
Algebraic effects and effect handlers

Sam Lindley

Heriot-Watt University / The University of Edinburgh / Effect Handlers Ltd.

17th December 2020

What is a pure computation?

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .
A command-response tree (aka interaction tree)

Effectful computation is all about interaction with some context

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .
A command-response tree (aka interaction tree)

Effectful computation is all about interaction with some context

Example: boolean state (bit toggling)

get : bool
puttrue : 1
putfalse : 1

get

putfalse

true

()

true

puttrue

false

()

false

Example: natural number state (increment)

get : N
puti : 1, i ∈ N

get

put1

()

()

0

puti+1

()

()

i

.

Example: nondeterminism (drunk coin toss)

choose : bool
fail : 0

choose

choose

Heads

true

Tails

false

true

fail

false

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

Equivalently (ignoring edge labels)

m ::= return v | op 〈m1, . . . , mk〉

Equivalently (accounting for edge labels)

m ::= return v | op (λx.case x {v1 7→ m1; . . . ; vk 7→ mk})

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .
Equivalently (ignoring edge labels)

m ::= return v | op 〈m1, . . . , mk〉

Equivalently (accounting for edge labels)

m ::= return v | op (λx.case x {v1 7→ m1; . . . ; vk 7→ mk})

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .
Equivalently (ignoring edge labels)

m ::= return v | op 〈m1, . . . , mk〉

Equivalently (accounting for edge labels)

m ::= return v | op (λx.case x {v1 7→ m1; . . . ; vk 7→ mk})

Examples
Boolean state

toggle = get 〈putfalse 〈return true〉, puttrue 〈return false〉〉

let s = get () in put (not s); s

Natural number state

increment = get 〈put1 〈return ()〉, . . . , puti+1 〈return ()〉, . . .〉

put (1 + get ())

Nondeterminism

drunkToss = choose 〈choose 〈return Heads, return Tails〉, fail〈〉〉

if choose () then (if choose () then Heads else Tails) else fail ()

Examples
Boolean state

toggle = get 〈putfalse 〈return true〉, puttrue 〈return false〉〉

let s = get () in put (not s); s

Natural number state

increment = get 〈put1 〈return ()〉, . . . , puti+1 〈return ()〉, . . .〉

put (1 + get ())

Nondeterminism

drunkToss = choose 〈choose 〈return Heads, return Tails〉, fail〈〉〉

if choose () then (if choose () then Heads else Tails) else fail ()

Examples
Boolean state

toggle = get 〈putfalse 〈return true〉, puttrue 〈return false〉〉

let s = get () in put (not s); s

Natural number state

increment = get 〈put1 〈return ()〉, . . . , puti+1 〈return ()〉, . . .〉

put (1 + get ())

Nondeterminism

drunkToss = choose 〈choose 〈return Heads, return Tails〉, fail〈〉〉

if choose () then (if choose () then Heads else Tails) else fail ()

Command-response trees as free monads

I A computation of type comp A is a tree whose leaves have type A
I Return is return
I Bind perfoms substitution at the leaves

return v>>= r = r v
op 〈m1, . . . , mn〉>>= r = op 〈m1 >>= r, . . . , mn >>= r〉

Algebraic effects
An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state
Signature

get : bool
puttrue : 1
putfalse : 1

Equations
puts 〈puts ′ 〈m〉〉 ' puts ′ 〈m〉 (put-put)

puts 〈get 〈mtrue, mfalse〉〉 ' puts 〈ms〉 (put-get)
get 〈puttrue 〈m〉, putfalse 〈n〉〉 ' get 〈m, n〉 (get-put)
get 〈get 〈m, m ′〉, get 〈n ′, n〉〉 ' get 〈m, n〉 (get-get)

Algebraic effects
An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state
Signature

get : bool
puttrue : 1
putfalse : 1

Equations
puts 〈puts ′ 〈m〉〉 ' puts ′ 〈m〉 (put-put)

puts 〈get 〈mtrue, mfalse〉〉 ' puts 〈ms〉 (put-get)
get 〈puttrue 〈m〉, putfalse 〈n〉〉 ' get 〈m, n〉 (get-put)
get 〈get 〈m, m ′〉, get 〈n ′, n〉〉 ' get 〈m, n〉 (get-get)

Algebraic effects
An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state
Signature

get : bool
puttrue : 1
putfalse : 1

Equations
puts 〈puts ′ 〈m〉〉 ' puts ′ 〈m〉 (put-put)

puts 〈get 〈mtrue, mfalse〉〉 ' puts 〈ms〉 (put-get)
get 〈puttrue 〈m〉, putfalse 〈n〉〉 ' get 〈m, n〉 (get-put)
get 〈get 〈m, m ′〉, get 〈n ′, n〉〉 ' get 〈m, n〉 (get-get)

Aside: the (get-get) equation is redundant

get 〈get 〈m, m ′〉, get 〈n ′, n〉〉
' (get-put)

get 〈puttrue 〈get 〈m, m ′〉〉, putfalse 〈get 〈n ′, n〉〉〉
' (put-get)× 2

get 〈puttrue 〈m〉, putfalse 〈n〉〉
' (get-put)

get 〈m, n〉

Interpreting algebraic effects
Example: boolean state
Standard interpretation (Jcomp AK = bool→ JAK× bool)

Jreturn vK = λs.(JvK, s)
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.JmKs ′

Discard interpretation (Jcomp AK = bool→ JAK)

Jreturn vK = λs.JvK
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.JmKs ′

Logging interpretation (Jcomp AK = bool→ JAK× list bool)

Jreturn vK = λs.(JvK, [s])
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.let (x, ss)← JmKs ′ in (x, s :: ss)

Example: boolean state, standard interpretation

Jcomp AK = bool→ JAK× bool

Jreturn vK = λs.(JvK, s)
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.JmKs ′

Sound and complete with respect to the equations

m ' n ⇐⇒ JmK = JnK

Bit toggling
JtoggleK = λs.if s then (true, false) else (false, true)

Example: boolean state, discard interpretation

Jcomp AK = bool→ JAK

Jreturn vK = λs.JvK
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.JmKs ′

Sound with respect to the equations

m ' n =⇒ JmK = JnK

Not complete because:
Jputs 〈return v〉K = Jreturn vK

Bit toggling
JtoggleK = λs.if s then true else false = λs.s

Example: boolean state, logging interpretation

Jcomp AK = bool→ JAK× list bool

Jreturn vK = λs.(JvK, [s])
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.let (x, ss)← JmKs ′ in (x, s :: ss)

Complete with respect to the equations

m ' n ⇐= JmK = JnK

Not sound because:

Jputs 〈puts ′ 〈m〉〉K 6= Jputs ′ 〈m〉K
Jget 〈puttrue 〈m〉, putfalse 〈n〉〉K 6= Jget 〈m, n〉K

Bit toggling

JtoggleK = λs.if s then (true, [true, false]) else (false, [false, true])

Algebraic effects without equations

Different interpretations are useful in practice

So we will adopt free algebraic effects — no equations

Algebraic computations are command-response trees modulo equations

Abstract computations are plain command-response trees

Different interpretations give different meanings to the same abstract computation

Interpretations as effect handlers
Example: boolean state
Meta level interpretation (enumerated continuations)

Jreturn vK = λs.(JvK, s)
Jget 〈m, n〉K = λs.if s thenJmKs else JnKs
Jputs ′ 〈m〉K = λs.JmKs ′

Meta level interpretation (continuations as functions)

Jreturn vK = λs.(JvK, s)
Jget kK = λs.Jk sK s

Jputs ′ kK = λs.Jk ()K s ′

Object level effect handler

return v 7→ λs.(v, s)
〈get ()→ r〉 7→ λs.r s s
〈put s ′ → r〉 7→ λs.r () s ′

Interpretations as effect handlers
Example: nondeterminism
Meta level interpretation (enumerated continuations)

Jreturn vK = [JvK]
Jchoose 〈m, n〉K = JmK ++ JnK

Jfail 〈〉K = []

Meta level interpretation (continuations as functions)

Jreturn vK = [JvK]
Jchoose kK = Jk trueK ++ Jk falseK

Jfail kK = []

Object level effect handler

return v 7→ [v]
〈choose ()→ r〉 7→ r true ++ r false
〈fail ()→ r〉 7→ []

Example: choice and failure

Effect signature
{choose : 1� bool, fail : a.1� a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails

else
fail ()

drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example: choice and failure

Effect signature
{choose : 1� bool, fail : a.1� a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails

else
fail ()

drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒

[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Example: choice and failure
Handlers
maybeFail = — exception handler

return x 7→ Just x
〈fail ()〉 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
〈choose ()→ r〉 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
〈choose ()→ r〉 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Operational semantics

Reduction rules

handle V with H N[V/x]
handle E[op V] with H Nop[V/p, λx.handle E[x] with H/r], op # E

where
H = return x 7→ N

op1 p r 7→ Nop1

. . .
opk p r 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Typing rules
Effects

E ::= ∅ | E] {op : A� B}

Computations
C, D ::= A!E

Operations
Γ ` V : A

Γ ` op V : B!(E] {op : A� B})

Handlers
Γ `M : C Γ ` H : C⇒ D

Γ ` handle M with H : D

Γ , x : A `M : C [Γ , p : Ai, r : Bi → C ` Ni : C]i

Γ ` return x 7→M
(opi p r 7→ Ni)i

: A!{opi : Ai � Bi}i ⇒ C

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

Example: cooperative concurrency
Effect signature

{yield : 1� 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()

A1 B1 A2 B2

Example: cooperative concurrency
Effect signature

{yield : 1� 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()

A1 B1 A2 B2

Example: cooperative concurrency
Effect signature

{yield : 1� 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()

A1 B1 A2 B2

Example: cooperative concurrency
Effect signature

{yield : 1� 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()

A1 B1 A2 B2

Example: cooperative concurrency
Effect signature

{yield : 1� 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()

A1 B1 A2 B2

Operational semantics (parameterised handlers)

Reduction rules

handle V with H W N[V/x, W/h]
handle E[op V] with H W Nop[V/p, W/h, (λh x.handle E[x] with H h)/r], op # E

where
H h = return x 7→ N

op1 p r 7→ Nop1

. . .
opk p r 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H W

Typing rules (parameterised handlers)
Effects

E ::= ∅ | E] {op : A� B}

Computations
C, D ::= A!E

Operations
Γ ` V : A

Γ ` op V : B!(E] {op : A� B})

Handlers
Γ `M : C Γ ` V : P Γ ` H : P→ C⇒ D

Γ ` handle M with H V : D

Γ , h : P, x : A `M : C [Γ , h : P, p : Ai, r : P→ Bi → C ` Ni : C]i

Γ ` λh.return x 7→M
(opi p r 7→ Ni)i

: P→ A!{opi : Ai � Bi}i ⇒ C

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler
coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈ufork ()→ r ′〉 7→ r ′ [λrs ().r ′ rs false]

true

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈ufork ()→ r ′〉 7→ r ′ (r :: rs ++ [λrs ().r ′ rs false])

true

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler
coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈ufork ()→ r ′〉 7→ r ′ [λrs ().r ′ rs false]

true

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈ufork ()→ r ′〉 7→ r ′ (r :: rs ++ [λrs ().r ′ rs false])

true

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler
coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈ufork ()→ r ′〉 7→ r ′ [λrs ().r ′ rs false]

true

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈ufork ()→ r ′〉 7→ r ′ (r :: rs ++ [λrs ().r ′ rs false])

true

cooperate [main] =⇒ ()

M1 A1 M2 B1 A2 M3 B2

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler
coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈ufork ()→ r ′〉 7→ r ′ [λrs ().r ′ rs true]

false

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈ufork ()→ r ′〉 7→ r ′ (r :: rs ++ [λrs ().r ′ rs true])

false

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1� 1, ufork : 1� bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler
coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈ufork ()→ r ′〉 7→ r ′ [λrs ().r ′ rs true]

false

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈ufork ()→ r ′〉 7→ r ′ (r :: rs ++ [λrs ().r ′ rs true])

false

cooperate [main] =⇒ ()

M1 M2 M3 A1 B1 A2 B2

Effect handler oriented programming languages

Eff https://www.eff-lang.org/

Effekt https://effekt-lang.org/

Frank https://github.com/frank-lang/frank

Helium https://bitbucket.org/pl-uwr/helium

Links https://www.links-lang.org/

Koka https://github.com/koka-lang/koka

Multicore OCaml https://github.com/ocamllabs/ocaml-multicore/wiki

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki

Resources

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”,

MFPS 2015

Andrej Bauer’s tutorial
“What is algebraic about algebraic effects and handlers?”,

Dagstuhl and OPLSS 2018

https://github.com/yallop/effects-bibliography

Bonus slides

Example: generators

Effect signature
{send : Nat� 1}

A simple generator

nats n = send n; nats (n + 1)

Handler
until stop = — affine handler

return () 7→ []

〈send n→ r〉 7→ if n < stop then n :: r stop ()
else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example: generators

Effect signature
{send : Nat� 1}

A simple generator

nats n = send n; nats (n + 1)

Handler
until stop = — affine handler

return () 7→ []

〈send n→ r〉 7→ if n < stop then n :: r stop ()
else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example: generators

Effect signature
{send : Nat� 1}

A simple generator

nats n = send n; nats (n + 1)

Handler
until stop = — affine handler

return () 7→ []

〈send n→ r〉 7→ if n < stop then n :: r stop ()
else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example: generators

Effect signature
{send : Nat� 1}

A simple generator

nats n = send n; nats (n + 1)

Handler
until stop = — affine handler

return () 7→ []

〈send n→ r〉 7→ if n < stop then n :: r stop ()
else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈fork t→ r ′〉 7→ coopWith t [r ′] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈fork t→ r ′〉 7→ coopWith t (r :: rs ++ [r ′]) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈fork t→ r ′〉 7→ coopWith t [r ′] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈fork t→ r ′〉 7→ coopWith t (r :: rs ++ [r ′]) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈fork t→ r ′〉 7→ coopWith t [r ′] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈fork t→ r ′〉 7→ coopWith t (r :: rs ++ [r ′]) ()

cooperate [main] =⇒ ()

M1 A1 M2 B1 A2 M3 B2

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈fork t→ r ′〉 7→ r ′ [coopWith t] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈fork t→ r ′〉 7→ r ′ (r :: rs ++ [coopWith t]) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co = {yield : 1� 1, fork : (1→ [Co]1)� 1}

A single cooperative program

main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([]) =

return () 7→ ()

〈yield ()→ r ′〉 7→ r ′ [] ()
〈fork t→ r ′〉 7→ r ′ [coopWith t] ()

coop (r :: rs) =
return () 7→ r rs ()
〈yield ()→ r ′〉 7→ r (rs ++ [r ′]) ()
〈fork t→ r ′〉 7→ r ′ (r :: rs ++ [coopWith t]) ()

cooperate [main] =⇒ ()

M1 M2 M3 A1 B1 A2 B2

Built-in effects

Console I/O
Console = {inch : 1 � char

ouch : char� 1}

print s = map (λc.ouch c) s; ()

Generative state

GenState = {new : a. a� Ref a,
write : a. (Ref a× a)� 1,
read : a. Ref a� a}

Example: actors
Process ids

Pid a = Ref (list a)

Effect signature

Actor a = {self : 1� Pid a,
spawn : b. (1→ [Actor b]1)� Pid b,
send : b. (b× Pid b)� 1,
recv : 1� a}

An actor chain

spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain n = spawnMany (self ()) n; let s = recv () in print s

Example: actors
Process ids

Pid a = Ref (list a)

Effect signature

Actor a = {self : 1� Pid a,
spawn : b. (1→ [Actor b]1)� Pid b,
send : b. (b× Pid b)� 1,
recv : 1� a}

An actor chain

spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain n = spawnMany (self ()) n; let s = recv () in print s

Example: actors
Actors via cooperative concurrency

act mine =
return () 7→ ()

〈self ()→ r〉 7→ r mine mine
〈spawn you→ r〉 7→ let yours = new [] in

fork (λ().act yours (you ())); r mine yours
〈send (m, yours)→ r〉 7→ let ms = read yours in

write (yours, ms ++ [m]); r mine ()
〈recv ()→ r〉 7→ case read mine of

[] 7→ yield (); r mine (recv ())
(m :: ms) 7→ write (mine, ms); r mine m

cooperate [handle chain 64 with act (new [])] =⇒ ()

..ping!

Example: actors
Actors via cooperative concurrency

act mine =
return () 7→ ()

〈self ()→ r〉 7→ r mine mine
〈spawn you→ r〉 7→ let yours = new [] in

fork (λ().act yours (you ())); r mine yours
〈send (m, yours)→ r〉 7→ let ms = read yours in

write (yours, ms ++ [m]); r mine ()
〈recv ()→ r〉 7→ case read mine of

[] 7→ yield (); r mine (recv ())
(m :: ms) 7→ write (mine, ms); r mine m

cooperate [handle chain 64 with act (new [])] =⇒ ()

..ping!

Example: pipes
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p c = handle† c () with
return x 7→ x
〈receive ()→ r〉 7→ copipe r p

copipe c p = handle† p () with
return x 7→ x
〈send n→ r〉 7→ pipe r (λ().c n)

pipe (λ().nats 0) grabANat + copipe (λx.x) (λ().nats 0)
 + pipe (λ().nats 1) (λ().0) + 0

Exercise: implement pipes using deep handlers

Example: pipes
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p c = handle† c () with
return x 7→ x
〈receive ()→ r〉 7→ copipe r p

copipe c p = handle† p () with
return x 7→ x
〈send n→ r〉 7→ pipe r (λ().c n)

pipe (λ().nats 0) grabANat + copipe (λx.x) (λ().nats 0)
 + pipe (λ().nats 1) (λ().0) + 0

Exercise: implement pipes using deep handlers

Example: pipes
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p c = handle† c () with
return x 7→ x
〈receive ()→ r〉 7→ copipe r p

copipe c p = handle† p () with
return x 7→ x
〈send n→ r〉 7→ pipe r (λ().c n)

pipe (λ().nats 0) grabANat + copipe (λx.x) (λ().nats 0)
 + pipe (λ().nats 1) (λ().0) + 0

Exercise: implement pipes using deep handlers

Example: pipes
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p c = handle† c () with
return x 7→ x
〈receive ()→ r〉 7→ copipe r p

copipe c p = handle† p () with
return x 7→ x
〈send n→ r〉 7→ pipe r (λ().c n)

pipe (λ().nats 0) grabANat + copipe (λx.x) (λ().nats 0)
 + pipe (λ().nats 1) (λ().0) + 0

Exercise: implement pipes using deep handlers

Example: pipes
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p c = handle† c () with
return x 7→ x
〈receive ()→ r〉 7→ copipe r p

copipe c p = handle† p () with
return x 7→ x
〈send n→ r〉 7→ pipe r (λ().c n)

pipe (λ().nats 0) grabANat + copipe (λx.x) (λ().nats 0)
 + pipe (λ().nats 1) (λ().0) + 0

Exercise: implement pipes using deep handlers

Small-step operational semantics for shallow effect handlers

Reduction rules

handle† V with H Nret[V/x]
handle† E[op V] with H Nop[V/p, (λx.E[x])/r], op # E

where H = return x 7→ Nret

〈op1 p→ r〉 7→ Nop1

· · ·
〈opk p→ r〉 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle† E with H

Exercise: express shallow handlers as deep handlers

Small-step operational semantics for shallow effect handlers

Reduction rules

handle† V with H Nret[V/x]
handle† E[op V] with H Nop[V/p, (λx.E[x])/r], op # E

where H = return x 7→ Nret

〈op1 p→ r〉 7→ Nop1

· · ·
〈opk p→ r〉 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle† E with H

Exercise: express shallow handlers as deep handlers

Example: pipes using multihandlers
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat} Fail = {fail : a.1� a}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

A pipe multihandler

pipe = — multihandler
〈send n | receive () → r〉 7→ r () n
〈_ | return x〉 7→ x
〈return () | receive ()〉 7→ fail ()

handle nats 0 | grabANat () with pipe =⇒ 0

Example: pipes using multihandlers
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat} Fail = {fail : a.1� a}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

A pipe multihandler

pipe = — multihandler
〈send n | receive () → r〉 7→ r () n
〈_ | return x〉 7→ x
〈return () | receive ()〉 7→ fail ()

handle nats 0 | grabANat () with pipe =⇒ 0

Example: pipes using multihandlers
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat} Fail = {fail : a.1� a}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

A pipe multihandler

pipe = — multihandler
〈send n | receive () → r〉 7→ r () n
〈_ | return x〉 7→ x
〈return () | receive ()〉 7→ fail ()

handle nats 0 | grabANat () with pipe =⇒ 0

Example: pipes using multihandlers
Effect signatures

Sender = {send : Nat� 1} Receiver = {receive : 1� Nat} Fail = {fail : a.1� a}

A producer and a consumer

nats n = send n; nats (n + 1) grabANat () = receive ()

A pipe multihandler

pipe = — multihandler
〈send n | receive () → r〉 7→ r () n
〈_ | return x〉 7→ x
〈return () | receive ()〉 7→ fail ()

handle nats 0 | grabANat () with pipe =⇒ 0

