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Overview

• Preliminaries:

• dynamic logics

• coalgebraic logics

• coalgebraic dynamic logics

• Syntax & Semantics

• axiomatization

• iteration-free coalgebraic PDL: strong completeness

• Main result:

weak completeness for coalgebraic dynamic logics
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Why this talk?

• non-deterministic doctrines (and variants) from the MSP201

• quantitative equational theories

• games

• the selection monad
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Part 1.1: Dynamic Logics
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Motivation

• modal logics: versatile family of logics that allow to reason about state-based

dynamical systems

• “robustly” decidable, e.g. adding recursion (fixpoint operators) to modal logic to

reason about the ongoing, infinite behaviour of a system is possible (but “costly”)

• dynamic logics offer balance between expressivity (limited recursion) and efficiency

(tractable MC)
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Propositional Dynamic Logic (PDL)

Fischer & Ladner, 1977. Reason about program correctness.

[α]ϕ “after all successful executions of program α, ϕ holds”

• Syntax: formulas ϕ ::= p ∈ P0 | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ

programs α ∈ A ::= a ∈ A0 | α;α | α ∪ α | α∗ | ϕ?

composition (;), choice (∪), iteration (∗), tests (ϕ?)

• Multi-modal Kripke semantics: M = (X , {Rα | α ∈ A},V ) where X is state space,

• Rα : X −→ P(X ) (relation, nondeterministic programs),

• V : P0 −→ P(X ) is a valuation.

M, x |= [α]ϕ iff ∀y ∈ X . xRαy → M, y |= ϕ.
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Standard PDL Models

• Def. M = (X , {Rα | α ∈ A},V ) is standard if

Rα;β = Rα ◦ Rβ (relation composition)

Rα∪β = Rα ∪ Rβ

Rα∗ = R∗α (reflexive, transitive closure)

Rϕ? = {(x , x) | x ∈ [[ϕ]]}

• Sound and (weakly) complete axiomatisation of standard models [Kozen & Parikh

1981]:

PDL = Normal modal logic K (ML of Kripke frames) plus:

[α;β]ϕ↔ [α][β]ϕ [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

[ψ?]ϕ↔ (ψ → ϕ)

ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ
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Game Logic (GL)

Parikh, 1985. Strategic ability in determined 2-player games.

〈γ〉ϕ “player 1 has strategy in γ to ensure outcome satisfies ϕ”

(“player 1 is effective for ϕ”)

• Syntax: PDL syntax extended with dual operation on games:
• γ1; γ2: play γ1 then γ2,

• γ1 ∪ γ2: player 1 chooses to play γ1 or γ2,

• γ∗: player 1 chooses when to stop.

• γd : players switch roles.

• Semantics: Game model M = (X , {Eγ | γ ∈ Γ},V ) where Eγ : X −→ PP(X ) is

monotonic neighbourhood function:

If U ∈ Eγ(x) and U ⊆ U ′ then U ′ ∈ Eγ(x).

U ∈ Eγ(x) iff player 1 is effective for U in γ starting in x .

Modal semantics: M, x |= 〈γ〉ϕ iff [[ϕ]] ∈ Eγ(x)
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Standard GL Models

• Standard GL model: similar to PDL notion,

U ∈ Eγd (x) iff X \ U /∈ Eγ(x).

• GL = monotonic modal logic M (ML of mon. nbhd. frames) plus

〈γ; δ〉ϕ↔ 〈γ〉〈δ〉ϕ 〈γ ∪ δ〉ϕ↔ 〈γ〉ϕ ∨ 〈δ〉ϕ

〈ψ?〉ϕ↔ (ψ ∧ ϕ) 〈γd〉ϕ↔ ¬〈γ〉¬ϕ

ϕ ∨ 〈γ〉〈γ∗〉ϕ→ 〈γ∗〉ϕ ϕ ∨ 〈γ〉ϕ→ ψ

〈γ∗〉ϕ→ ψ

• Without dual: sound and (weakly) complete [Parikh 1985].

• Without iteration: sound and strongly complete [Pauly 2001].

• Completeness of full GL [Enqvist, Hansen, K, Marti, Venema 2019]
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Towards Coalgebraic Dynamic Logic

Basic observation:

• P is monad (P, η, µ) with:

ηX (x) = {x}, µX ({Ui | i ∈ I}) =
⋃

i∈I Ui .

• M is a monad (M, η, µ) with:

ηX (x) = {U ⊆ X | x ∈ U}
µX (W ) = {U ⊆ X | ηP(X )(U) ∈W }

• Composition of programs and games is Kleisli composition.

Basic setup:

• Action/program X −→ TX where T a Set-monad

(T describes computation type, side-effects, ...)

• Sequential composition as Kleisli composition ∗T .

• Multi-program setting: X −→ (TX )A where A is a set of program labels.
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Part 1.2: Coalgebraic Logics (in 4 slides)
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Coalgebraic Modal Logic & PDL

• Observation: Kripke models are P-coalgebras, ie, pairs (X , γ) with

γ : X −→ PX

• in this logical context X is usually a set (or some concrete category)

• Idea: Develop modal logic for T -coalgebras, where T is an endofunctor.

Development should be parametric in T .
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Coalgebraic Logic: Syntax

Given a collection of modal operators Λ and a set P0 of propositional variables.

Definition

The set F(Λ) of formulas over Λ is defined a follows:

F(Λ) 3 ϕ ::= p ∈ P0 |⊥| ¬ϕ | ϕ ∧ ϕ | ♥ϕ,♥ ∈ Λ

Note

In this talk the (basic) similarity type will consist of one unary modality only!
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Coalgebraic Logic: Semantics

In order to be able to interpret modal formulas we need

• a set functor T

• for every modal operator ♥ ∈ Λ a natural transformation

♥ : P −→ PT ,

where P denotes the contravariant power set functor.

Formulas are then interpreted over T -models (X , γ,V ) consisting of

γ : X −→ TX and V : Var −→ P(X ).

[[p]] = V (p) for p ∈ Var
...

[[♥ϕ]] = Pγ(♥([[ϕ]])) = γ−1(♥([[ϕ]]))
14



Equivalently

♥ : P −→ PT is in one-to-one correspondence to

• ♥̂ : T −→ P
op
P (T -coalgebras to neighbourhood frames)

x |= ♥ϕ iff [[ϕ]] ∈ (♥̂ ◦ γ)(x).

• ♥̆ : T2 −→ 2 (“allowed 0-1 patterns”)

X
χ[[ϕ]] //

γ

��

2

T (X )
T (χ[[ϕ]]) // T (2)

♥̆ // 2

(X , γ,V ), x |= ♥ϕ iff ♥̆(T (χ[[ϕ]])(γ(x)) = 1.
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Examples

• T = P, ♥ = 2:

♥(U) = {V ⊆ X | V ⊆ U},
♥̂(V ) = {U ⊆ X | V ⊆ U} and

♥̆(V ⊆ P2) = 1 iff 0 6∈ V

• T =M, ♥ = 2:

♥(U) = {N ∈MX | U ∈ N}
♥̂(N) = N

♥̆(N ∈M2) = 1 iff 1 ∈ N

...
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Overview articles

• Corina Ĉırstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, Yde Venema:

Modal Logics are Coalgebraic. The Computer Journal (2011)

• CK, Dirk Pattinson: Coalgebraic semantics of modal logics: An overview. (2011)
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Part 2.1: Coalgebraic PDL - Syntax and Semantics
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Coalgebra-Algebra

Two perspectives:

ξ : X −→ (TX )A TA-coalgebra, modal logic

ξ̂ : A −→ (TX )X algebra homomorphism, program operations

Questions:

• What are “program” operations like ∪ and d?

• What is a standard model?

• Which compositionality axioms?

• How to prove soundness and completeness?
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Dynamic Syntax

Given

• Σ, a signature (functor).

• P0, a countable set of atomic propositions.

• A0, a countable set of atomic programs.

we define

formulas F(P0,A0,Σ) 3 ϕ ::= p ∈ P0 | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ
programs A(P0,A0,Σ) 3 α ::= a ∈ A0 | α;α | σ(α1, . . . , αn)

|?ϕ | α∗

where σ ∈ Σ is n-ary.
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Pointwise Program Operations via Natural Operations

• An n-ary natural operation on T is a natural transformation σ : T n −→ T

• σ : T n −→ T yields pointwise operation on (TX )X , e.g.,

σXX (γ1, γ2)(x) = σX (γ1(x), γ2(x))

• Given finitary signature functor Σ,

a natural Σ-algebra is natural transformation θ : ΣT −→ T ,

and yields pointwise Σ-algebra θXX : Σ((TX )X ) −→ (TX )X .
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Natural and Pointwise Operations: Examples

Natural operations on P:

• Union ∪ : P × P −→ P is a natural operation, since

f [U ∪ U ′] = f [U] ∪ f [U ′] (Pf (U) = f [U])

The pointwise extension of ∪ : P × P −→ P is union of relations

(R1 ∪ R2)(x) = R1(x) ∪ R2(x).

• Observation: Intersection and complement are not natural operations on P.

Natural operations on M:

• ∪ and ∩ (since preserved by f −1).

• Dual operation d : M−→M where for all N ∈M(X ), and U ⊆ X , U ∈ Nd iff

X \ U /∈ N.

Dual game operation is the pointwise extension.
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Standard dynamic models

A (P0,A0, θ)-dynamic T-model M = (X , γ0,♥,V ) consists of

• a set X ,

• an interpretation of atomic actions γ̂0 : A0 −→ (TX )X ,

• a unary predicate lifting ♥ : P −→ P ◦ T whose transpose ♥̂ : T −→ P
op
P is a

monad morphism, and

• a valuation V : P0 −→ P(X ).
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Semantics

Let A = Σ ∪ {; }∪{∗}-terms over A0. We define the truth set [[ϕ]]M of dynamic

formulas and the semantics γ̂ : A −→ (TX )X of complex actions in M by mutual

induction:

[[p]]M = V (p), [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M, [[¬ϕ]]M = X \ [[ϕ]]M,

[[〈α〉ϕ]]M = (γ̂(α)−1 ◦ ♥X )([[ϕ]]M)

γ̂(σ(α1, . . . , σn)) = σXX (γ̂(α1), . . . , γ̂(αn))

γ̂(α;β) = γ̂(α) ∗ γ̂(β) (Kleisli composition)

γ̂(ϕ?)(x) = ?

γ̂(α∗) = γ̂(α)∗ (Kleisli iteration)

(red parts later)
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Standardness as a property of a TA-coalgebra

Some terminology:

• Given natural algebra θ : ΣT −→ T then γ : X −→ (TX )A is θ-standard iff

γ̂ : A −→ (TX )X is a Σ-algebra homomorphism.

• If T is a monad, then γ : X −→ (TX )A is ;-standard iff

for all α, β ∈ A, γ̂(α;β) = γ̂(α) ∗ γ̂(β).

Part II of this talk will discuss the axiomatisation in detail.
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Conclusions

• generic completeness result for dynamic logics

(PDL, dual-free GL)

• currently not enough examples: P/M/F

• need extend to a quantitative setting

• model-checking rather than completeness?

• automata (partial result: automata for game logic)

• What about logics for doctrines? Other game/strategy logics?
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