Algebraic effects and effect handlers

Sam Lindley
Heriot-Watt University / The University of Edinburgh / Effect Handlers Ltd.

17th December 2020

What is a pure computation?

What is an effectful computation?

N=@ 7/ N\

A command-response tree (aka interaction tree)

What is an effectful computation?

A= @

A command-response tree (aka interaction tree)

Effectful computation is all about interaction with some context

Example: boolean state (bit toggling)

get : bool
putiue : 1
Putfaise : 1

Example: natural number state (increment)

Example: nondeterminism (drunk coin toss)

choose : bool
fail : 0

What is an effectful computation?

A=

What is an effectful computation?

ACCIIVAAN

Equivalently (ignoring edge labels)

m = returnv | op (my, ...,

i)

What is an effectful computation?

op
Ne=®@ /N
Equivalently (ignoring edge labels)
m == returnv | op (my, ..., my)

Equivalently (accounting for edge labels)

m = returnv | op (Ax.case x{v1 — my; ...; Uk — my})

Examples
Boolean state

toggle = get (putyse (returntrue), puty,e (returnfalse))

let s = get () in put (not s); s

Examples
Boolean state

toggle = get (putyse (returntrue), puty,e (returnfalse))
let s = get () in put (not s); s
Natural number state
increment = get (puty (return ()), ..., put;,q (return()), ...)

put (1 + get())

Examples
Boolean state

toggle = get (putyse (returntrue), puty,e (returnfalse))
let s = get () in put (not s); s
Natural number state
increment = get (puty (return ()), ..., put;,q (return()), ...)
put (14 get())
Nondeterminism
drunkToss = choose (choose (return Heads, return Tails), fail())

if choose () then (if choose () then Heads else Tails) else fail ()

Command-response trees as free monads

> A computation of type comp A is a tree whose leaves have type A
» Return is return

» Bind perfoms substitution at the leaves

returno >=r = rvo
op (miy, ..., my)>==r = op (Mmy>=>=7, ..., My, >=7)

Algebraic effects
An algebraic effect is given by
1. a signature of operations

2. a collection of equations

Algebraic effects
An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state

Signature
get : bool
Putiye : 1
PUtaise © 1

Algebraic effects
An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state

Signature
get : bool
Putiue : 1
Putfaise : 1
Equations
puts (puty (m)) ~ puts (m)
puts (get (miue, Miaise)) = puts (ms)
get (putirue (M), putiase (1)) ~ get (m, n)
get (get (m,m’), get (n’,n)) ~ get(m,n)

(put-put)
(put-get)
(get-put)
(get-get)

Aside: the (get-get) equation is redundant

get (get (m,m'), get (n’, n))
(get-put)

get <puttrue <get <m, ml>>/ pUtfaIse <get <n // n>>>
(put-get) x 2

get (putie (1), Putrase (1))
(get-put)

get (m,n)

12

12

12

Interpreting algebraic effects
Example: boolean state
Standard interpretation ([comp A] = bool — [A] x bool)
[return v] = As.([v], s)
[get (m, n)] = As.if s then[m]s else [n]s
[putss (m)] = As.[m]s’
Discard interpretation ([comp A] = bool — [A])
[return v] = As.[7]
[get (m, n)] = As.if s then[m]s else [n]s
[putss (m)] = As.[m]s’

Logging interpretation ([comp A] = bool — [A] x listbool)

[returnv] = As.([7], [s])
[get (m,n)] = As.if s then[m]s else [n]s
[puts: (m)] = As.let (x,ss) < [m]s’ in (x,s :: ss)

Example: boolean state, standard interpretation

[comp A] = bool — [A] x bool

[returnv] = As.([v], s)
[get (m, n)] = As.if s then[m]s else [n]s
[putss (m)] = As.[m]s’

Sound and complete with respect to the equations
m~n < [m]=[n]

Bit toggling
[toggle] = As.if s then (true, false) else (false, true)

Example: boolean state, discard interpretation

[comp A]] = bool — [A]

[return v] = As.[7]
[get (m, n)] = As.if s then[m]s else [n]s
[putss (m)] = As.[m]s’

Sound with respect to the equations
m~n = [m] = [n]

Not complete because:
[puts (returnv)] = [return v]
Bit toggling
[toggle] = As.if s then true else false = As.s

Example: boolean state, logging interpretation

[comp A] = bool — [A] x listbool

[return v] = As.([v], [s])
[get (m, n)] = As.if s then[m]s else [n]s
[puty (m)] = Aslet (x,ss) < [m]s” in (x,s:: ss)

Complete with respect to the equations
m~n <= [m]=[n]
Not sound because:

[puts (puts {m))] # [puts (m)]
lget (putire (m), putraise (1))] # [

Bit toggling

[toggle] = As.if s then (true, [true, false]) else (false, [false, true])

Algebraic effects without equations

Different interpretations are useful in practice

So we will adopt free algebraic effects — no equations

Algebraic computations are command-response trees modulo equations
Abstract computations are plain command-response trees

Different interpretations give different meanings to the same abstract computation

Interpretations as effect handlers
Example: boolean state
Meta level interpretation (enumerated continuations)
[return v] = As.([7], s)
[get (m, n)] = As.if s then[m]s else [n]s
[puts: (m)] = As.[m]s’

Meta level interpretation (continuations as functions)

[return v] = As.([v], s)
[getk] = As.[ks] s
[puts k] = As.[k ()] s

Object level effect handler

returnv — As.(7,s)
(get() = r) — As.rss
(puts’” — 1) = As.r()s’

Interpretations as effect handlers
Example: nondeterminism
Meta level interpretation (enumerated continuations)
[return v] = [[7]]
[choose (m,n)] = [m] +- [n]
Ifail (] = [
Meta level interpretation (continuations as functions)
[return v] = [[v]]
[choose k] = [ktrue] + [kfalse]
[failk] =[]
Object level effect handler

return v — [0]
(choose () — r) + rtrue + rfalse
(fail () — r) =

Example: choice and failure

Effect signature
{choose : 1 — bool, fail:a.1 — a}

Example: choice and failure

Effect signature
{choose : 1 — bool, fail:a.1 — a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails
else

fail ()

drunkTossesn = if n = 0 then [|
else drunkToss () :: drunkTosses (n — 1)

Example: choice and failure
Handlers
maybeFail = — exception handler

returnx — Justx
(fail ()) ~— Nothing

Example: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail — Just42

(fail ()) ~ Nothing handle fail () with maybeFail = Nothing

Example: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) ~— Nothing

trueChoice = — linear handler
return x — X
(choose () — r) > rtrue

handle 42 with maybeFail = Just42
handle fail () with maybeFail = Nothing

Example: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) ~— Nothing

trueChoice = — linear handler
return x — X
(choose () — r) > rtrue

handle 42 with maybeFail = Just42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice =— 42
handle toss () with trueChoice —> Heads

Example: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) ~— Nothing

trueChoice = — linear handler
return x — X
(choose () — r) > rtrue

allChoices = — non-linear handler
return x — [x]
(choose () — r) > rtrue -+ rfalse

handle 42 with maybeFail = Just42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice =— 42
handle toss () with trueChoice —> Heads

Example: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) ~— Nothing

trueChoice = — linear handler
return x — X
(choose () — r) > rtrue

allChoices = — non-linear handler
return x — [x]
(choose () — r) > rtrue -+ rfalse

handle 42 with maybeFail = Just42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice =— 42
handle toss () with trueChoice —> Heads

handle 42 with allChoices = [42]

handle toss () with allChoices = [Heads, Tails]

Example: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail — Just42
(fail ()) ~ Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x — X handle 42 with trueChoice =—- 42
(choose () — r) + rtrue hand]le toss () with trueChoice = Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices — [42]

(choose () — r) > rtrue -+ rfalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices —>

Example: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail — Just42
(fail ()) ~ Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x =X handle 42 with trueChoice — 42
(choose () — r) > rtrue handle toss () with trueChoice —> Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices =— [42]

(choose () — r) > rtrue +rfalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices —>
[Just [Heads, Heads], Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing,
Nothing]

Operational semantics

Reduction rules

handle V with H ~ N[V /x]
handle E[op V] with H ~» N[V /p, Ax.handle €[x] with H /7], op#é

where
H=returnx— N
0opq pr = Nopl
oprpr > Nop,

Evaluation contexts

Eu:=[]]|letx =€ in N | handle & with H

Typing rules

Effects
E:=0|Ew{op:A — B}
Computations
C,D:=AE
Operations
r-Vv:A
'-opV:B(EwW{op:A — B})
Handlers

''-M:C 'H:C=D
I' + handle M with H : D

Nx:A-M:C M,p:A;r:Bi— CHFN;:Cl;

return x — M

AL - A — B
(oD p 7o N, : Al{op; : A; — Bi}; = C

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

o —
Vo

-

E D,;PBO%.

>
L%

a[T,

Example: cooperative concurrency

Effect signature
{yield: 1 — 1}

Example: cooperative concurrency

Effect signature
{yield: 1 — 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ")
tB () = print (“B1 ”); yield (); print (“B2 ")

Example: cooperative concurrency

Effect signature
{yield: 1 — 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ")
tB () = print (“B1 ”); yield (); print (“B2 ")

Handler — parameterised handler

coop ([l) = coop (r=rs) =
return () () return () —rrs()
{yield() = r") —r"[1() {yield () = ') = r(rs+[r']) ()

Example: cooperative concurrency

Effect signature
{yield: 1 — 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ")
tB () = print (“B1 ”); yield (); print (“B2 ")

Handler — parameterised handler

coop ([1) = coop (r:rs) =
return () () return () —rrs()
{yield() = r') —7"[1() {yield () = ') = r(rs+[r']) ()
Helpers

coopWitht = Ars.A().handle ¢ () with cooprs
cooperate ts = coopWith id (map coopWith £s) ()

Example: cooperative concurrency

Effect signature
{yield: 1 — 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ")
tB () = print (“B1 ”); yield (); print (“B2 ")

Handler — parameterised handler

coop ([1) = coop (r:rs) =
return () () return () —rrs()
{yield() = r') —7"[1() {yield () = ') = r(rs+[r']) ()
Helpers

coopWitht = Ars.A().handle ¢ () with cooprs
cooperate ts = coopWith id (map coopWith £s) ()

cooperate [tA, tB] = ()
Al B1 A2 B2

Operational semantics (parameterised handlers)

Reduction rules

handle V with H W ~ N[V /x, W/Hh]
handle E[op V] with H W ~» Noo[V/p, W/h, (M x.handle E[x] with H h)/7], op#&

where
Hh =returnx— N
0opq pr = NOD]
opxpr > Nop,

Evaluation contexts

Eu:=[]]|letx =€ in N | handle & with H W

Typing rules (parameterised handlers)

Effects
E:=0|Ew{op:A — B}
Computations
C,D:=AE
Operations
r'v:A
'-opV:BI(EW{op:A — B}
Handlers

''-M:C 'v:P 'WFH:P—-C=D
I'+handle Mwith HV : D

Nh:P,x:AFM:C h:P,p:A;,r:P— B — CFN,;:Cl;

Mireturn x — M
I : P — Alfop; : A; - B} = C
(op; pr— N;); {op; : A; i

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield: 1 — 1, ufork:1 — bool}

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield : 1 — 1, ufork :1 — bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print“A1 ”;yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”;yield (); print “B2 ” else print “M3 ”

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield : 1 — 1, ufork :1 — bool}

A single cooperative program

main () = print “M1 ”;if ufork () then print“A1 ”;yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”;yield (); print “B2 ” else print “M3 ”

Handler

coop () = coop (r:rs) =
return () = () return () —rrs()
(yield() = ') =" 1) {yield() = 1) = r(rs+[r']) ()
(ufork () — 7"y — 1" [Ars ().r" rsfalse] (ufork () — 7’) — 1/ (r:rs + [Ars ().r' rsfalse])

true true

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield : 1 — 1, ufork :1 — bool}

A single cooperative program

main () = print “M1 ”;if ufork () then print“A1 ”;yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”;yield (); print “B2 ” else print “M3 ”

Handler

coop () = coop (r:rs) =
return () = () return () —rrs()
(yield() = ') =" 1) {yield() = 1) = r(rs+[r']) ()
(ufork () — 7"y — 1" [Ars ().r" rsfalse] (ufork () — 7’) — 1/ (r:rs + [Ars ().r' rsfalse])
true true

cooperate [main] = ()
M1 A1 M2 B1 A2 M3 B2

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield : 1 — 1, ufork :1 — bool}

A single cooperative program

main () = print “M1 ”;if ufork () then print“A1 ”;yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”;yield (); print “B2 ” else print “M3 ”

Handler

coop () = coop (r:rs) =
return () = () return () —rrs()
(yield() = ') =" 1) (yield() = ') —r(rs+[r']) ()
(ufork () = #"y — 1" [Ars ().r" rstrue] (ufork () — ')y — ¢/ (r=rs H [Ars ().r" rstrue])

false false

Example: cooperative concurrency with UNIX-style fork

Effect signature
{yield : 1 — 1, ufork :1 — bool}

A single cooperative program

main () = print “M1 ”;if ufork () then print“A1 ”;yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”;yield (); print “B2 ” else print “M3 ”

Handler

coop () = coop (r:rs) =
return () = () return () —rrs()
(yield() = ') =" 1) (yield() = ') —r(rs+[r']) ()
(ufork () = #"y — 1" [Ars ().r" rstrue] (ufork () — ')y — ¢/ (r=rs H [Ars ().r" rstrue])
false false

cooperate [main] = ()
M1 M2 M3 Al B1 A2 B2

Effect handler oriented programming languages

Eff https:/ /www.eff-lang.org/

Effekt https:/ /effekt-lang.org/

Frank https:/ /github.com/frank-lang/frank
Helium https:/ /bitbucket.org/pl-uwr/helium
Links https:/ /www.links-lang.org/

Koka https:/ /github.com/koka-lang /koka

Multicore OCaml https:/ /github.com/ocamllabs/ocaml-multicore /wiki

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki

Resources

Jeremy Yallop’s effects bibliography
https:/ /github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”,
MEPS 2015

Andrej Bauer’s tutorial
“What is algebraic about algebraic effects and handlers?”,
Dagstuhl and OPLSS 2018

https://github.com/yallop/effects-bibliography

Bonus slides

Example: generators

Effect signature
{send : Nat — 1}

Example: generators

Effect signature
{send : Nat — 1}

A simple generator

natsn = sendn; nats (n + 1)

Example: generators

Effect signature
{send : Nat — 1}

A simple generator
natsn = sendn; nats (n + 1)

Handler
untilstop = — affine handler
return () — [
(sendn — 1) — if n < stop then n :: rstop ()
else []

Example: generators

Effect signature
{send : Nat — 1}

A simple generator

natsn = sendn; nats (n + 1)

Handler
untilstop = — affine handler
return () — [
(sendn — 1) — if n < stop then n :: rstop ()
else []

handle nats 0 with until8 = [0,1,2,3,4,5,6,7]

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}
A single cooperative program

main () = print “M1 ”; fork (A().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (A().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}
A single cooperative program

main () = print “M1 ”; fork (A().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (A().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([l) = coop (rz=rs) =
return () = () return () —rrs()
(yield() = ") =" 11 () (yield() ="y —»r(rs+[r']) ()

(forkt — ')+~ coopWitht[r'] () (forkt — r’) + coopWitht (r:rs+ [r']) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}
A single cooperative program

main () = print “M1 ”; fork (A().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (A().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([l) = coop (rz=rs) =
return () = () return () —rrs()
(yield() = ") =" 11 () (yield() ="y —»r(rs+[r']) ()

(forkt — ')+~ coopWitht[r'] () (forkt — r’) + coopWitht (r:rs+ [r']) ()

cooperate [main] = ()
M1 A1 M2 Bl A2 M3 B2

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}
A single cooperative program

main () = print “M1 ”; fork (A().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (A().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([l) = coop (rz=rs) =
return () = () return () —rrs()
(yield() = ") =" 11 () (yield() ="y —»r(rs+[r']) ()

(forkt — ') 1’ [coopWitht] () (forkt — 1) 1’ (r:rs -+ [coopWitht]) ()

Example: cooperative concurrency with higher-order fork
Effect signature — recursive effect signature

Co ={yield:1 -1, fork: (1 — [Co]l) — 1}
A single cooperative program

main () = print “M1 ”; fork (A().print “A1 ”; yield (); print “A2 ”);
print “M2 ”; fork (A().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Handler — scoped handler

coop ([l) = coop (rz=rs) =
return () = () return () —rrs()
(yield() = ") =" 11 () (yield() ="y —»r(rs+[r']) ()

(forkt — ') 1’ [coopWitht] () (forkt — 1) 1’ (r:rs -+ [coopWitht]) ()

cooperate [main] = ()
M1 M2 M3 Al Bl A2 B2

Built-in effects

Console I/0
Console ={inch :1 —» char
ouch : char — 1}

prints = map (Ac.ouchc¢)s; ()
Generative state
GenState = {new :a. a — Refa,

write : a. (Refa x a) — 1,
read : a. Refa — a}

Example: actors
Process ids
Pida = Ref (lista)

Effect signature

Actora = {self 1 — Pidag,
spawn : b. (1 — [Actorb]1) — Pid b,
send :b. (b x Pidb) - 1,
recv 1 — a}

Example: actors

Process ids
Pida = Ref (lista)

Effect signature

Actora = {self 1 — Pidag,
spawn : b. (1 — [Actorb]1) — Pid b,
send :b. (b x Pidb) - 1,
recv 1 — a}

An actor chain

spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (A().let s = recv () in print“.”; send (s,p))) (n — 1)

chainn = spawnMany (self ()) n;let s = recv () in prints

Example: actors

Actors via cooperative concurrency

actmine =
return () — ()
(self () —) — ¥ mine mine
(spawn you — t) — let yours = new [] in

fork (A().actyours (you ())); r mine yours
(send (m, yours) — r) — let ms = read yours in
write (yours, ms +- [m]); r mine ()
(recv () —) — case read mine of
0 > yield (); » mine (recv ())
(m : ms) — write (mine, ms); r mine m

Example: actors

Actors via cooperative concurrency

actmine =
return () — ()
(self () —) — ¥ mine mine
(spawn you — t) — let yours = new [] in

fork (A().actyours (you ())); r mine yours
(send (m, yours) — r) — let ms = read yours in
write (yours, ms +- [m]); r mine ()
(recv () —) — case read mine of
0 > yield (); » mine (recv ())
(m : ms) — write (mine, ms); r mine m

cooperate [handle chain 64 with act (new [])] = ()

Example: pipes

Effect signatures

Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}

Example: pipes

Effect signatures
Sender = {send : Nat — 1}
A producer and a consumer

natsn = sendn; nats (n + 1)

Receiver = {receive : 1 — Nat}

grabANat () = receive ()

Example: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer
natsn = sendn; nats (n + 1) grabANat () = receive ()
Pipes and copipes as shallow handlers

pipepc = handle' ¢ () with copipecp = handlef p () with
return x =X return x =X
(receive () — r) — copiperp (sendn — r) — piper (A().cn)

Example: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer
natsn = sendn; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipepc = handle' ¢ () with copipecp = handlef p () with
return x =X return x =X
(receive () — r) — copiperp (sendn — r) — piper (A().cn)

pipe (A().nats 0) grabANat ~* copipe (Ax.x) (A().nats 0)
~7T pipe (A().nats 1) (A().0) ~T 0

Example: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer
natsn = sendn; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipepc = handle' ¢ () with copipecp = handlef p () with
return x =X return x =X
(receive () — r) — copiperp (sendn — r) — piper (A().cn)

pipe (A().nats 0) grabANat ~* copipe (Ax.x) (A().nats 0)
~7T pipe (A().nats 1) (A().0) ~T 0

Exercise: implement pipes using deep handlers

Small-step operational semantics for shallow effect handlers

Reduction rules
handle’ V with H ~ N([V/x]
handle’ &[op V] with H ~ Nop[V/p, (Ax.Elx]) /7], op#¢&

where H = return x > Nret
(op1p — 1) = Nop,

{opkp — 1) > Nop,

Evaluation contexts

€:=[]|letx = € in N | handle’ & with H

Small-step operational semantics for shallow effect handlers

Reduction rules

handle’ V with H ~ N([V/x]
handle’ &[op V] with H ~ Nop[V/p, (Ax.Elx]) /7], op#¢&

where H = return x > Nret
(op1p — 1) = Nop,

Evaluation contexts

€:=[]|letx = € in N | handle’ & with H

Exercise: express shallow handlers as deep handlers

Example: pipes using multihandlers

Effect signatures

Sender = {send : Nat — 1} Receiver = {receive : 1 - Nat} Fail = {fail : 2.1 — a}

Example: pipes using multihandlers

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 - Nat} Fail = {fail : 2.1 — a}
A producer and a consumer

natsn = sendn; nats (n + 1) grabANat () = receive ()

Example: pipes using multihandlers

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 - Nat} Fail = {fail : 2.1 — a}

A producer and a consumer

natsn = sendn; nats (n + 1) grabANat () = receive ()
A pipe multihandler
pipe = — multihandler
(sendn |receive() —r) —»r()n
(_ | return x) X

(return () | receive ()) — fail ()

Example: pipes using multihandlers

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 - Nat} Fail = {fail : 2.1 — a}

A producer and a consumer

natsn = sendn; nats (n + 1) grabANat () = receive ()
A pipe multihandler
pipe = — multihandler
(sendn |receive() —r) —»r()n
(_ | return x) X
(return () | receive ()) — fail ()

handle nats 0 | grabANat () with pipe =— 0

