from A1k ¨ ¨ ¨ kAm to B1k ¨ ¨ ¨ kBn .

-
--
-A1

Am

B1

Bn

.

.

.

.

.

.

Copycat x : A $ y ÑA x % y : A and other terms “wiring in” causality.

Composition � $ t % � � $ u % H

� $ D�. r t k u s % H
Duality A, � $ t % �

� $ t % AK,�

Sum ⌃iPI ti Conjunction t1 ^ t2

30/22

Special cases - recovering functions 1

A concurrent strategy is deterministic when conflicting behaviour of Player
implies conflicting behaviour of Opponent.

Stable spans and stable functions The sub-bicategory where the events of
games are purely `ve is that of stable spans used in nd dataflow; feedback
given by trace.

S

�

✏✏
AKkB

Its deterministic sub-bicategory Stable is equivalent to stable functions
between Berry domains (coherent w.r.t. countable event structures with
binary conflict); Girard’s coherence spaces when causal dependency trivial.

Open games?

31/22

Special cases - recovering functions 2

Two tools for recovering functions in parts of a game:

1. �Projecting a strategy to a parallel component of a game yields a strategy:

S

�

✏✏

// SB

�B

✏✏
AkB // B

2. Imperfect information via an “access order” p⇤,®q on moves of the game;
causal dependency of the game and additional causal dependencies of the
strategy must respect it:

S

�

✏✏

s 1
§S s

#+
A

� // p⇤,®q ��ps 1
q ® ��psq

32/22

Open games via a dialectica category (thanks Jules!), e.g.

The dialectical category with maps

pf , gq :

ˆ
X
R

˙
Ñ

ˆ
Y
S

˙
where f : X Ñ Y and g : X ˆ S Ñ R in Stable

embeds fully and faithfully in the sub-bicategory of strategies comprising
deterministic strategies in games

pX`kR´
q ` // pY `kS´

q “ pX`kR´
q

KkpY `kS´
q with access order

X´ † Y `

N

R` ° S´

Their deterministic counterstrategies correspond to configurations of X paired

with h : Y Ñ S in Stable: X` † Y ´

N

R´ ° S`

Now have all the ingredients for open games w.r.t. Stable (and Stable spans).

