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Definition

B : C→ C a functor, S an object in C

σ : S → BS

Morphisms

S S ′

BS BS ′

σ

f

τ

Bf
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Definition

B : Set→ Set a functor, S a set of states

σ : S → BS

Morphisms

S S ′

BS BS ′

σ

f

τ

Bf
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Black box machines

C a set of colors

h : S → C , t : S → S

! 〈h, t〉 : S → C × S

Black box machines are C× id-coalgebras
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Deterministic automata

A an alphabet, S a set of states.

A subset F ⊆ S , a function S × A→ S .

Ezra Schoen Introduction to Universal Coalgebra June 29, 2021 6 / 21



Deterministic automata

A an alphabet, S a set of states.

A function α : S → {0, 1}, a function S × A→ S .
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Deterministic automata

A an alphabet, S a set of states.

A function 〈α, σ〉 : S → {0, 1} × SA.

A deterministic automaton is a 2× idA-coalgebra
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Deterministic automata

A an alphabet, S a set of states.

A function 〈α, σ〉 : S → {0, 1} × P(S)A

A nondeterministic automaton is a 2× P(id)A-coalgebra
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Final coalgebras and corecursion
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Streams

A C -stream is a function s : N→ C .

Write Streams for the set of C -streams. We get some natural functions:

• head : Streams→ C given by (c0, c1, c2, . . . ) 7→ c0;

• tail : Streams→ Streams given by (c0, c1, c2, . . . ) 7→ (c1, c2, c3, . . . ).

So Streams is a BBM.

Proposition

Proof.

The only possible map is behσ(s) = (h(s), ht(s), htt(s), httt(s), . . . ).
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Streams
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• tail : Streams→ Streams given by (c0, c1, c2, . . . ) 7→ (c1, c2, c3, . . . ).

So Streams is a BBM.

Proposition

Streams is final in the category of C × id-coalgebras

Proof.

The only possible map is behσ(s) = (h(s), ht(s), htt(s), httt(s), . . . ).
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Languages

An A-language is a set of words over A.

Write Langs for the set of A-languages. We get some natural functions:

• acc : Langs→ {0, 1} given by acc(L) = 1 iff ε ∈ L;

• δ : Langs→ LangsA given by δ(L, a) := {w | aw ∈ L}.
So Langs is a deterministic automaton.

Proposition

Langs is the final 2× idA-coalgebra.
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Corecursion

interleave :: (Stream a, Stream a) -> Stream a

head $ interleave (s0, s1) = head s0

tail $ interleave (s0, s1) = interleave (s1, tail s0)

Why does this work?*

Define 〈h, t〉 : Streams× Streams→ C × (Streams× Streams) as

• h(s0, s1) = head(s0);

• t(s0, s1) = (s1, tail(s0)).

Then there is a unique coalgebra morphism

interleave : Streams× Streams→ Streams.
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Behavioral equivalence and bisimulation
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Behavioral equivalence

(S , σ), s ' (S ′, σ′), s ′ iff there is a cospan

(S ′, σ′)

(S , σ) (Z , ζ)

g

f

with f (s) = g(s ′).

Behavioral equivalence is transitive via pushouts.
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Spans

(R, ρ) (S ′, σ′)

(S , σ)

π2

π1

(S , σ), s↔ (S ′, σ′), s ′ if and only if there is a span (as above) and a p ∈ R
with π1(p) = s and π2(p) = s ′.

By taking pushouts, we have

s↔ s ′ =⇒ s ' s ′
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Relations

Take R ⊆ S × S ′.

We get a span if
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Relations

Take R ⊆ S × S ′.

S R S ′

BR

BS BS × BS ′ BS ′

σ

π1

π2

〈σ◦π1,σ′◦π2〉 σ′

〈Bπ1,Bπ2〉

π1

π2

We get a span if

(s, s ′) ∈ R =⇒ ∃p ∈ BR : Bπ1(p) = σ(s),Bπ2(p) = σ′(s ′)
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Bisimulation

Let B be a functor. For a relation R : X ( Y , define

BR = {(α, β) ∈ BX × BY | ∃p ∈ BR : α = Bπ1(p), β = Bπ2(p)}

A relation R ⊆ S × S ′ is a bisimulation if for all s, s ′, we have

(s, s ′) ∈ R =⇒ (σ(s), σ′(s ′)) ∈ BR

Bisimilar states are behaviorally equivalent. But not always the other way
around!
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Modal logic
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Semantics of modalities

A Kripke model is a P(Prop)× P(−)-coalgebra.

where is given by

λ♦(U) := {(A,V ) | U ∩ V 6= ∅}

Proposition letters are nullary modalities! λp : (P̆)0 → P̆B is given by

λp(∗) := {(A,V ) | p ∈ A}

Then
M,w 
 p iff σ(w) ∈ λp(∗)
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Predicate liftings

Let B : Set→ Set be a behavior functor. An n-ary predicate lifting is a
natural transformation

λ : (P̆)n → P̆B

Examples:

• Modal logic: we have a � given by

λ� : U 7→ {(A,V ) | V ⊆ U}

• (Labeled) binary trees: functor is X 7→ P(Prop)× X × X . We get a
binary modality [↔] given by

λ↔(U,V ) = {(A, x , y) | x ∈ U iff y ∈ V }
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Coalgebraic modal logic

L ::= ¬φ | φ ∨ ψ | φ ∧ ψ | 〈λ〉(φ1, . . . , φn)

where λ is an n-ary predicate lifting.

For modalities, the semantics is given by

J〈λ〉(φ1, . . . , φn)Kσ := P̆σ ◦ λ(Jφ1Kσ, . . . , JφnKσ)

Proposition

If f : (S , σ)→ (S ′, σ′) is a morphism, then for all s ∈ S and all formulas
φ, we have

s 
 φ iff f (s) 
 φ

Corrollary

If s ' s ′, then s and s ′ are logically equivalent.
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Regular languages

Recall: BX = 2× XA.

• Nullary lifting:
λX(∗) := {(i , u) | i = 1}

• For a ∈ A, a unary lifting

λa(U) := {(i , u) | u(a) ∈ U}

We get a translation m : A∗ → L by

ε 7→ 〈X〉, aw 7→ 〈λa〉(m(w))

Proposition

Let σ : S → BS be a DFA. For s ∈ S , we have that s accepts w if and
only if s 
 m(w).

Ezra Schoen Introduction to Universal Coalgebra June 29, 2021 20 / 21



Regular languages

Recall: BX = 2× XA.

• Nullary lifting:
λX(∗) := {(i , u) | i = 1}

• For a ∈ A, a unary lifting

λa(U) := {(i , u) | u(a) ∈ U}

We get a translation m : A∗ → L by

ε 7→ 〈X〉, aw 7→ 〈λa〉(m(w))

Proposition

Let σ : S → BS be a DFA. For s ∈ S , we have that s accepts w if and
only if s 
 m(w).

Ezra Schoen Introduction to Universal Coalgebra June 29, 2021 20 / 21



Regular languages

Recall: BX = 2× XA.

• Nullary lifting:
λX(∗) := {(i , u) | i = 1}

• For a ∈ A, a unary lifting

λa(U) := {(i , u) | u(a) ∈ U}

We get a translation m : A∗ → L by

ε 7→ 〈X〉, aw 7→ 〈λa〉(m(w))

Proposition

Let σ : S → BS be a DFA. For s ∈ S , we have that s accepts w if and
only if s 
 m(w).

Ezra Schoen Introduction to Universal Coalgebra June 29, 2021 20 / 21



Regular languages

Recall: BX = 2× XA.

• Nullary lifting:
λX(∗) := {(i , u) | i = 1}

• For a ∈ A, a unary lifting

λa(U) := {(i , u) | u(a) ∈ U}

We get a translation m : A∗ → L by

ε 7→ 〈X〉, aw 7→ 〈λa〉(m(w))

Proposition

Let σ : S → BS be a DFA. For s ∈ S , we have that s accepts w if and
only if s 
 m(w).

Ezra Schoen Introduction to Universal Coalgebra June 29, 2021 20 / 21



Thank you for listening!
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Data.Stream

head :: Stream a -> a

tail :: Stream a -> Stream a

unfold :: (c -> (a,c)) -> c -> Stream a
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Coinductive definitions

My conclusion

Everything is a coinductive definition
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