

A Generic Framework for
Analyzing Java Programs

Chuangjie Xu1

Chuangjie Xu (j.w.w. Ulirch Schöpp)

MSP 101 Seminar, Strathclyde, 20 May 2021

Enforcing Secure Programming Guidelines

Chuangjie Xu2

Ø Can guidelines be verified continuously and incrementally?

Ø A lightweight tool for this can help programmers to avoid making
typical errors during the development.

Ø Does my Java program follow secure programming guidelines
such as
§ “All inputs must be sanitized.”
§ “Any access to sensitive data must be authorized.”
§ “Any access to sensitive data must be logged.”
§ …

GuideForce1

Chuangjie Xu3

GuideForce develops effect type systems for lightweight static analysis.

Ø Imagine that functions of interests emit events when they are executed.

§ E.g., Server.login() emits a login event; Connection.close() emits a close event; …

§ Each execution of a program generates a (finite or infinite) trace of events.

§ Guidelines (of safety and liveness properties) specify which event traces are allowed.

Ø The type system has effect annotations to give information about the possible traces.

§ E.g., login() ? readData() : close(); : type & {login read, login close}

Ø Inferring the type of a program is to compute its effect.

Ø If the effect is “contained” in the guideline, then the program adheres to the guideline.

1 GuideForce (DFG 250888164) was Initiated by Martin Hofmann at LMU, and is now hosted at fortiss.

Example

Chuangjie Xu4

Guideline 1: Any access to sensitive data must be authorized.

Server.java

void serve() {
while (hasQuery()) {
boolean authorized = verifyAuthorization();
if (authorized) {
readSensitiveData();

}
}
LogAccess();

}

16
17
18
19
20
21
22
23
24
25
26

－ Analysis Results

// emits auth

// emits access

// emits log

－ serve
This method adheres to the given guideline.
Terminating effect: 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 ∗ ⋅ 𝑙𝑜𝑔
Nonterminating effect: 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 .

(this:EntryPoint, authorized:Base) & 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 ∗ ⋅ 𝑎𝑢𝑡ℎ

(this:EntryPoint, authorized:Base) & 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 ∗

Example

Chuangjie Xu5

Guideline 2: Any access to sensitive data must be logged.

Server.java

void serve() {
while (hasQuery()) {
boolean authorized = verifyAuthorization();
if (authorized) {
readSensitiveData();

}
}
LogAccess();

}

16
17
18
19
20
21
22
23
24
25
26

－ Analysis Results

// emits auth

// emits access

// emits log

－ serve
This method may not satisfy the given guideline.
Terminating effect: 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 ∗ ⋅ 𝑙𝑜𝑔
Nonterminating effect: 𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 .

Generated trace: 𝑎𝑢𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 .

Region Typing

Chuangjie Xu6

1 class Node {
2 Node next;
3 Node last() {
4 emit(a);
5 if (next == null) {
6 return this;
7 } else {
8 return next.last();
9 }
10 }
11 }
12
13 Class Test {
14 Node linear() {
15 Node x = new Node();
16 Node y = new Node();
17 y.next = x;
18 return y.last();
19 }
20 Node cyclic() {
21 Node z = new Node();
22 z.next = z;
23 return z.last();
24 }
25 }

y x znull

� If a method was analyzed without considering object information,
then its effect should include the traces of all objects.

E.g., y.last() and z.last() would have the same effect.

� Then the terminating method linear() would have the same
effect of the nonterminating method cyclic().

� To improve the precision of effect typing, we use regions to
narrow down referenced objects.

Objects in different regions are analyzed separately.

Region Type Systems for Featherweight Java
�A pure region type system

[BGH13] L. Beringer, R. Grabowski, and M. Hofmann. Verifying Pointer and String Analyses with Region Type
Systems. Computer Languages, Systems & Structures 39(2), 49–65, 2013.

Chuangjie Xu7

�A region-based effect type system (for analyzing termina@ng behaviors)
[EHZ17] S. Erbatur, M. Hofmann, and E. Zălinescu. Enforcing Programming Guidelines with Region Types and

Effects. APLAS 2017.

�Büchi effects (abstract interpretation based on Büchi automata)
[HC14] M. Hofmann and W. Chen. Abstract Interpretation from Büchi Automata. CSL-LICS 2014.

�Another region-based effect type system (nonterminating and exceptional behaviors)
[ESX21] S. Erbatur, U. Schöpp, and C. Xu. Type-based Enforcement of Infinitary Trace Properties for Java.

Preprint, 2021.

Goal: unify the above systems

v Relate and compare to other frameworks

v Extend to cover other language features

vAvoid redundant work on the meta theory

Featherweight Java (FJ)
� Four kinds of names

variables: 𝑥, 𝑦 ∈ Var classes: 𝐶, 𝐷 ∈ Cls fields: 𝑓 ∈ Fld methods: 𝑚 ∈ Mtd

Chuangjie Xu8

� Special formal elements

this ∈ Var Object, NullType ∈ Cls

� FJ expressions

Expr ∋ 𝑒 ∷= 𝑥 | let 𝑥 = 𝑒R in 𝑒T | if 𝑥 = 𝑦 then 𝑒R else 𝑒T | null | newℓ 𝐶 | 𝐶 𝑒
| 𝑥X. 𝑓 | 𝑥X. 𝑓 ≔ 𝑦 | 𝑥X.𝑚 [𝑦

�An FJ program ≺,]ields,methods,mtable consists of

§ a subtyping relation ≺ ∈ 𝒫]ab Cls ×Cls
§ a field list]ields ∶ Cls → 𝒫]ab Fld
§ a method list methods ∶ Cls → 𝒫]ab Mtd
§ a method table mtable ∶ Cls × Mtd ⇀ Var∗ × Expr

Example of an FJ program
� Java code

Chuangjie Xu9

1 class Node {
2 Node next;
3 Node last() {
4 emit(a);
5 if (next == null) {
6 return this;
7 } else {
8 return next.last();
9 }
10 }
11 }

� FJ program

]ields Node = next
methods Node = last

mtable Node, last = , 𝑒ghij

𝑒ghij ≔ let _ = emit 𝑎 in
let 𝑥 = this. next in
let 𝑦 = null in
if 𝑥 = 𝑦 then this
else let 𝑧 = this. next in 𝑧. last()

A Parametric Operational Semantics
� State model

locations: 𝑙 ∈ Loc stores: 𝑠 ∈ Var ⇀ Val
values: 𝑣 ∈ Val = Loc ⊎ null heaps: ℎ ∈ Loc ⇀ Obj
objects: 𝐶, 𝐺, ℓ ∈ Obj = Cls × Fld ⇀ Val × Pos

Write 𝒱 to denote the set of pairs 𝑣, ℎ of values and heaps.

Chuangjie Xu10

� Parameter: a set ℳ together with functions

returnℳ ∶ 𝒱 → ℳ bindℳ ∶ ℳ ×ℳ →ℳ − ℳ ∶ ℳ → 𝒱

such that

returnℳ 𝑣, ℎ ℳ = (𝑣, ℎ) and bindℳ 𝑚R,𝑚T ℳ = 𝑚R ℳ or 𝑚T ℳ

�Big-step relation 𝑠, ℎ ⊢ 𝑒 ⇓ 𝑚

Intuition: In state 𝑠, ℎ the expression 𝑒 evaluates to the value 𝑣 with the heap updated to ℎy,
where 𝑣, ℎy = 𝑚 ℳ.

Operajonal Semanjcs Rules

Chuangjie Xu11

Instances of the Operational Semantics
� Standard FJ operational semantics

Simply take ℳ = 𝒱, and returnℳ and − ℳ the identity, and bindℳ the second projection.

Chuangjie Xu12

�Operational semantics with trace effects

Apply the writer monad 𝑋 ↦ 𝑋 × Σ∗, i.e., take ℳ = 𝒱 × Σ∗ and

returnℳ 𝑣, ℎ = 𝑣, ℎ , 𝜀

bindℳ _ , 𝑤R , 𝑣T, ℎT , 𝑤T = 𝑣T, ℎT , 𝑤R𝑤T
𝑣, ℎ , _ ℳ = 𝑣, ℎ

�Opera@onal seman@cs for FJ extended with e.g. excep@ons and probabilis@c branching

E.g.

E.g.

Region Types
�A region represents a property of a value such as its provenance information.

Reg ∋ 𝑟, 𝑠 ∷= Null | CreatedAt ℓ | ⊤ | ⊥ | 𝑟 ∨ 𝑠 | 𝑟 ∧ 𝑠

Chuangjie Xu13

�A formal interpretation of regions as a relation 𝑣, ℎ ⊢ 𝑟

� The interpretajon gives a par@al order ≤ on regions

𝑟 ≤ 𝑠 iff 𝑣, ℎ ⊢ 𝑟 implies 𝑣, ℎ ⊢ 𝑠 for all 𝑣, ℎ ∈ 𝒱.

� Regions form a lattice Reg , ≤ , ∨ , ∧

A Generic Region Type System
� Parameter: a join-semilattice ℒ, ∅, ⊑,⊔ together with function

returnℒ ∶ Reg → ℒ bindℒ ∶ ℒ × Reg → ℒ → ℒ − ℒ ∶ ℒ → 𝒫 Reg
Idea: ℒ may carry information of e.g. regions, effects or probabilities with various representations.

The essential structure of a region type system for FJ is given by a monad on the region lattice.

Chuangjie Xu14

�A class table 𝐹,𝑀 consists of

§ a field typing 𝐹 ∶ Cls × Reg × Fld ⇀ Reg, and

§ a method typing 𝑀 ∶ Cls × Reg × Mtd × Reg∗ ⇀ ℒ

satisfying some well-formedness conditions that reflect the subtyping properties of FJ.

� Typing judgments have the form 𝑥R: 𝑟R, … , 𝑥�: 𝑟� ⊢ 𝑒 ∶ 𝑇 where 𝑟R ∈ Reg and 𝑇 ∈ ℒ.

�An FJ program is well-typed w.r.t. 𝐹,𝑀 if each method body has the type as specified in 𝑀,

i.e. this: 𝑟, 𝑥̅: 𝑠̅ ⊢ 𝑒 ∶ 𝑇 holds for any 𝐶, 𝑟,𝑚, 𝑠̅ with 𝑀 𝐶, 𝑟,𝑚, 𝑠̅ = 𝑇 and mtable 𝐶,𝑚 = 𝑥̅, 𝑒 .

Typing Rules

Chuangjie Xu15

A Uniform Soundness Theorem
� Lift 𝑣, ℎ ⊢ 𝑟 to typing environments Γ and field typing 𝐹:

§ 𝑠, ℎ ⊢ Γ iff 𝑠 𝑥 , ℎ ⊢ 𝑟 for all 𝑥: 𝑟 ∈ Γ

§ ℎ ⊢ 𝐹 iff 𝐺 𝑓 , ℎ ⊢ 𝐹 𝐶, 𝑟, 𝑓 for all 𝑙 ∈ dom ℎ with ℎ 𝑙 = 𝐶, 𝐺, _ and for all 𝑟, 𝑓 with 𝐶, 𝑟, 𝑓 ∈ dom 𝐹

We write 𝑠, ℎ ⊢ Γ, 𝐹 to denote the conjunction of 𝑠, ℎ ⊢ Γ and ℎ ⊢ 𝐹.
It says that the state (for evaluating the program) satisfies the properties specified by the typing.

Chuangjie Xu16

� Last parameter ⊲ ⊆ ℳ × ℒ to relate the parameters ℳ and ℒ

Soundness Theorem. Suppose ⊲ ⊆ ℳ × ℒ preserves the structures on ℳ and ℒ in the following sense:
(⊲1) 𝑚 ⊲ 𝑇 and 𝑇 ⊑ 𝑇y implies 𝑚 ⊲ 𝑇y,
(⊲2) 𝑣, ℎ ⊢ 𝑟 implies returnℳ 𝑣, ℎ ⊲ returnℒ 𝑟 , and
(⊲3) if 𝑚 ⊲ 𝑇 and if 𝑚y ⊲ 𝑓 𝑟 for all 𝑟 ∈ 𝑇 ℒ with 𝑚 ℳ ⊢ 𝑟, then bindℳ 𝑚,𝑚y ⊲ bindℒ 𝑇, 𝑓 .

Given an FJ program that is well-type w.r.t. 𝐹,𝑀 , for any 𝑠, ℎ, 𝑒, 𝑚, Γ and 𝑇 such that

𝑠, ℎ ⊢ 𝑒 ⇓ 𝑚 and Γ ⊢ 𝑒 ∶ 𝑇 and 𝑠, ℎ ⊢ Γ, 𝐹

we have 𝑚 ⊲ 𝑇 and 𝑠, ℎy ⊢ Γ, 𝐹 where _ , ℎy = 𝑚 ℳ.

Instantiating the Type System
� To build a concrete type system,

provide a join-semilattice ℒ, ∅, ⊑,⊔ with maps returnℒ, bindℒ and − ℒ.

Chuangjie Xu17

� To establish its soundness result,

§ instantiate the operational semantics, i.e., choosing a set ℳ with maps returnℳ, bindℳ and − ℳ

§ specify the relation ⊲ ⊆ ℳ × ℒ and verify the conditions (⊲1), (⊲2) and (⊲3).

Instance: a pure region type system [BGH13]

� Take ℒ, ∅, ⊑,⊔ = Reg, ⊥, ≤,∨ with

returnℒ 𝑟 = 𝑟 bindℒ 𝑟, 𝑓 = 𝑓 𝑟 𝑟 ℒ = 𝑟

�Work with the standard FJ operajonal semanjcs (ℳ = 𝒱), and take 𝑣, ℎ ⊲ 𝑟 to be 𝑣, ℎ ⊢ 𝑟.

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then newℓ� 𝐶 else newℓ� 𝐷 in 𝑥 ∶ CreatedAt ℓR ∨ CreatedAt ℓT

Instance: a Region-based Effect Type System [EHZ17]
� Take ℒ = Reg × 𝒫 Σ∗ with the lattice structure defined componentwise

𝑒 ∶ 𝑟, 𝑈 expresses that the result value of 𝑒 is in region 𝑟 and the generated event trace is in 𝑈.

Chuangjie Xu18

� The monad functions are define by

The let-rule can be equivalently formulated as

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then emit 𝑎 ; newℓ� 𝐶 else newℓ� 𝐷 in emit 𝑏 ; 𝑥
has type CreatedAt ℓR ∨ CreatedAt ℓT , 𝑎𝑏, 𝑏 .

�Work with the operational semantics with traces (ℳ = 𝒱 × Σ∗),

and define 𝑣, ℎ , 𝑤 ⊲ 𝑟, 𝑈 ⇔ 𝑣, ℎ ⊢ 𝑟 ∧ 𝑤 ∈ 𝑈 .

Instance: another Region-based Effect Type System [ESX21]

Chuangjie Xu19

� Take ℒ to be the set of finite partial functions from Reg to 𝒫 Σ∗ .

𝑒 ∶ 𝑟R & 𝑈R |⋯ | 𝑟� & 𝑈� expresses that the result of 𝑒 is in region 𝑟 and the trace is in 𝑈 for some 𝑖.

� Still work with the operational semantics with traces (ℳ = 𝒱 × Σ∗),

but define 𝑣, ℎ , 𝑤 ⊲ (𝑟R & 𝑈R |⋯ | 𝑟� & 𝑈�) ⇔ ∃ 𝑖. 𝑣, ℎ ⊢ 𝑟 ∧ 𝑤 ∈ 𝑈 .

�We need to define the lattice structure and the monad functions (omitted).

The let-rule can be equivalently formulated as

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then emit 𝑎 ; newℓ� 𝐶 else newℓ� 𝐷 in emit 𝑏 ; 𝑥
has type CreatedAt ℓR & 𝑎𝑏 | CreatedAt ℓT & 𝑏 .

Comparing the Instances [EHZ17] and [ESX21]
Example: Suppose there are classes 𝐷 ≺ 𝐶 with two methods 𝑓 and 𝑔.

Consider the class table:

Chuangjie Xu20

� Let 𝑒 be the FJ expression if 𝑐𝑜𝑛𝑑 then newℓ� 𝐶 else newℓ� 𝐷
§ In [EHZ17], 𝑒 has type CreatedAt ℓR ∨ CreatedAt ℓT & 𝜀
§ In [ESX21], 𝑒 has type CreatedAt ℓR & 𝜀 | CreatedAt ℓT & 𝜀

� Consider expressions let 𝑥 = 𝑒 in 𝑥. 𝑓(); 𝑥. 𝑓() and let 𝑥 = 𝑒 in 𝑥. 𝑔()
§ In [EHZ17], the former has type null & 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏 and the latter has null & 𝑎𝑎, 𝑏𝑏
§ In [ESX21], both have type null & 𝑎𝑎, 𝑏𝑏 .

� The method 𝑔 may have body this. 𝑓(); this. 𝑓(). Inlining loses precision in [EHZ17].

� [ESX21] is more precise, but the cost is a less efficient type inference algorithm.

Extension: Excepjon Handling
� Extend the syntax of FJ with expressions throw 𝑒 and try 𝑒R catch 𝐶 𝑥 𝑒T

Chuangjie Xu21

� For the operational semantics, work with e.g. ℳ = N, E × 𝒱
§ 𝑠, ℎ ⊢ 𝑒 ⇓ N, 𝑣, ℎ′ means that 𝑒 normalizes to 𝑣 with the heap updated to ℎy.
§ 𝑠, ℎ ⊢ 𝑒 ⇓ E, 𝑣, ℎ′ means that 𝑒 throws an exception whose value is 𝑣 and the heap is updated to ℎ′.

� The monad functions are given by

�Additional operational semantics rules for the new expressions such as

� Think about all the possible cases of

Extension: Excepjon Handling (cont.)

Chuangjie Xu22

� Extend the pure region type system [BGH13] by taking ℒ = Reg × Reg
𝑒 ∶ 𝑟, 𝑠 says that 𝑒 evaluates to a value in region 𝑟, or throws an exception whose value is in region 𝑠.

� The monad functions are define by

The let-rule can be equivalently formulated as

�Additional typing rules for the new expressions such as

� Lastly, define ⊲ by N, 𝑣, ℎ ⊲ 𝑟, 𝑠 ⇔ 𝑣, ℎ ⊢ 𝑟 and E, 𝑣, ℎ ⊲ 𝑟, 𝑠 ⇔ 𝑣, ℎ ⊢ 𝑠

�Once (⊲1)—(⊲3) are verified, the soundness theorem is valid for the core FJ calculus, we only need to
prove the cases for the addijonal rules.

Extension: Probabilistic Branching (w.i.p.)

Chuangjie Xu23

� Extend the syntax of FJ with 𝑒R ?¥ 𝑒T where 𝑝 ∈ 0,1 is the probability of evaluating to the left.

Goal: use the type system to compute the probability of a program generating given traces.

� For the operational semantics, work with ℳ = 0,1 × 𝒱 × Σ∗

𝑠, ℎ ⊢ 𝑒 ⇓¥ 𝑣, ℎy & 𝑤 means that 𝑒 has a probability 𝑝 of evaluating to 𝑣 with the heap updated to ℎ′
and generating the event trace 𝑤.

�Additional operational semantics rules for ?¥

�Additional typing rules for ?¥

� For the type system, take ℒ = Reg × 𝒫 Σ∗ → 0,1
𝑒 ∶ 𝑟, 𝜃 says that the result of 𝑒 is in region 𝑟, and it has a probability funcjon 𝜃 such that 𝜃 𝑈 is the
probability of 𝑒 generajng traces of 𝑈.

Prototype Implementation

Chuangjie Xu24

A prototype implementation of type inference based on the Soot framework:

§ Effects are represented by the finitary abstraction based on the guideline automaton.

§ The guideline also specifies the default effects of intrinsic functions.

§ For libraries, we assume default effects or provide mockup code.

Guideline

Java
Bytecode

Analysis Result
(e.g., Y/N, effects,
counterexamples)

Finitary
Analysis

Infinitary
Analysis

Soot Framework

Intraprocedural
Dataflow Analysis

Solver
of Equation System

Summary

Chuangjie Xu25

�We introduce a generic region type system for FJ and prove a uniform soundness theorem.

� It unifies the systems investigated in the GuideForce project.

� The uniform framework is helpful when extending FJ to cover other language features.

� This talk is based on the following paper

U. Schöpp and C. Xu. A Generic Region Type System for Featherweight Java. To appear at FTfJP 2021.

Thank you!

