

When completeness is not enough: an introduction to algebraisable logics

Georgi Nakov

MSP-101

December 1, 2021

joint work with Davide Quadrellaro

Outline

Algebraisable logic is a key concept from the field of Abstract Algebraic Logic (AAL) — the general study of relations between logics and algebras.

- 1 Basic notion and results from AAL
- 2 Inquisitive logics InqB and InqI
- 3 Algebraising weak logics

History

A brief history of AAL:

History

A brief history of AAL:

- 1840s-1850s — G. Boole and A. De Morgan developed algebraic theories of Boolean algebras and relations algebras.

History

A brief history of AAL:

- 1840s-1850s — G. Boole and A. De Morgan developed algebraic theories of Boolean algebras and relations algebras.
- 1920s-1930s — C.S. Lewis and A. Heyting gave the first axiomatizations of modal and intuitionistic logics with focus on logical validity.

History

A brief history of AAL:

- 1840s-1850s — G. Boole and A. De Morgan developed algebraic theories of Boolean algebras and relations algebras.
- 1920s-1930s — C.S. Lewis and A. Heyting gave the first axiomatizations of modal and intuitionistic logics with focus on logical validity.
- 1920s — J. Lukasiewicz, A. Lindenbaum and A. Tarski studied logic as a consequence relation. During the same period, algebras started appearing as formal semantics for logical languages

History

A brief history of AAL:

- 1840s-1850s — G. Boole and A. De Morgan developed algebraic theories of Boolean algebras and relations algebras.
- 1920s-1930s — C.S. Lewis and A. Heyting gave the first axiomatizations of modal and intuitionistic logics with focus on logical validity.
- 1920s — J. Lukasiewicz, A. Lindenbaum and A. Tarski studied logic as a consequence relation. During the same period, algebras started appearing as formal semantics for logical languages
- 1970s — H. Rasiowa presented general theory of algebraisation for implicative logic, predecessor to AAL

History

A brief history of AAL:

- 1840s-1850s — G. Boole and A. De Morgan developed algebraic theories of Boolean algebras and relations algebras.
- 1920s-1930s — C.S. Lewis and A. Heyting gave the first axiomatizations of modal and intuitionistic logics with focus on logical validity.
- 1920s — J. Lukasiewicz, A. Lindenbaum and A. Tarski studied logic as a consequence relation. During the same period, algebras started appearing as formal semantics for logical languages
- 1970s — H. Rasiowa presented general theory of algebraisation for implicative logic, predecessor to AAL
- 1980s — W. Blok and D. Pigozzi introduced the concept of algebraisable logic. Their work is taken to be the origin of Abstract Algebraic logic.

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

- Algebraisable logics

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

- Algebraisable logics
- Isomorphism theorems between deductive filters and congruences.

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

- Algebraisable logics
- Isomorphism theorems between deductive filters and congruences.
- Equational completeness theorems and the Tarski - Lindenbaum process

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

- Algebraisable logics
- Isomorphism theorems between deductive filters and congruences.
- Equational completeness theorems and the Tarski - Lindenbaum process
- Matrix semantics and the Leibniz congruence

Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

- Algebraisable logics
- Isomorphism theorems between deductive filters and congruences.
- Equational completeness theorems and the Tarski - Lindenbaum process
- Matrix semantics and the Leibniz congruence
- Various bridge theorems
 - Example: An finitary and finitely algebraisable logic L has the Deduction-detachment property iff its equivalent algebraic semantics has equationally definable principal relative congruences.

Logic as a consequence relation

Fix a countable set of variables AT in a signature \mathcal{L} .

Let $\mathcal{Fm}_{\mathcal{L}}(\text{AT})$ or simply \mathcal{Fm} be free term algebra over \mathcal{L} .

Logic as a consequence relation

Fix a countable set of variables AT in a signature \mathcal{L} .

Let $\mathcal{Fm}_{\mathcal{L}}(\text{AT})$ or simply \mathcal{Fm} be free term algebra over \mathcal{L} .

A **consequence relation** is a relation $\vdash \subseteq \mathcal{P}(\mathcal{Fm}) \times \mathcal{Fm}$, s.t. for all $\Gamma \cup \Delta \cup \{\varphi, \psi\} \subseteq \mathcal{Fm}$:

- ① if $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$;
- ② if $\Gamma \vdash \varphi$ for all $\varphi \in \Delta$ and $\Delta \vdash \psi$, then $\Gamma \vdash \psi$.

Logic as a consequence relation

Fix a countable set of variables AT in a signature \mathcal{L} .

Let $\mathcal{Fm}_{\mathcal{L}}(\text{AT})$ or simply \mathcal{Fm} be free term algebra over \mathcal{L} .

A **consequence relation** is a relation $\vdash \subseteq \mathcal{P}(\mathcal{Fm}) \times \mathcal{Fm}$, s.t. for all $\Gamma \cup \Delta \cup \{\varphi, \psi\} \subseteq \mathcal{Fm}$:

- ① if $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$;
- ② if $\Gamma \vdash \varphi$ for all $\varphi \in \Delta$ and $\Delta \vdash \psi$, then $\Gamma \vdash \psi$.

A **substitution** is an endomorphism $\sigma : \mathcal{Fm} \rightarrow \mathcal{Fm}$.

Logic as a consequence relation

Fix a countable set of variables AT in a signature \mathcal{L} .

Let $\mathcal{Fm}_{\mathcal{L}}(\text{AT})$ or simply \mathcal{Fm} be free term algebra over \mathcal{L} .

A **consequence relation** is a relation $\vdash \subseteq \mathcal{P}(\mathcal{Fm}) \times \mathcal{Fm}$, s.t. for all $\Gamma \cup \Delta \cup \{\varphi, \psi\} \subseteq \mathcal{Fm}$:

- ① if $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$;
- ② if $\Gamma \vdash \varphi$ for all $\varphi \in \Delta$ and $\Delta \vdash \psi$, then $\Gamma \vdash \psi$.

A **substitution** is an endomorphism $\sigma : \mathcal{Fm} \rightarrow \mathcal{Fm}$.

A **logic** of type \mathcal{L} is a consequence relation \vdash on the set $\mathcal{Fm}_{\mathcal{L}}$ that is closed under **uniform substitution**:

- ③ For all substitutions σ , if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma[\varphi]$.

Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a consequence relation?

Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a consequence relation?

Consider the following logics:

Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a consequence relation?

Consider the following logics:

- Global consequence of modal system K:

$$K_g = \{(\Gamma, \varphi) : \forall \langle W, R, v \rangle, \text{ if } w, v \Vdash \Gamma \text{ for all } w \in W, \\ \text{ then } w, v \Vdash \varphi \text{ for all } w \in W\}$$

Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a consequence relation?

Consider the following logics:

- Global consequence of modal system K:

$$K_g = \{(\Gamma, \varphi) : \forall \langle W, R, v \rangle, \text{ if } w, v \Vdash \Gamma \text{ for all } w \in W, \\ \text{ then } w, v \Vdash \varphi \text{ for all } w \in W\}$$

- Local consequence of K:

$$K_l = \{(\Gamma, \varphi) : \forall \langle W, R, v \rangle, \forall w \in W, \text{ if } v, w \Vdash \Gamma \text{ then } w, v \Vdash \varphi\}$$

Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a consequence relation?

Consider the following logics:

- Global consequence of modal system K :

$$K_g = \{(\Gamma, \varphi) : \forall \langle W, R, v \rangle, \text{ if } w, v \Vdash \Gamma \text{ for all } w \in W, \\ \text{ then } w, v \Vdash \varphi \text{ for all } w \in W\}$$

- Local consequence of K :

$$K_l = \{(\Gamma, \varphi) : \forall \langle W, R, v \rangle, \forall w \in W, \text{ if } v, w \Vdash \Gamma \text{ then } w, v \Vdash \varphi\}$$

They have the same theorems, but $x \vdash_{K_g} \Box x$, but $x \not\vdash_{K_l} \Box x$.

Algebraic semantics

An **equation** is an expression of the form $\varepsilon \approx \delta$, where ε and δ are \mathcal{L} -terms.

Algebraic semantics

An **equation** is an expression of the form $\varepsilon \approx \delta$, where ε and δ are \mathcal{L} -terms.

Given a class of \mathcal{L} -algebras \mathbf{Q} , the **equational consequence** relation $\vDash_{\mathbf{Q}} \subseteq \mathcal{P}(Eq) \times Eq$ is defined as:

$$\begin{aligned}\Theta \vDash_{\mathbf{Q}} \varepsilon \approx \delta \iff & \text{for all } \mathcal{A} \in \mathbf{Q} \text{ and for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}) \\ & \text{if } h(x) \approx h(y) \text{ for all } x \approx y \in \Theta, \text{ then } h(\varepsilon) \approx h(\delta).\end{aligned}$$

Algebraic semantics

An **equation** is an expression of the form $\varepsilon \approx \delta$, where ε and δ are \mathcal{L} -terms.

Given a class of \mathcal{L} -algebras \mathbf{Q} , the **equational consequence** relation $\vDash_{\mathbf{Q}} \subseteq \mathcal{P}(Eq) \times Eq$ is defined as:

$$\Theta \vDash_{\mathbf{Q}} \varepsilon \approx \delta \iff \text{for all } \mathcal{A} \in \mathbf{Q} \text{ and for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}) \\ \text{if } h(x) \approx h(y) \text{ for all } x \approx y \in \Theta, \text{ then } h(\varepsilon) \approx h(\delta).$$

The class \mathbf{Q} is an **algebraic semantics** for a logic \vdash of type \mathcal{L} if there exists a set of equations $\tau(x)$, s.t.:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi).$$

Examples

- CPC \leftrightarrow **BA** via $\tau = \{x \approx 1\}$.

Examples

- CPC \leftrightarrow **BA** via $\tau = \{x \approx 1\}$.
- CPC \leftrightarrow **{2}** via $\tau = \{x \approx 1\}$.

Examples

- CPC \leftrightarrow **BA** via $\tau = \{x \approx 1\}$.
- CPC \leftrightarrow **{2}** via $\tau = \{x \approx 1\}$.
- IPC \leftrightarrow **HA** via $\tau = \{x \approx 1\}$.

Examples

- CPC \leftrightarrow **BA** via $\tau = \{x \approx 1\}$.
- CPC \leftrightarrow **{2}** via $\tau = \{x \approx 1\}$.
- IPC \leftrightarrow **HA** via $\tau = \{x \approx 1\}$.
- K_g \leftrightarrow Modal algebras, BCK logic \leftrightarrow BCK algebras
- No subclass of Modal Algebras is algebraic semantics for K_I .

Examples

- CPC \leftrightarrow **BA** via $\tau = \{x \approx 1\}$.
- CPC \leftrightarrow **{2}** via $\tau = \{x \approx 1\}$.
- IPC \leftrightarrow **HA** via $\tau = \{x \approx 1\}$.
- K_g \leftrightarrow Modal algebras, BCK logic \leftrightarrow BCK algebras
- No subclass of Modal Algebras is algebraic semantics for K_I .
- Slightly more unsettling:
By Glivenko's theorem, $\Gamma \vdash_{\text{CPC}} \varphi \iff \{\neg\neg\gamma : \gamma \in \Gamma\} \vdash_{\text{IPC}} \neg\neg\varphi$.
Then it follows that CPC \leftrightarrow **HA** via $\tau = \{\neg\neg x \approx 1\}$.

Matrix semantics

A logical \mathcal{L} -matrix is a pair $\langle \mathcal{A}, D \rangle$, where \mathcal{A} is an \mathcal{L} -algebra and $D \subseteq A$ is a set of designated elements (truth set).

Matrix semantics

A logical \mathcal{L} -matrix is a pair $\langle \mathcal{A}, D \rangle$, where \mathcal{A} is an \mathcal{L} -algebra and $D \subseteq A$ is a set of designated elements (truth set).

The matrix $\langle \mathcal{A}, D \rangle$ is a model for a logic \vdash , if :

$$\begin{aligned}\Gamma \vdash \varphi \implies & \text{ for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}), \\ & h(\gamma) \in D \text{ for all } \gamma \in \Gamma \text{ implies } h(\varphi) \in D\end{aligned}$$

Matrix semantics

A logical \mathcal{L} -matrix is a pair $\langle \mathcal{A}, D \rangle$, where \mathcal{A} is an \mathcal{L} -algebra and $D \subseteq A$ is a set of designated elements (truth set).

The matrix $\langle \mathcal{A}, D \rangle$ is a model for a logic \vdash , if :

$$\begin{aligned}\Gamma \vdash \varphi \implies & \text{ for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}), \\ & h(\gamma) \in D \text{ for all } \gamma \in \Gamma \text{ implies } h(\varphi) \in D\end{aligned}$$

In case D is equationally definable, the definition reduces to the one for algebraic semantics.

A logical \mathcal{L} -matrix is a pair $\langle \mathcal{A}, D \rangle$, where \mathcal{A} is an \mathcal{L} -algebra and $D \subseteq A$ is a set of designated elements (truth set).

The matrix $\langle \mathcal{A}, D \rangle$ is a model for a logic \vdash , if :

$$\begin{aligned}\Gamma \vdash \varphi \implies & \text{ for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}), \\ & h(\gamma) \in D \text{ for all } \gamma \in \Gamma \text{ implies } h(\varphi) \in D\end{aligned}$$

In case D is equationally definable, the definition reduces to the one for algebraic semantics.

Theorem

Every logic is complete wrt to the class of its matrix models.

Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can have at most one?

Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can have at most one? Observe the following:

- ➊ Although both $\models_{\mathbf{BA}}$ and $\models_{\mathbf{HA}}$ interpret $\vdash_{\mathbf{CPC}}$:
 - only the **BA** interpretation can be reversed by a set of formulas $\Delta(t', t'')$:

$$\Delta(x, y) := \{x \rightarrow y, y \rightarrow x\}$$

$$\Delta(\Theta) \vdash_{\mathbf{CPC}} \Delta(\varepsilon, \beta) \iff \Theta \models_{\mathbf{BA}} \varepsilon \approx \delta;$$

Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can have at most one? Observe the following:

- ➊ Although both $\models_{\mathbf{BA}}$ and $\models_{\mathbf{HA}}$ interpret $\vdash_{\mathbf{CPC}}$:
 - only the **BA** interpretation can be reversed by a set of formulas $\Delta(t', t'')$:

$$\Delta(x, y) := \{x \rightarrow y, y \rightarrow x\}$$

$$\Delta(\Theta) \vdash_{\mathbf{CPC}} \Delta(\varepsilon, \beta) \iff \Theta \models_{\mathbf{BA}} \varepsilon \approx \delta;$$

- both directions are provably inverse to one another:

$$\begin{aligned}\varphi \dashv\vdash_{\mathbf{CPC}} \Delta(\tau(\varphi)) \\ \varphi \approx \psi \models_{\mathbf{BA}} \tau(\Delta(\varphi, \psi)).\end{aligned}$$

Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can have at most one? Observe the following:

- ➊ Although both $\models_{\mathbf{BA}}$ and $\models_{\mathbf{HA}}$ interpret $\vdash_{\mathbf{CPC}}$:
 - only the **BA** interpretation can be reversed by a set of formulas $\Delta(t', t'')$:

$$\Delta(x, y) := \{x \rightarrow y, y \rightarrow x\}$$

$$\Delta(\Theta) \vdash_{\mathbf{CPC}} \Delta(\varepsilon, \beta) \iff \Theta \models_{\mathbf{BA}} \varepsilon \approx \delta;$$

- both directions are provably inverse to one another:

$$\begin{aligned}\varphi \dashv\vdash_{\mathbf{CPC}} \Delta(\tau(\varphi)) \\ \varphi \approx \psi \models_{\mathbf{BA}} \tau(\Delta(\varphi, \psi)).\end{aligned}$$

- ➋ Although both $\models_{\mathbf{BA}}$ and $\models_{\{2\}}$ interpret $\vdash_{\mathbf{CPC}}$, only **BA** is a class of equationally definable algebras, i.e. a variety.

Quasi equations and Quasivarieties

A **quasi equation** is an expression of the form $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$.

Quasi equations and Quasivarieties

A **quasi equation** is an expression of the form $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$.

We write $\mathbf{Q} \models \bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$ if $\Theta \vDash_Q \varepsilon \approx \delta$ for $\varepsilon_i \approx \delta_i \in \Theta$.

Quasi equations and Quasivarieties

A **quasi equation** is an expression of the form $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$.

We write $\mathbf{Q} \models \bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$ if $\Theta \vDash_Q \varepsilon \approx \delta$ for $\varepsilon_i \approx \delta_i \in \Theta$.

$$\mathbb{I}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \cong \mathcal{B} \text{ for some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{S}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a subalgebra of some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{P}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a direct product of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

$$\mathbb{P}_U(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is an ultraproduct of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

Quasi equations and Quasivarieties

A **quasi equation** is an expression of the form $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$.

We write $\mathbf{Q} \models \bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$ if $\Theta \vDash_Q \varepsilon \approx \delta$ for $\varepsilon_i \approx \delta_i \in \Theta$.

$$\mathbb{I}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \cong \mathcal{B} \text{ for some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{S}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a subalgebra of some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{P}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a direct product of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

$$\mathbb{P}_U(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is an ultraproduct of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

A class of algebras \mathbf{Q} closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , \mathbb{P}_U is a **quasivariety**.

Quasi equations and Quasivarieties

A **quasi equation** is an expression of the form $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$.

We write $\mathbf{Q} \models \bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$ if $\Theta \vDash_Q \varepsilon \approx \delta$ for $\varepsilon_i \approx \delta_i \in \Theta$.

$$\mathbb{I}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \cong \mathcal{B} \text{ for some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{S}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a subalgebra of some } \mathcal{B} \in \mathbf{Q}\}$$

$$\mathbb{P}(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is a direct product of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

$$\mathbb{P}_U(\mathbf{Q}) := \{\mathcal{A} : \mathcal{A} \text{ is an ultraproduct of } \{\mathcal{B}_i\}_{i \in I} \subseteq \mathbf{Q}\}$$

A class of algebras \mathbf{Q} closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , \mathbb{P}_U is a **quasivariety**.

Theorem (Maltsev)

A class of algebras \mathbf{Q} is a quasivariety if and only if it can be axiomatized by a set of quasi-equations.

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety **Q** if:

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety \mathbf{Q} if:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi) \quad (\text{Alg1})$$

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety \mathbf{Q} if:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}} \eta \approx \delta \quad (\text{Alg2})$$

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety \mathbf{Q} if:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}} \eta \approx \delta \quad (\text{Alg2})$$

$$\varphi \dashv\vdash \Delta[\tau(\varphi)] \quad (\text{Alg3})$$

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety \mathbf{Q} if:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}} \eta \approx \delta \quad (\text{Alg2})$$

$$\varphi \dashv\vdash \Delta[\tau(\varphi)] \quad (\text{Alg3})$$

$$\eta \approx \delta \models \vDash_{\mathbf{Q}} \tau[\Delta(\eta, \delta)]. \quad (\text{Alg4})$$

Algebraizability

Let $\tau : Fm \rightarrow \mathcal{P}(Eq)$ and $\Delta : Eq \rightarrow \mathcal{P}(Fm)$ be structural transformers.

A logic \vdash is **algebraisable** (Blok and Pigozzi 1989) by a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a quasi-variety \mathbf{Q} if:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}} \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}} \eta \approx \delta \quad (\text{Alg2})$$

$$\varphi \dashv\vdash \Delta[\tau(\varphi)] \quad (\text{Alg3})$$

$$\eta \approx \delta \models_{\mathbf{Q}} \tau[\Delta(\eta, \delta)]. \quad (\text{Alg4})$$

We then call \mathbf{Q} the **equivalent algebraic semantics** for \vdash .

Algebraizability

- CPC is algebraised by **BA**, $\tau(x) := \{x \approx 1\}$ and $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.

Algebraizability

- CPC is algebraised by **BA**, $\tau(x) := \{x \approx 1\}$ and $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.
- IPC is algebraised by **HA**, $\tau(x) := \{x \approx 1\}$, $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.

Algebraizability

- CPC is algebraised by **BA**, $\tau(x) := \{x \approx 1\}$ and $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.
- IPC is algebraised by **HA**, $\tau(x) := \{x \approx 1\}$, $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.
- K_I is not algebraisable.

Algebraizability

- CPC is algebraised by **BA**, $\tau(x) := \{x \approx 1\}$ and $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.
- IPC is algebraised by **HA**, $\tau(x) := \{x \approx 1\}$, $\Delta(x, y) = \{x \rightarrow y, y \rightarrow x\}$.
- K_I is not algebraisable.

Theorem (Uniqueness of Equivalent Semantics)

If $(\mathbf{Q}_1, \tau_1, \Delta_1)$ and $(\mathbf{Q}_2, \tau_2, \Delta_2)$ witness the algebraisability of logic \vdash , then:

- (1) $\mathbf{Q}_1 = \mathbf{Q}_2$
- (2) $\tau_1(x) \dashv\vdash_{K_I} \tau_2(x)$
- (3) $\Delta_1(x, y) \dashv\vdash \Delta_2(x, y)$.

Note: Proof of (3) relies on substitution invariance.

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While [truth-conditional semantics](#) could model declarative content, it is not suitable for interrogatives:

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While [truth-conditional semantics](#) could model declarative content, it is not suitable for interrogatives:

It is raining.

Is it raining?

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While [truth-conditional semantics](#) could model declarative content, it is not suitable for interrogatives:

It is raining.

Is it raining?

Consider the embedded case:

I know that it is raining.

I know whether it is raining.

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While [truth-conditional semantics](#) could model declarative content, it is not suitable for interrogatives:

It is raining.

Is it raining?

Consider the embedded case:

I know that it is raining.

I know whether it is raining.

Language of inquisitive logic:

- The set of formulas of InqB is:

$$\varphi := p \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \varphi \vee\vee \varphi$$

Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While [truth-conditional semantics](#) could model declarative content, it is not suitable for interrogatives:

It is raining.

Is it raining?

Consider the embedded case:

I know that it is raining.

I know whether it is raining.

Language of inquisitive logic:

- The set of formulas of InqB is:

$$\varphi := p \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \varphi \vee\vee \varphi$$

- for the formulas of InqI, we drop the classical disjunction $\varphi \vee \varphi$.

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$
- $M, t \models \varphi \vee\vee \psi \iff M, t \models \varphi \text{ or } M, t \models \psi.$

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$
- $M, t \models \varphi \vee\vee \psi \iff M, t \models \varphi \text{ or } M, t \models \psi.$

Semantics for InqI is defined similarly, but on an intuitionistic Kripke model $\langle W, R, v \rangle$.

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$
- $M, t \models \varphi \vee\vee \psi \iff M, t \models \varphi \text{ or } M, t \models \psi.$

Semantics for InqI is defined similarly, but on an intuitionistic Kripke model $\langle W, R, v \rangle$.

DNE is valid for all $\vee\vee$ -free formulas in InqB.

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the support semantics of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$
- $M, t \models \varphi \vee\vee \psi \iff M, t \models \varphi \text{ or } M, t \models \psi.$

Semantics for InqI is defined similarly, but on an intuitionistic Kripke model $\langle W, R, v \rangle$.

DNE is valid for all $\vee\vee$ -free formulas in InqB.

The split property $(p \rightarrow q \vee\vee r) \rightarrow (p \rightarrow q) \vee\vee (p \rightarrow r)$ is a theorem of InqI, but replacing p with $q \vee\vee r$ yields invalid formula.

Inquisitive Logic

Given a possible world model $M = \langle W, V \rangle$ and a team $t \subseteq W$, define the **support semantics** of InqB:

- $M, t \models p \iff V(w, p) = 1 \text{ for all } w \in t$
- $M, t \models \perp \iff t = \emptyset$
- $M, t \models \varphi \wedge \psi \iff M, t \models \varphi \text{ and } M, t \models \psi.$
- $M, t \models \varphi \vee \psi \iff \exists t', t'' \text{ s.t. } t = t' \cup t'', M, t' \models \varphi \text{ and } M, t'' \models \psi.$
- $M, t \models \varphi \rightarrow \psi \iff \forall t' \subseteq t, M, t' \models \varphi \text{ implies } M, t' \models \psi.$
- $M, t \models \varphi \vee\vee \psi \iff M, t \models \varphi \text{ or } M, t \models \psi.$

Semantics for InqI is defined similarly, but on an intuitionistic Kripke model $\langle W, R, v \rangle$.

DNE is valid for all $\vee\vee$ -free formulas in InqB.

The split property $(p \rightarrow q \vee\vee r) \rightarrow (p \rightarrow q) \vee\vee (p \rightarrow r)$ is a theorem of InqI, but replacing p with $q \vee\vee r$ yields invalid formula.

As a result, both InqB and InqI are not closed under uniform substitution.

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL.

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

- Public Announcement Logic and various epistemic logics

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

- Public Announcement Logic and various epistemic logics
- Logic of Pure Provability

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

- Public Announcement Logic and various epistemic logics
- Logic of Pure Provability
- various logics based on team semantics (logic of dependence)

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

- Public Announcement Logic and various epistemic logics
- Logic of Pure Provability
- various logics based on team semantics (logic of dependence)
- negative variants of intermediate logics (intermediate logics + $\neg\neg p \rightarrow p$ for atomic propositions p)

Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL. Nonetheless, they have corresponding algebraic semantics (Bezhanishvili, Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

- Public Announcement Logic and various epistemic logics
- Logic of Pure Provability
- various logics based on team semantics (logic of dependence)
- negative variants of intermediate logics (intermediate logics + $\neg\neg p \rightarrow p$ for atomic propositions p)

We shall extend AAL to take account for logics with weaker forms of substitution.

Weak Logics

Let $\text{Subst} := \text{Hom}(\mathcal{Fm}, \mathcal{Fm})$ and let AT be the set of substitutions σ s.t.
 $\sigma[\text{AT}] \subseteq \text{AT}$.

Weak Logics

Let $\text{Subst} := \text{Hom}(\mathcal{Fm}, \mathcal{Fm})$ and let AT be the set of substitutions σ s.t.
 $\sigma[\text{AT}] \subseteq \text{AT}$.

Given a class of substitutions $\text{AT} \subseteq C \subseteq \text{Subst}$, a *C-logic* is a consequence relation \vdash , s.t.

$$\text{for all } \sigma \in C, \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi).$$

Weak Logics

Let $\text{Subst} := \text{Hom}(\mathcal{Fm}, \mathcal{Fm})$ and let AT be the set of substitutions σ s.t.
 $\sigma[\text{AT}] \subseteq \text{AT}$.

Given a class of substitutions $\text{AT} \subseteq C \subseteq \text{Subst}$, a **C -logic** is a consequence relation \vdash , s.t.

$$\text{for all } \sigma \in C, \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi).$$

A **Weak Logic** is a C -logic for some $\text{AT} \subseteq C \subseteq \text{Subst}$.

Weak Logics

Let $\text{Subst} := \text{Hom}(\mathcal{Fm}, \mathcal{Fm})$ and let AT be the set of substitutions σ s.t.
 $\sigma[\text{AT}] \subseteq \text{AT}$.

Given a class of substitutions $\text{AT} \subseteq C \subseteq \text{Subst}$, a **C -logic** is a consequence relation \vdash , s.t.

$$\text{for all } \sigma \in C, \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi).$$

A **Weak Logic** is a C -logic for some $\text{AT} \subseteq C \subseteq \text{Subst}$. Any (standard) logic is a weak logic for $C = \text{Subst}$.

Weak Logics

Let $\text{Subst} := \text{Hom}(\mathcal{Fm}, \mathcal{Fm})$ and let AT be the set of substitutions σ s.t.
 $\sigma[\text{AT}] \subseteq \text{AT}$.

Given a class of substitutions $\text{AT} \subseteq C \subseteq \text{Subst}$, a **C -logic** is a consequence relation \vdash , s.t.

$$\text{for all } \sigma \in C, \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi).$$

A **Weak Logic** is a C -logic for some $\text{AT} \subseteq C \subseteq \text{Subst}$. Any (standard) logic is a weak logic for $C = \text{Subst}$. (generalises the notion of weak-logic from Ciardelli 2009).

Core of a Weak logic

We define the set of **admissible substitutions** AS of a C -logic \vdash as:

$$AS(\vdash) = \{\sigma \in \text{Subst} : \forall \Gamma \cup \{\varphi\} \subseteq Fm \quad \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Core of a Weak logic

We define the set of **admissible substitutions** AS of a C -logic \vdash as:

$$AS(\vdash) = \{\sigma \in \text{Subst} : \forall \Gamma \cup \{\varphi\} \subseteq Fm \ \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Admissible Substitutions of InqB

$$AS(\text{InqB}) = \{\sigma : \forall p \in \text{AT} \ \sigma(p) \equiv_{\text{InqB}} \neg\neg\sigma(p)\}.$$

Core of a Weak logic

We define the set of **admissible substitutions** AS of a C -logic \vdash as:

$$AS(\vdash) = \{\sigma \in \text{Subst} : \forall \Gamma \cup \{\varphi\} \subseteq Fm \ \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Admissible Substitutions of InqB

$$AS(\text{InqB}) = \{\sigma : \forall p \in \text{AT} \ \sigma(p) \equiv_{\text{InqB}} \neg\neg\sigma(p)\}.$$

The **core** of a C -logic \vdash is the set $core(\vdash) \subseteq Fm$ of all formulas φ such that $\varphi = \sigma(p)$ for some $p \in \text{AT}$ and $\sigma \in C$, s.t. $\sigma(q) = q$ for $q \neq p$.

Core of a Weak logic

We define the set of **admissible substitutions** AS of a C -logic \vdash as:

$$AS(\vdash) = \{\sigma \in \text{Subst} : \forall \Gamma \cup \{\varphi\} \subseteq Fm \ \Gamma \vdash \varphi \implies \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Admissible Substitutions of InqB

$$AS(\text{InqB}) = \{\sigma : \forall p \in \text{AT} \ \sigma(p) \equiv_{\text{InqB}} \neg\neg\sigma(p)\}.$$

The **core** of a C -logic \vdash is the set $\text{core}(\vdash) \subseteq Fm$ of all formulas φ such that $\varphi = \sigma(p)$ for some $p \in \text{AT}$ and $\sigma \in C$, s.t. $\sigma(q) = q$ for $q \neq p$.

Core of InqB

$$\text{core}(\text{InqB}) = \{\varphi : \varphi \text{ is equivalent to a } \vee\text{-free formula}\}.$$

Core Semantics

Let \mathcal{L} be a language consisting only of functional symbols.

Core Semantics

Let \mathcal{L} be a language consisting only of functional symbols. An **expanded algebra** \mathcal{A} is a structure of type $\mathcal{L} \cup \{P\}$, where P is a fresh predicate symbol.

Core Semantics

Let \mathcal{L} be a language consisting only of functional symbols. An **expanded algebra** \mathcal{A} is a structure of type $\mathcal{L} \cup \{P\}$, where P is a fresh predicate symbol. We let $\text{core}(\mathcal{A}) := P^{\mathcal{A}}$.

Core Semantics

Let \mathcal{L} be a language consisting only of functional symbols. An **expanded algebra** \mathcal{A} is a structure of type $\mathcal{L} \cup \{P\}$, where P is a fresh predicate symbol. We let $\text{core}(\mathcal{A}) := P^{\mathcal{A}}$.

We say that \mathcal{A} is **equationally definable** if there is some equation $\varepsilon(x) \approx \delta(x)$ such that $\text{core}(\mathcal{A}) = \{x \in \mathcal{A} : \varepsilon(x) \approx \delta(x)\}$.

Let \mathcal{L} be a language consisting only of functional symbols. An **expanded algebra** \mathcal{A} is a structure of type $\mathcal{L} \cup \{P\}$, where P is a fresh predicate symbol. We let $\text{core}(\mathcal{A}) := P^{\mathcal{A}}$.

We say that \mathcal{A} is **equationally definable** if there is some equation $\varepsilon(x) \approx \delta(x)$ such that $\text{core}(\mathcal{A}) = \{x \in \mathcal{A} : \varepsilon(x) \approx \delta(x)\}$.

If \mathbf{Q} is a class of expanded algebras and $\Theta \cup \{\varepsilon \approx \delta\}$ a set of equations, we define:

$\Theta \vDash_Q^c \varepsilon \approx \delta \iff \text{for all } \mathcal{A} \in \mathbf{Q},$

$\text{for all } h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}), \text{ s.t. } h[\text{AT}] \subseteq \text{core}(\mathcal{A})$

$\text{if } h(\varepsilon_i) = h(\delta_i) \text{ for all } \varepsilon_i \approx \delta_i \in \Theta, \text{ then } h(\varepsilon) = h(\delta).$

Core-generated Quasivarieties

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.

Core-generated Quasivarieties

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.
- A quasivariety \mathbf{Q} is **core-generated** if $\mathbf{Q} = \mathbb{Q}(K)$, where K is a class of core-generated algebras.

Core-generated Quasivarieties

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.
- A quasivariety \mathbf{Q} is **core-generated** if $\mathbf{Q} = \mathbb{Q}(K)$, where K is a class of core-generated algebras.
- Given a class of expanded algebras \mathbf{Q} , let $\mathbf{Q}_{CG} := \{ \langle \text{core}(\mathcal{A}) \rangle : \mathcal{A} \in \mathbf{Q} \}$.

Core-generated Quasivarieties

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.
- A quasivariety \mathbf{Q} is **core-generated** if $\mathbf{Q} = \mathbb{Q}(K)$, where K is a class of core-generated algebras.
- Given a class of expanded algebras \mathbf{Q} , let $\mathbf{Q}_{CG} := \{ \langle \text{core}(\mathcal{A}) \rangle : \mathcal{A} \in \mathbf{Q} \}$.
- We say that \mathcal{B} is a **core superalgebra** of \mathcal{A} if $\mathcal{A} \preceq \mathcal{B}$ and $\text{core}(\mathcal{A}) = \text{core}(\mathcal{B})$.

Core-generated Quasivarieties

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.
- A quasivariety \mathbf{Q} is **core-generated** if $\mathbf{Q} = \mathbb{Q}(K)$, where K is a class of core-generated algebras.
- Given a class of expanded algebras \mathbf{Q} , let $\mathbf{Q}_{CG} := \{\langle \text{core}(\mathcal{A}) \rangle : \mathcal{A} \in \mathbf{Q}\}$.
- We say that \mathcal{B} is a **core superalgebra** of \mathcal{A} if $\mathcal{A} \preceq \mathcal{B}$ and $\text{core}(\mathcal{A}) = \text{core}(\mathcal{B})$.
- $\mathbb{C}(K) := \{\mathcal{A} : \mathcal{B} \preceq \mathcal{A} \text{ and } \text{core}(\mathcal{A}) = \text{core}(\mathcal{B}) \text{ for some } \mathcal{B} \in K\}$.

- An expanded algebra \mathcal{A} is **core-generated** if $\mathcal{A} = \langle \text{core}(\mathcal{A}) \rangle$.
- A quasivariety \mathbf{Q} is **core-generated** if $\mathbf{Q} = \mathbb{Q}(K)$, where K is a class of core-generated algebras.
- Given a class of expanded algebras \mathbf{Q} , let $\mathbf{Q}_{CG} := \{\langle \text{core}(\mathcal{A}) \rangle : \mathcal{A} \in \mathbf{Q}\}$.
- We say that \mathcal{B} is a **core superalgebra** of \mathcal{A} if $\mathcal{A} \preceq \mathcal{B}$ and $\text{core}(\mathcal{A}) = \text{core}(\mathcal{B})$.
- $\mathbb{C}(K) := \{\mathcal{A} : \mathcal{B} \preceq \mathcal{A} \text{ and } \text{core}(\mathcal{A}) = \text{core}(\mathcal{B}) \text{ for some } \mathcal{B} \in K\}$.

Proposition

The core validity of a quasi-equation $\bigwedge_{i \leq n} \varepsilon_i \approx \delta_i \rightarrow \varepsilon \approx \delta$ is preserved by $\mathbb{I}, \mathbb{S}, \mathbb{P}, \mathbb{P}_U$ and \mathbb{C} .

Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

A weak logic \vdash is **algebraisable** if there are a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a core-generated quasivariety \mathbf{Q} , equationally definable by $\varepsilon \approx \delta$, such that:

Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

A weak logic \vdash is **algebraisable** if there are a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a core-generated quasivariety \mathbf{Q} , equationally definable by $\varepsilon \approx \delta$, such that:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}}^c \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}}^c \eta \approx \delta \quad (\text{Alg2})$$

$$\varphi \dashv\vdash \Delta[\tau(\varphi)] \quad (\text{Alg3})$$

$$\eta \approx \delta \vDash_{\mathbf{Q}}^c \tau[\Delta(\eta, \delta)]. \quad (\text{Alg4})$$

Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

A weak logic \vdash is **algebraisable** if there are a set of equations $\tau(x)$, a set of formulas $\Delta(x, y)$ and a core-generated quasivariety \mathbf{Q} , equationally definable by $\varepsilon \approx \delta$, such that:

$$\Gamma \vdash \varphi \iff \tau[\Gamma] \vDash_{\mathbf{Q}}^c \tau(\varphi) \quad (\text{Alg1})$$

$$\Delta[\Theta] \vdash \Delta(\eta, \delta) \iff \Theta \vDash_{\mathbf{Q}}^c \eta \approx \delta \quad (\text{Alg2})$$

$$\varphi \dashv\vdash \Delta[\tau(\varphi)] \quad (\text{Alg3})$$

$$\eta \approx \delta \vDash_{\mathbf{Q}}^c \tau[\Delta(\eta, \delta)]. \quad (\text{Alg4})$$

We then say that \mathbf{Q} is the **equivalent algebraic semantics** of \vdash .

Algebraizability of Weak Logics

Let $Th^c(Q)$ be the set of quasi-equations true in some class of expanded algebras Q under core semantics.

Algebraizability of Weak Logics

Let $Th^c(\mathbf{Q})$ be the set of quasi-equations true in some class of expanded algebras Q under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let \mathbf{Q} be a quasi-variety of expanded algebras, then:

$$\mathcal{A} \in \mathbf{Q}_{CG} \iff \mathcal{A} \models^c Th^c(\mathbf{Q}).$$

Algebraizability of Weak Logics

Let $Th^c(\mathbf{Q})$ be the set of quasi-equations true in some class of expanded algebras Q under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let \mathbf{Q} be a quasi-variety of expanded algebras, then:

$$\mathcal{A} \in \mathbf{Q}_{CG} \iff \mathcal{A} \vDash^c Th^c(\mathbf{Q}).$$

The following Uniqueness Theorem then follows:

Theorem (Uniqueness of Equivalent Semantics)

If $(\mathbf{Q}_1, \tau_1, \Delta_1, \varepsilon_1 \approx \delta_1)$ and $(\mathbf{Q}_2, \tau_2, \Delta_2, \varepsilon_2 \approx \delta_2)$ witness the algebraizability of a weak logic \vdash , then:

(1) $\mathbf{Q}_1 = \mathbf{Q}_2$	(3) $\Delta_1(x, y) \dashv\vdash \Delta_2(x, y)$
(2) $\tau_1(x) \vDash_{\mathbf{Q}_1} \tau_2(x)$	(4) $\varepsilon_0 \approx \delta_0 \vDash_{\mathbf{Q}_1} \varepsilon_1 \approx \delta_1$

Algebraizability of InqB

Theorem

InqB *is algebraisable*.

Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

- $\mathbf{Q} = \text{Var}(\text{ML})$, where ML is Medvedev's logic.

Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

- $\mathbf{Q} = \text{Var}(\text{ML})$, where ML is Medvedev's logic.
- $\tau(\varphi) = \varphi \approx 1$;

Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

- $\mathbf{Q} = \text{Var}(\text{ML})$, where ML is Medvedev's logic.
- $\tau(\varphi) = \varphi \approx 1$;
- $\Delta(x, y) = x \leftrightarrow y$;

Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

- $\mathbf{Q} = \text{Var}(\text{ML})$, where ML is Medvedev's logic.
- $\tau(\varphi) = \varphi \approx 1$;
- $\Delta(x, y) = x \leftrightarrow y$;
- The core is defined by $x \approx \neg\neg x$, i.e. for all $\mathcal{H} \in \text{Var}(\text{ML})$ we have $\text{core}(\mathcal{H}) = \{x \in \mathcal{H} : x = \neg\neg x\}$.

Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

- $\mathbf{Q} = \text{Var}(\text{ML})$, where ML is Medvedev's logic.
- $\tau(\varphi) = \varphi \approx 1$;
- $\Delta(x, y) = x \leftrightarrow y$;
- The core is defined by $x \approx \neg\neg x$, i.e. for all $\mathcal{H} \in \text{Var}(\text{ML})$ we have $\text{core}(\mathcal{H}) = \{x \in \mathcal{H} : x = \neg\neg x\}$.

Our result follows from the fact that ML is generated by regular elements, together with the fact that InqB is complete with respect to $\text{Var}(\text{ML})$. □

InqI is not algebraisable

Proposition

InqI is not algebraisable.

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

Then for any $\mathcal{A} \in \mathbf{Q}$, $\text{core}(\mathcal{A}) \subseteq \{\text{join-irreducible elements of } \mathbf{A}\}$.

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

Then for any $\mathcal{A} \in \mathbf{Q}$, $\text{core}(\mathcal{A}) \subseteq \{\text{join-irreducible elements of } \mathbf{A}\}$.

Find a suitable Heyting algebra $\mathcal{H} \in \mathbf{Q}$, s.t. for any choice of $\text{core}(\mathcal{H})$:

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

Then for any $\mathcal{A} \in \mathbf{Q}$, $\text{core}(\mathcal{A}) \subseteq \{\text{join-irreducible elements of } \mathbf{A}\}$.

Find a suitable Heyting algebra $\mathcal{H} \in \mathbf{Q}$, s.t. for any choice of $\text{core}(\mathcal{H})$:

- either we can build an embedding $\mathcal{H} \rightarrow \mathcal{H} \times \{2\}$, not preserving $\text{core}(\mathcal{H})$

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

Then for any $\mathcal{A} \in \mathbf{Q}$, $\text{core}(\mathcal{A}) \subseteq \{\text{join-irreducible elements of } \mathbf{A}\}$.

Find a suitable Heyting algebra $\mathcal{H} \in \mathbf{Q}$, s.t. for any choice of $\text{core}(\mathcal{H})$:

- either we can build an embedding $\mathcal{H} \rightarrow \mathcal{H} \times \{2\}$, not preserving $\text{core}(\mathcal{H})$
- or show that \mathcal{H} is not core-generated.

InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some $(\mathbf{Q}, \tau, \delta, \varepsilon \approx \beta)$.

Recall that split axiom holds for \vee -formulas.

Then for any $\mathcal{A} \in \mathbf{Q}$, $\text{core}(\mathcal{A}) \subseteq \{\text{join-irreducible elements of } \mathbf{A}\}$.

Find a suitable Heyting algebra $\mathcal{H} \in \mathbf{Q}$, s.t. for any choice of $\text{core}(\mathcal{H})$:

- either we can build an embedding $\mathcal{H} \rightarrow \mathcal{H} \times \{2\}$, not preserving $\text{core}(\mathcal{H})$
- or show that \mathcal{H} is not core-generated.

The contradiction stems from the fact that join-irreducible elements are not equationally definable. □

Properties of Algebraizable Logics

Proposition

If \vdash is algebraizable with equivalent algebraic semantics $(\mathbf{Q}, \tau, \Delta, \varepsilon \approx \delta)$, then for all $\sigma \in \text{Subst}$:

$$\sigma \in AS(\vdash) \iff \sigma \in \text{Hom}(\mathcal{F}m, \mathcal{F}m) \text{ s.t. } \sigma[\text{AT}] \subseteq \text{AT}.$$

Properties of Algebraizable Logics

Proposition

If \vdash is algebraizable with equivalent algebraic semantics $(\mathbf{Q}, \tau, \Delta, \varepsilon \approx \delta)$, then for all $\sigma \in \text{Subst}$:

$$\sigma \in AS(\vdash) \iff \sigma \in \text{Hom}(\mathcal{Fm}, \mathcal{Fm}) \text{ s.t. } \sigma[\text{AT}] \subseteq \text{AT}.$$

Let \vdash be a weak logic, we define its **schematic fragment** as follows:

$$Schm(\vdash) := \{(\Gamma, \varphi) : \forall \sigma \in \text{Subst}(\mathcal{L}), \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Properties of Algebraizable Logics

Proposition

If \vdash is algebraizable with equivalent algebraic semantics $(\mathbf{Q}, \tau, \Delta, \varepsilon \approx \delta)$, then for all $\sigma \in \text{Subst}$:

$$\sigma \in AS(\vdash) \iff \sigma \in \text{Hom}(\mathcal{Fm}, \mathcal{Fm}) \text{ s.t. } \sigma[\text{AT}] \subseteq \text{AT}.$$

Let \vdash be a weak logic, we define its **schematic fragment** as follows:

$$Schm(\vdash) := \{(\Gamma, \varphi) : \forall \sigma \in \text{Subst}(\mathcal{L}), \sigma[\Gamma] \vdash \sigma(\varphi)\}.$$

Theorem

Let \vdash be algebraizable with equivalent algebraic semantics $(\mathbf{Q}, \tau, \Delta, \varepsilon \approx \delta)$, then we have $Schm(\vdash) = Log_{\Delta}^{\tau}(\mathbf{Q})$.

Duality Between Filters and Congruences for Weak Logics

Let \vdash be a C -logic and \mathcal{A} an expanded algebra, a set $F \subseteq \mathcal{A}$ is a **deductive filter** if:

$\Gamma \vdash \varphi \implies \forall h \in \text{Hom}(Fm, \mathcal{A}), h[\text{AT}] \subseteq \text{core}(\mathcal{A}) \text{ and } h[\Gamma] \subseteq f$
entails $h(\varphi) \in F$.

We denote by $Fi_{\vdash}(\mathcal{A})$ the set of all deductive \vdash -filters over \mathcal{A} .

Duality Between Filters and Congruences for Weak Logics

Let \vdash be a C -logic and \mathcal{A} an expanded algebra, a set $F \subseteq \mathcal{A}$ is a **deductive filter** if:

$\Gamma \vdash \varphi \implies \forall h \in \text{Hom}(\text{Fm}, \mathcal{A}), h[\text{AT}] \subseteq \text{core}(\mathcal{A}) \text{ and } h[\Gamma] \subseteq f$
entails $h(\varphi) \in F$.

We denote by $Fi_{\vdash}(\mathcal{A})$ the set of all deductive \vdash -filters over \mathcal{A} .

If \mathcal{A} is an expanded algebra, a relation $\theta \subseteq \mathcal{A}^2$ is a **congruence** of \mathcal{A} if it is an algebraic congruence of the algebraic reduct of \mathcal{A} .

Duality Between Filters and Congruences for Weak Logics

Let \vdash be a C -logic and \mathcal{A} an expanded algebra, a set $F \subseteq \mathcal{A}$ is a **deductive filter** if:

$$\Gamma \vdash \varphi \implies \forall h \in \text{Hom}(\text{Fm}, \mathcal{A}), h[\text{AT}] \subseteq \text{core}(\mathcal{A}) \text{ and } h[\Gamma] \subseteq f \\ \text{entails } h(\varphi) \in F.$$

We denote by $Fi_{\vdash}(\mathcal{A})$ the set of all deductive \vdash -filters over \mathcal{A} .

If \mathcal{A} is an expanded algebra, a relation $\theta \subseteq \mathcal{A}^2$ is a **congruence** of \mathcal{A} if it is an algebraic congruence of the algebraic reduct of \mathcal{A} . We say that θ is a **\mathbf{Q} -congruence** if $\mathcal{A}/\theta \in \mathbf{Q}$.

Duality Between Filters and Congruences for Weak Logics

Let \vdash be a C -logic and \mathcal{A} an expanded algebra, a set $F \subseteq \mathcal{A}$ is a **deductive filter** if:

$\Gamma \vdash \varphi \implies \forall h \in \text{Hom}(Fm, \mathcal{A}), h[\text{AT}] \subseteq \text{core}(\mathcal{A}) \text{ and } h[\Gamma] \subseteq f$
entails $h(\varphi) \in F$.

We denote by $Fi_{\vdash}(\mathcal{A})$ the set of all deductive \vdash -filters over \mathcal{A} .

If \mathcal{A} is an expanded algebra, a relation $\theta \subseteq \mathcal{A}^2$ is a **congruence** of \mathcal{A} if it is an algebraic congruence of the algebraic reduct of \mathcal{A} . We say that θ is a **\mathbf{Q} -congruence** if $\mathcal{A}/\theta \in \mathbf{Q}$. We denote by $Cong_{\mathbf{Q}}(\mathcal{A})$ the set of all \mathbf{Q} -congruences of \mathcal{A} .

Duality Between Filters and Congruences for Weak Logics

Let \vdash be a C -logic and \mathcal{A} an expanded algebra, a set $F \subseteq \mathcal{A}$ is a **deductive filter** if:

$$\Gamma \vdash \varphi \implies \forall h \in \text{Hom}(Fm, \mathcal{A}), h[\text{AT}] \subseteq \text{core}(\mathcal{A}) \text{ and } h[\Gamma] \subseteq f \\ \text{entails } h(\varphi) \in F.$$

We denote by $Fi_{\vdash}(\mathcal{A})$ the set of all deductive \vdash -filters over \mathcal{A} .

If \mathcal{A} is an expanded algebra, a relation $\theta \subseteq \mathcal{A}^2$ is a **congruence** of \mathcal{A} if it is an algebraic congruence of the algebraic reduct of \mathcal{A} . We say that θ is a **\mathbf{Q} -congruence** if $\mathcal{A}/\theta \in \mathbf{Q}$. We denote by $Cong_{\mathbf{Q}}(\mathcal{A})$ the set of all \mathbf{Q} -congruences of \mathcal{A} .

Theorem

Let \vdash be a weak logic with equivalent algebraic semantics \mathbf{Q} , then:

$$Fi_{\vdash}(\mathcal{A}) \cong Cong_{\mathbf{Q}}(\mathcal{A}) \text{ for all } \mathcal{A} \in \mathbf{Q}.$$

Conclusions and Further Directions

What we have done so far:

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.
- Proved uniqueness of the equivalent algebraic semantics of weak logics and duality between filters and congruences.

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.
- Proved uniqueness of the equivalent algebraic semantics of weak logics and duality between filters and congruences.
- Showed that InqB (and all negative variants) are algebraisable.

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.
- Proved uniqueness of the equivalent algebraic semantics of weak logics and duality between filters and congruences.
- Showed that InqB (and all negative variants) are algebraisable.

What we should do next:

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.
- Proved uniqueness of the equivalent algebraic semantics of weak logics and duality between filters and congruences.
- Showed that InqB (and all negative variants) are algebraisable.

What we should do next:

- Extension of our setting to non-algebraisable weak logics, e.g InqI .

Conclusions and Further Directions

What we have done so far:

- Introduced suitable notion of algebraisability for logics without uniform substitution.
- Proved uniqueness of the equivalent algebraic semantics of weak logics and duality between filters and congruences.
- Showed that InqB (and all negative variants) are algebraisable.

What we should do next:

- Extension of our setting to non-algebraisable weak logics, e.g InqI .
- Applications to other logics without uniform substitution.

Thank you for your attention!

References I

Nick Bezhanishvili, Gianluca Grilletti, and Wesley H. Holliday. “Algebraic and Topological Semantics for Inquisitive Logic Via Choice-Free Duality”. In: *Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science, Vol. 11541*. Ed. by Rosalie Iemhoff, Michael Moortgat, and Ruy de Queiroz. Springer, 2019, pp. 35–52.

W. J. Blok and Don Pigozzi. “Algebraizable logics”. In: *Memoirs of the American Mathematical Society* 77.396 (1989). URL: <https://doi.org/10.1090/memo/0396>.

Ivano Ciardelli. “Inquisitive semantics and intermediate logics”. MSc Thesis, University of Amsterdam. 2009.