
Homotopic and Compositional Aspects of
(Hyper)graph Rewriting and Fundamental

Physics
Mathematically Structured Programming (MSP) Seminar,

University of Strathclyde

Jonathan Gorard

University of Cambridge

November 24, 2021



Background of this Talk

Much of the work presented here was performed in close
collaboration with Xerxes Arsiwalla, Manojna Namuduri and
Hatem Elshatlawy:

J. Gorard, M. Namuduri, X. D. Arsiwalla (2021),
https://arxiv.org/abs/2105.04057

J. Gorard, M. Namuduri, X. D. Arsiwalla (2021),
https://arxiv.org/abs/2103.15820

J. Gorard, M. Namuduri, X. D. Arsiwalla (2020),
https://arxiv.org/abs/2010.02752

X. D. Arsiwalla, J. Gorard (2021),
https://arxiv.org/abs/2111.03460

X. D. Arsiwalla, J. Gorard, H. Elshatlawy (2021),
https://arxiv.org/abs/2105.10822

J. Gorard (2021), https://arxiv.org/abs/2102.09363

etc.

https://arxiv.org/abs/2105.04057
https://arxiv.org/abs/2103.15820
https://arxiv.org/abs/2010.02752
https://arxiv.org/abs/2111.03460
https://arxiv.org/abs/2105.10822
https://arxiv.org/abs/2102.09363


Hypergraph Rewriting Systems I

Definition

A hypergraph, denoted H = (V ,E ), is a finite collection of
(potentially ordered) hyperedges:

E ⊂ P (V ) \ {∅} , (1)

where P (V ) denotes the power set of V .

Definition

An update rule, denoted R, for a hypergraph H = (V ,E ) is an
abstract rewriting rule of the form H1 = (V1,E1)→ H2 = (V2,E2),
where H1 and H2 are subhypergraphs of H (i.e. V1,V2 ⊆ V ,
E1,E2 ⊆ E ).



Hypergraph Rewriting Systems II

Figure: Hypergraphs corresponding to finite collections of ordered
relations between elements, namely {{1, 2} , {1, 3} , {2, 3} , {4, 1}} and
{{1, 2, 3} , {3, 4, 5}}, respectively.

Figure: A hypergraph transformation rule corresponding to the set
substitution system {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}}.



Hypergraph Rewriting Systems III

Figure: The results of the first 10 steps in the evolution history of the set
substitution system {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}}.

Figure: The result after 14 steps of evolution.



Compositional Structure of Hypergraph Rewriting I

Start from the definition of Kissinger and Fong:

Definition

A hypergraph category is a symmetric monoidal category (C,⊗, I )
in which every object A in ob (C) is equipped with a special
commutative Frobenius algebra structure (A, µ, η, δ, ε), such that
the Frobenius algebra structure of the monoidal product A⊗ B
(for A and B in ob (C)) is canonically induced from the Frobenius
algebra structures of A and B.

Definition

A typed hypergraph production is a span of monomorphisms p:

p =
(

L K R
l

r
)
, (2)

with L, K and R being typed hypergraphs, and l and r being
injective typed hypergraph morphisms.



Compositional Structure of Hypergraph Rewriting II

Definition

A direct typed hypergraph transformation G ⇒p,m H is given by
the following pair of pushout squares:

L K R

G D H

m

l

k

r

n

f

g

, (3)

assuming production p and match m : L→ G .

Definition

A typed hypergraph transformation G0 ⇒∗ Gn is any sequence
G ⇒ G1 ⇒ · · · ⇒ Gn of direct typed hypergraph transformations.



Compositional Structure of Hypergraph Rewriting III

Double-pushout (DPO) rewriting systems are conventionally
defined over adhesive categories.

Definition

An adhesive category is a category that has pushouts along
monomorphisms, that has pullbacks, and in which every pushout
along a monomorphism satisfies the van-Kampen square condition.



Compositional Structure of Hypergraph Rewriting IV

Definition

A pushout along a monomorphism is a pushout square:

A B

C D

f

g

f ′

g ′

, (4)

of a span of the form:

B A Cg
f , (5)

in which either f or g is a monomorphism.



Compositional Structure of Hypergraph Rewriting V

Definition

A pushout square satisfies the van-Kampen square condition if and
only if, for every commutative diagram of the form:

B ′ A′

B A

D C

D ′ C ′

f ′h

hB
gh

hA

fhf ′

g

f

g ′
hD

g ′
h

hC

, (6)

for which certain subdiagrams are pullbacks, the pushouts and
pullbacks are compatible.



Compositional Structure of Hypergraph Rewriting VI

These subdiagrams are of the form:

B ′ A′

B A

hB

gh

hA

g

, and

A A′

C C ′

f

hA
fh

hC

. (7)

Note that the category of typed hypergraphs is not fully adhesive
(due to arbitrary connectivity of hypergraph vertices, so pushouts
along monomorphisms are not always guaranteed to exist).
However, it is nevertheless partial adhesive, i.e. it forms a full
subcategory C′ of an adhesive category C for which the embedding
functor S : C′ → C preserves monomorphisms, which is sufficient
to define a DPO system.



Multiway Hypergraph Rewriting I

Definition

A multiway evolution graph, denoted Gmultiway , is a directed,
acyclic graph corresponding to the evolution of a (generically
non-confluct) abstract rewriting system (A,→), in which the set of
vertices V (Gmultiway ) corresponds to the set of objects A, and the
directed edge a→ b exists in E (Gmulitway ) if and only if there
exists an application of the rewrite relation → that transforms
object a to object b.

Hence, a directed edge will connect vertices a and b in Gmultiway if
and only if a→ b, and a directed path will connect vertices a and
b if and only if a→∗ b, where →∗ denotes the reflexive transitive
closure of →, i.e. if and only if there exists a finite rewriting
sequence of the form:

a→ a′ → a′′ → · · · → b′ → b. (8)



Multiway Hypergraph Rewriting II

Figure: The multiway evolution graph corresponding to the first three
steps in the non-deterministic evolution history of the hypergraph
substitution system {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}}.



Multiway Hypergraph Rewriting III

Figure: The first three steps in the canonical evolution history (i.e. the
evolution history with canonical updating order) for the hypergraph
substitution system {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}},
as represented by a single path in the multiway evolution graph.



Compositional Structure of Multiway Systems

If the rewrite relation → is an indexed union of subrelations
→=→1 ∪ →2 ∪ . . ., with label set Λ, then the system (A,Λ,→) is
simply a bijective function from A to a subset of the power set of
A indexed by Λ, i.e. P (Λ× A):

p 7→ {(α, q) ∈ Λ× A : p →α q} . (9)

Recall that an F -coalgebra for an endofunctor F : C→ C consists
of an object A in ob (C), equipped with a morphsm α : A→ FA in
hom (C), hence denoted (A, α).
The power set construction on Set is a covariant endofunctor
P : Set→ Set, such that the ARS (A,→) consists of an object A
equipped with an additional morphism of → of Set:

→: A→ PA. (10)



Multiway Systems as Monoidal Categories I

The category MuGraph is symmetric monoidal.
The ordinary composition of morphisms in MuGraph arises from
the fact that productions p1 and p2, yielding an E -related
transformation sequence G ⇒ H ⇒ G ′, can be composed by
means of the concurrency theorem in algebraic graph
transformation theory to obtain an E -concurrent production
p1 ∗E p2, yielding the direct transformation G ⇒ G ′:

H

G G ′

p2p1

p1∗Ep2

. (11)



Multiway Systems as Monoidal Categories II

Likewise, the monoidal composition of morphisms in MuGraph
arises from the fact that productions p1 and p2, yielding
sequentially-independent transformation sequences G ⇒ H1 ⇒ G ′

and G ⇒ H2 ⇒ G ′, can be composed by means of the parallelism
theorem to obtain the parallel production p1 + p2, yielding the
direct transformation G ⇒ G ′:

G

H1 H2

G ′

p1

p1+p2

p2

p2
p1

. (12)



Causal Structure I

Definition

A causal network, denoted Gcausal , is a directed, acyclic graph in
which every vertex in V (Gcausal) corresponds to an application of
an update rule (i.e. an update ‘event’), and in which the directed
edge a→ b exists in E (Gcausal) if and only if:

In (b) ∩Out (a) 6= ∅, (13)

i.e. the input for event b makes use of hyperedges that were
produced by the output of event a.

The transitive reduction of the causal network corresponds to the
Hasse diagram of a causal partial order relation, c.f. the conformal
structure of spacetime.



Causal Structure II

Figure: The causal graphs corresponding to the first three and five steps
in the deterministic evolution history for the set substitution rule
{{x , y} , {x , z}} → {{x , y} , {x ,w} , {y ,w} , {z ,w}}, respectively.



Causal Structure III

Figure: The multiway evolution causal graph (with evolution edges shown
in gray, and causal edges shown in orange) for the set substitution system
{{x , y} , {z , y}} → {{x ,w} , {y ,w} , {z ,w}}.



Evolution Causal Graphs as 2-Categories I

If we have productions p1 and p2:

p1 =

(
L1 K1 R1l1

r1
)
, (14)

p2 =

(
L2 K2 R2l2

r2
)
, (15)

then they may be said to be causally related if L2 \ K2 (i.e. the
“input” of production p2) makes use of (hyper)edges that appear
in R1 \ K1 (i.e. the “output” of production p1):

(L2 \ K2) ∩ (R1 \ K1) 6= ∅. (16)

The category MuCauGraph is now a weak 2-category (causal
relationships between productions form 2-cells within MuGraph).



Evolution Causal Graphs as 2-Categories II

The category MuCauGraph is equipped with two distinct
monoidal structures: ⊗M , arising from parallel composition of
productions (1-cells), and ⊗C , arising from parallel composition of
causal relationship between productions (2-cells).
Strictly speaking, ⊗C forms a partial monoidal structure in the
sense of Coecke and Lal, i.e:

⊗C : CauGraph× CauGraph→ CauGraph, (17)

is a partial bifunctor, namely a bifunctor:

⊗C : CauGraph× CauGraph→ CauGraph, (18)

where CauGraph× CauGraph denotes a subcategory of
CauGraph× CauGraph (known as the domain of definition of
⊗C , denoted dd (⊗C )).



Evolution Causal Graphs as 2-Categories III

(CauGraph,⊗C , I ) is a symmetric strict partial monoidal category,
since every object A in ob (CauGraph) contains at least one
element:

CauGraph (I ,A) 6= ∅, (19)

the unit object I in ob (CauGraph) is terminal, with unique
morphism >A for each object A in ob (CauGraph):

>A : A→ I , (20)

and the monoidal product A⊗C B exists (for objects A and B in
ob (CauGraph) if and only if:

CauGraph (A,B) = [CauGraph (I ,B)] ◦ >A, (21)

CauGraph (B,A) = [CauGraph (I ,A)] ◦ >B . (22)



Homotopies in Abstract Rewriting Systems I

Figure: Multiway evolution graphs produced by the string substitution
rule A→ AB with red and yellow paths highlighted, illustrating the
existence of multiple proofs of the proposition AA→ ABBBABBB.



Homotopies in Abstract Rewriting Systems II

Figure: A multiway evolution graph produced by the string substitution
rule A→ AB, with purple edges corresponding to homotopy maps
between two proofs of the proposition AA→ ABBBABBB.



Homotopies in Abstract Rewriting Systems III

Figure: Multiway evolution graphs produced by the string substitution
rule A→ AB, with homotopy maps introduced in an ad hoc fashion
(left) vs. homotopy maps introduced via explicit inclusion of
additional/higher-order rewriting rules (right).



Homotopies in Abstract Rewriting Systems IV

Figure: A multiway evolution graph produced by the string substitution
rule A→ AB, with four highlighted paths corresponding to two proofs of
the proposition AA→ ABBBBABBBB and two further proofs of the
proposition ABAB → ABBBABBB.



Homotopies in Abstract Rewriting Systems V

Figure: A multiway evolution graph produced by the string substitution
rule A→ AB, with purple edges corresponding to homotopy 2-cells
between red paths, and orange paths corresponding to homotopy 2-cells
between yellow paths, such that the lighter arrows correspond to
homotopy 3-cells between 2-cells.



Homotopies in Abstract Rewriting Systems VI

Figure: A multiway evolution graph produced by the string substitution
rule A→ AB, with purple arrows corresponding to homotopy 3-cells
between the 2-cells indicated by the red and yellow paths.



Homotopies in Abstract Rewriting Systems VII

Figure: Multiway evolution graphs produced by the string substitution
rule A→ AB, with higher homotopy maps introduced in an ad hoc
fashion (left) vs. higher homotopy maps introduced via explicit inclusion
of additional/higher-order rewriting rules (right).



A Higher Categorical Approach I

Upon inclusion of 2-cells between paths, the resulting multiway
system becomes a double category :

Definition

A double category D, denoted D1 D0 is any category in

which:

1 The objects of D are the objects of D0;

2 The vertical morphisms of D are the morphisms of D0;

3 The horizontal morphisms of D are the objects of D1;

4 The 2-cells of D are the morphisms of D1.



A Higher Categorical Approach II

2-cells in the double category D can be represented by the
following commutative square (with φ being the 2-cell):

A C

B D

f

l m

g

φ

. (23)

Upon inclusion of appropriate inversion rules, one obtains a double
groupoid.



A Higher Categorical Approach III

Likewise, upon inclusion of 3-cells between paths, the resulting
multiway system becomes a 3-fold category :

Definition

A 3-fold category, denoted D2 D1 D0, is any

category in which:

1 The objects are the objects of D0;

2 The vertical arrows (1-morphisms) are the morphisms of D0;

3 The horizontal arrows (1-morphisms)) are the objects of D1;

4 The vertical squares (2-morphisms) are the morphisms of D1;

5 The horizontal squares (2-morphisms) are the objects of D2;

6 The cubes bounded by vertical and horizontal squares
(3-morphisms) are the morphisms of D2.



A Higher Categorical Approach IV

3-cells in a 3-fold category can be represented by the following
commutative cube (with φ being the 3-cell):

A B

A′ B ′

C D

C ′ D ′

f

a

h

h′

b

f ′

k ′g

c
d

g ′

k ψ

η

ω

α

β
(24)



A Higher Categorical Approach V

Continuation of this procedure (assuming admissibility of higher
rewriting rules up to order n − 1) yields an n-fold category:

Mn−1 Mn−2 · · · M1 M0, (25)

The n→∞ limit (assuming invertible rewriting rules, and
assuming that all such rules are admissible) yields an ∞-groupoid.
The classifying space of these ∞-groupoids is then an
(∞, 1)-topos, as seen in classical homotopy theory.
This has some potentially interesting implications regarding the
emergence of spatial structure in fundamental physics(?)



Implications for Quantum Foundations

Multiway systems inherit the compositional structure of a
Hartle-Hawking wave function from the category FdHilb.

Figure: The default foliation of the multiway evolution graph for the set
substitution system {{x , y} , {y , z}} → {{w , y} , {y ,w} , {x ,w}}.



Implications for General Relativity I

Hypergraphs inherit the compositional structure of Riemannian
manifolds (and causal graphs inherit the structure of Lorentzian
manifolds) from the category whose objects are Riemannian
manifolds (M, gM) and whose morphisms
f : (M, gM)→ (N , gN ) are smooth maps M→N (such that,
for each m ∈M, the symmetric bilinear form gM − f ∗gN on the
tangent fibre at m is positive-semidefinite).

Figure: Spatial hypergraphs corresponding to the initial hypersurface
configuration of the head-on collision of two Schwarzschild black holes at
time t = 0M, with resolutions of 200, 400 and 800 vertices, respectively,
colored using the local curvature in the Schwarzschild conformal factor ψ.



Implications for General Relativity II

Figure: Spatial hypergraphs corresponding to the intermediate
hypersurface configuration of the head-on collision of two Schwarzschild
black holes at time t = 6M, with resolutions of 200, 400 and 800
vertices, respectively, colored using the local curvature in the
Schwarzschild conformal factor ψ.



Implications for General Relativity III

Figure: Spatial hypergraphs corresponding to the final hypersurface
configuration of the head-on collision of Schwarzschild black holes at
time t = 12M, with resolutions of 200, 400 and 800 vertices, respectively,
colored using the local curvature in the Schwarzschild conformal factor ψ.



Implications for General Relativity IV

Figure: Spatial hypergraphs corresponding to the post-ringdown
hypersurface configuration of the head-on collision of Schwarzschild black
holes at time t = 24M, with resolutions of 200, 400 and 800 vertices,
respectively, colored using the local curvature in the Schwarzschild
conformal factor ψ.



Applications to Diagrammatic Theorem-Proving I

Figure: Multiway evolution causal graphs corresponding to the first five
steps in the non-deterministic evolution history for the hypergraph
substitution rule {{x , y} , {x , z}} → {{x , z} , {x ,w} , {w , y}}, with a
highlighted path (right) between vertices {{0, 0} , {0, 0}} and
{{0, 1} , {1, 2} , {2, 0} , {0, 3} , {3, 4} , {4, 5} , {5, 0}}.



Applications to Diagrammatic Theorem-Proving II

Here, we exploit the causal structure ⊗C of MuCauGraph to
construct a refutation-complete proof calculus (based on the
construction of Bachmair and Ganzinger) for diagrammatic logic,
with inference rules of selective resolution:

Λ ∪ {u ≈ v} =⇒ Π

Λσ =⇒ Πσ , (26)

selective superposition:

Γ =⇒ ∆ ∪ {s ≈ t} {u [s ′] ≈ v} ∪ Λ =⇒ Π

{u [t]σ ≈ vσ} ∪ Γσ ∪ Λσ =⇒ ∆σ ∪ Πσ , (27)

and ordered resolution:

Γ =⇒ ∆ ∪ {P (s1, . . . , sn) ≈ tt} {P (t1, . . . , tn) ≈ tt} ∪ Λ =⇒ Π

Γσ ∪ Λσ =⇒ ∆σ ∪ Πσ .
(28)



Applications to Diagrammatic Theorem-Proving III

Here, u ≈ v is any occurrence of an equation within the clause:

{u ≈ v} ∪ Λ =⇒ Π, (29)

that is maximal with respect to the (causal) selection function S .



Applications to Diagrammatic Theorem-Proving IV





































































Figure: The proof graph corresponding to the proof of the proposition
{{0, 0} , {0, 0}} → {{0, 1} , {1, 2} , {2, 0} , {0, 3} , {3, 4} , {4, 5} , {5, 0}},
subject to the hypergraph substitution rule
{{x , y} , {x , z}} → {{x , z} , {x ,w} , {w , y}}.



Applications to Quantum Circuit Simplification I

Both open and closed hypergraphs are special cases of full typed
hypergraphs.
For every hypergraph G , there exists a distinct hypergraph TG
(the type hypergraph), with a total hypergraph morphism typeG
(the typing morphism):

typeG : G → TG . (30)

The following type graph, denoted 2G , can be used to distinguish
between “true” vertices and “dummy” vertices:

V ε . (31)

The category OHGraph of open hypergraph string diagrams is
therefore given by a subcategory of the slice category
(HGraph ↓ 2G), where HGraph designates the category of closed
hypergraph string diagrams.



Applications to Quantum Circuit Simplification II

A construction of Kerber allows us to extend this calculus to
higher-order diagrammatic logics by defining a morphism Θ from
the nth-order diagrammatic logic Ln to the first-order multisorted
logic (with equality) L1sort :

Θ : Ln (S)→ L1sort (Θ (S)) , (32)

with S and Θ (S) denoting the signatures of the logics Ln and
L1sort , respectively, such that sets of formulas F in the higher-order
logic Ln (S) are always mapped to sets of formulas in the
first-order multisorted logic L1sort (Θ (S)):

Θ : F (Ln (S))→ F
(
L1sort (Θ (S))

)
. (33)



Applications to Quantum Circuit Simplification III

 

















 

















Figure: The statement of unitarity of the CNOT gate (left), represented
as a diagrammatic equality theorem in the ZX-calculus, along with the
corresponding proof graph for this theorem (right).



Applications to Quantum Circuit Simplification IV

Figure: Plots showing the time complexity (in seconds) of the automated
theorem-proving algorithm when reducing randomly-generated Clifford
circuits with sizes up to 3000 gates down to pseudo-normal form, both
with (right) and without (left) causal optimization.


