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Outline

Algebraisable logic is a key concept from the field of Abstract Algebraic
Logic (ALL) — the general study of relations between logics and algebras.

1 Basic notion and results from AAL

2 Inquisitive logics InqB and InqI

3 Algebraising weak logics
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History

A brief history of AAL:

1840s-1850s — G. Boole and A. De Morgan developed algebraic
theories of Boolean algebras and relations algebras.

1920s-1930s — C.S. Lewis and A. Heyting gave the first
axiomatizations of modal and intuitionistic logics with focus on logical
validity.

1920s — J. Lukasiewicz, A. Lindenbaum and A.Tarski studied logic as
a consequence relation. During the same period, algebras started
appearing as formal semantics for logical languages

1970s — H. Rasiowa presented general theory of algebraisation for
implicative logic, predecessor to AAL

1980s — W. Blok and D. Pigozzi introduced the concept of
algebraisable logic. Their work is taken to be the origin of Abstract
Algebraic logic.
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Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

Algebraisable logics

Isomorphism theorems between deductive filters and congruences.

Equational completeness theorems and the Tarski - Lindenbaum process

Matrix semantics and the Leibniz congruence

Various bridge theorems

Example: An finitary and finitely algebraisable logic L has the
Deduction-detachment property iff its equivalent algebraic semantics has
equationally definable principal relative congruences.
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Logic as a consequence relation

Fix a countable set of variables AT in a signature L.
Let FmL(AT) or simply Fm be free term algebra over L.

A consequence relation is a relation ` ⊆ P(Fm)× Fm, s.t. for all
Γ ∪∆ ∪ {ϕ,ψ} ⊆ Fm:

1 if ϕ ∈ Γ, then Γ ` ϕ ;

2 if Γ ` ϕ for all ϕ ∈ ∆ and ∆ ` ψ, then Γ ` ψ.

A substitution is an endomorphism σ : Fm→ Fm.

A logic of type L is a consequence relation ` on the set FmL that is closed
under uniform substitution:

3 For all substitutions σ, if Γ ` ϕ, then σ[Γ] ` σ[ϕ].
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Logic as a consequence relation

Why don’t we identify a logic with its set of tautologies instead of a
consequence relation?

Consider the following logics:

Global consequence of modal system K:

Kg = {(Γ, ϕ) : ∀〈W ,R, v〉, if w , v 
 Γ for all w ∈W ,

then w , v 
 ϕ for all w ∈W }

Local consequence of K:

Kl = {(Γ, ϕ) : ∀〈W ,R, v〉,∀w ∈W , if v ,w 
 Γ then w , v 
 ϕ}

They have the same theorems, but x `Kg �x , but x 6`Kl �x .
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Algebraic semantics

An equation is an expression of the form ε ≈ δ, where ε and δ are L-terms.

Given a class of L-algebras Q, the equational consequence relation
�Q ⊆ P(Eq)× Eq is defined as:

Θ �Q ε ≈ δ ⇐⇒ for all A ∈ Q and for all h ∈ Hom(Fm,A)

if h(x) ≈ h(y) for all x ≈ y ∈ Θ, then h(ε) ≈ h(δ).

The class Q is an algebraic semantics for a logic ` of type L if there exists
a set of equations τ(x), s.t.:

Γ ` ϕ ⇐⇒ τ [Γ] �Q τ(ϕ).
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Examples

CPC↔ BA via τ = {x ≈ 1}.

CPC↔ {2} via τ = {x ≈ 1}.
IPC↔ HA via τ = {x ≈ 1}.
Kg ↔ Modal algebras, BCK logic ↔ BCK algebras

No subclass of Modal Algebras is algebraic semantics for Kl .

Slightly more unsettling:
By Glivenko’s theorem, Γ `CPC ϕ ⇐⇒ {¬¬ γ : γ ∈ Γ} `IPC ¬¬ϕ.
Then it follows that CPC↔ HA via τ = {¬¬ x ≈ 1}.
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Matrix semantics

A logical L-matrix is a pair 〈A,D〉, where A is an L-algebra and D ⊆ A is
a set of designated elements (truth set).

The matrix 〈A,D〉 is a model for a logic `, if :

Γ ` ϕ =⇒ for all h ∈ Hom(Fm,A),

h(γ) ∈ D for all γ ∈ Γ implies h(ϕ) ∈ D

In case D is equationally definable, the definition reduces to the one for
algebraic semantics.

Theorem

Every logic is complete wrt to the class of its matrix models.
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Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can
have at most one?

Observe the following:

1 Although both �BA and �HA interpret `CPC:

only the BA interpretation can be reversed by a set of formulas
∆(t ′, t ′′):

∆(x , y) := {x → y , y → x}
∆(Θ) `CPC ∆(ε, β) ⇐⇒ Θ �BA ε ≈ δ;

both directions are provably inverse to one another:

ϕ a`CPC ∆(τ(ϕ))

ϕ ≈ ψ ��BA τ(∆(ϕ,ψ)).

2 Although both �BA and �{2} interpret `CPC, only BA is a class of
equationally definable algebras, i.e. a variety.
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Quasi equations and Quasivarieties

A quasi equation is an expression of the form
∧
i≤n

εi ≈ δi → ε ≈ δ.

We write Q �
∧
i≤n

εi ≈ δi → ε ≈ δ if Θ �Q ε ≈ δ for εi ≈ δi ∈ Θ.

I(Q) := {A : A ∼= B for some B ∈ Q}
S(Q) := {A : A is a subalgebra of some B ∈ Q}
P(Q) := {A : A is a direct product of {Bi}i∈I ⊆ Q}

PU(Q) := {A : A is an ultraproduct of {Bi}i∈I ⊆ Q}

A class of algebras Q closed under I, S, P, PU is a quasivariety.

Theorem (Maltsev)

A class of algebras Q is a quasivariety if and only if it can be axiomatized
by a set of quasi-equations.
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Algebraizability

Let τ : Fm→ P(Eq) and ∆ : Eq → P(Fm) be structural transformers.

A logic ` is algebraisable (Blok and Pigozzi 1989) by a set of equations
τ(x), a set of formulas ∆(x , y) and a quasi-variety Q if:

Γ ` ϕ⇐⇒ τ [Γ] �Q τ(ϕ) (Alg1)

∆[Θ] ` ∆(η, δ)⇐⇒ Θ �Q η ≈ δ (Alg2)

ϕ a` ∆[τ(ϕ)] (Alg3)

η ≈ δ ��Q τ [∆(η, δ)]. (Alg4)

We then call Q the equivalent algebraic semantics for `.
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Algebraizability

CPC is algebraised by BA, τ(x) := {x ≈ 1} and
∆(x , y) = {x → y , y → x}.

IPC is algebraised by HA, τ(x) := {x ≈ 1},
∆(x , y) = {x → y , y → x}.
Kl is not algebraisable.

Theorem (Uniqueness of Equivalent Semantics)

If (Q1, τ1,∆1) and (Q2, τ2,∆2) witness the algebraisability of logic `, then:

(1) Q1 = Q2 (2) τ1(x) ��Ki
τ2(x) (3) ∆1(x , y) a` ∆2(x , y).

Note: Proof of (3) relies on substitution invariance.
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Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While truth-conditional semantics could model declarative content, it is not
suitable for interrogatives:

It is raining. Is it raining?

Consider the embedded case:

I know that it is raining. I know whether it is raining.

Language of inquisitive logic:

The set of formulas of InqB is:

ϕ := p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ > ϕ

for the formulas of InqI, we drop the classical disjunction ϕ ∨ ϕ.
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Inquisitive Logic

Given a possible world model M = 〈W ,V 〉 and a team t ⊆W , define the
support semantics of InqB:

M, t � p ⇐⇒ V (w , p) = 1 for all w ∈ t

M, t � ⊥ ⇐⇒ t = ∅
M, t � ϕ ∧ ψ ⇐⇒ M, t � ϕ and M, t � ψ.

M, t � ϕ ∨ ψ ⇐⇒ ∃t ′, t ′′ s.t. t = t ′ ∪ t ′′,M, t ′ � ϕ and M, t ′′ � ψ.

M, t � ϕ→ ψ ⇐⇒ ∀t ′ ⊆ t,M, t ′ � ϕ implies M, t ′ � ψ.

M, t � ϕ

>

ψ ⇐⇒ M, t � ϕ or M, t � ψ.

Semantics for InqI is defined similarly, but on an intuitionistic Kripke
model 〈W ,R, v〉.
DNE is valid for all

>

-free formulas in InqB.
The split property (p → q

>
r)→ (p → q)

>

(p → r) is a theorem of
InqI, but replacing p with q

>

r yields invalid formula.
As a result, both InqB and InqI are not closed under uniform substitution.
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Extending algebraisability — Motivation

Inquisitive logics InqB and InqI are not logics in the strict sense of AAL.

Nonetheless, they have corresponding algebraic semantics (Bezhanishvili,
Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:

Public Announcement Logic and various epistemic logics

Logic of Pure Provability

various logics based on team semantics (logic of dependence)

negative variants of intermediate logics (intermediate logics +
¬¬p → p for atomic propositions p)

We shall extend AAL to take account for logics with weaker forms of
substitution.
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Weak Logics

Let Subst := Hom(Fm,Fm) and let AT be the set of substitutions σ s.t.
σ[AT] ⊆ AT.

Given a class of substitutions AT ⊆ C ⊆ Subst, a C -logic is a consequence
relation `, s.t.

for all σ ∈ C , Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ).

A Weak Logic is a C -logic for some AT ⊆ C ⊆ Subst. Any (standard) logic
is a weak logic for C = Subst. (generalises the notion of weak-logic from
Ciardelli 2009).

G. Nakov Algebraisable logics December 1, 2021 17 / 29



Weak Logics

Let Subst := Hom(Fm,Fm) and let AT be the set of substitutions σ s.t.
σ[AT] ⊆ AT.

Given a class of substitutions AT ⊆ C ⊆ Subst, a C -logic is a consequence
relation `, s.t.

for all σ ∈ C , Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ).

A Weak Logic is a C -logic for some AT ⊆ C ⊆ Subst. Any (standard) logic
is a weak logic for C = Subst. (generalises the notion of weak-logic from
Ciardelli 2009).

G. Nakov Algebraisable logics December 1, 2021 17 / 29



Weak Logics

Let Subst := Hom(Fm,Fm) and let AT be the set of substitutions σ s.t.
σ[AT] ⊆ AT.

Given a class of substitutions AT ⊆ C ⊆ Subst, a C -logic is a consequence
relation `, s.t.

for all σ ∈ C , Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ).

A Weak Logic is a C -logic for some AT ⊆ C ⊆ Subst.

Any (standard) logic
is a weak logic for C = Subst. (generalises the notion of weak-logic from
Ciardelli 2009).

G. Nakov Algebraisable logics December 1, 2021 17 / 29



Weak Logics

Let Subst := Hom(Fm,Fm) and let AT be the set of substitutions σ s.t.
σ[AT] ⊆ AT.

Given a class of substitutions AT ⊆ C ⊆ Subst, a C -logic is a consequence
relation `, s.t.

for all σ ∈ C , Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ).

A Weak Logic is a C -logic for some AT ⊆ C ⊆ Subst. Any (standard) logic
is a weak logic for C = Subst.

(generalises the notion of weak-logic from
Ciardelli 2009).

G. Nakov Algebraisable logics December 1, 2021 17 / 29



Weak Logics

Let Subst := Hom(Fm,Fm) and let AT be the set of substitutions σ s.t.
σ[AT] ⊆ AT.

Given a class of substitutions AT ⊆ C ⊆ Subst, a C -logic is a consequence
relation `, s.t.

for all σ ∈ C , Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ).

A Weak Logic is a C -logic for some AT ⊆ C ⊆ Subst. Any (standard) logic
is a weak logic for C = Subst. (generalises the notion of weak-logic from
Ciardelli 2009).

G. Nakov Algebraisable logics December 1, 2021 17 / 29



Core of a Weak logic

We define the set of admissible substitutions AS of a C -logic ` as:

AS(`) = {σ ∈ Subst : ∀ Γ ∪ {ϕ} ⊆ Fm Γ ` ϕ =⇒ σ[Γ] ` σ(ϕ)}.

Admissible Substitutions of InqB

AS(InqB) = {σ : ∀p ∈ AT σ(p) ≡InqB ¬¬σ(p)}.

The core of a C -logic ` is the set core(`) ⊆ Fm of all formulas ϕ such that
ϕ = σ(p) for some p ∈ AT and σ ∈ C , s.t. σ(q) = q for q 6= p.

Core of InqB

core(InqB) = {ϕ : ϕ is equivalent to a

>

-free formula}.
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Core Semantics

Let L be a language consisting only of functional symbols.

An expanded
algebra A is a structure of type L ∪ {P}, where P is a fresh predicate
symbol. We let core(A) := PA.

We say that A is equationally definable if there is some equation
ε(x) ≈ δ(x) such that core(A) = {x ∈ A : ε(x) ≈ δ(x)}.

If Q is a class of expanded algebras and Θ ∪ {ε ≈ δ} a set of equations, we
define:

Θ �cQ ε ≈ δ ⇐⇒ for all A ∈ Q,

for all h ∈ Hom(Fm,A), s.t. h[AT] ⊆ core(A)

if h(εi ) = h(δi ) for all εi ≈ δi ∈ Θ, then h(ε) = h(δ).
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Core-generated Quasivarieties

An expanded algebra A is core-generated if A = 〈core(A)〉.

A quasivariety Q is core-generated if Q = Q(K ), where K is a class of
core-generated algebras.

Given a class of expanded algebras Q, let
QCG := {〈core(A)〉 : A ∈ Q}.
We say that B is a core superalgebra of A if A � B and
core(A) = core(B).

C(K ) := {A : B � A and core(A) = core(B) for some B ∈ K}.

Proposition

The core validity of a quasi-equation
∧
i≤n

εi ≈ δi → ε ≈ δ is preserved by

I,S,P, PU and C.
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Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

A weak logic ` is algebraisable if there are a set of equations τ(x), a set of
formulas ∆(x , y) and a core-generated quasivariety Q, equationally
definable by ε ≈ δ, such that:

Γ ` ϕ⇐⇒ τ [Γ] �cQ τ(ϕ) (Alg1)

∆[Θ] ` ∆(η, δ)⇐⇒ Θ �cQ η ≈ δ (Alg2)

ϕ a` ∆[τ(ϕ)] (Alg3)

η ≈ δ ��cQ τ [∆(η, δ)]. (Alg4)

We then say that Q is the equivalent algebraic semantics of `.
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Algebraizability of Weak Logics

Let Thc(Q) be the set of quasi-equations true in some class of expanded
algebras Q under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let Q be a quasi-variety of expanded algebras, then:

A ∈ QCG ⇐⇒ A �c Thc(Q).

The following Uniqueness Theorem then follows:

Theorem (Uniqueness of Equivalent Semantics)

If (Q1, τ1,∆1, ε1 ≈ δ1) and (Q2, τ2,∆2, ε2 ≈ δ2) witness the
algebraisability of a weak logic `, then:

(1) Q1 = Q2 (3) ∆1(x , y) a` ∆2(x , y)

(2) τ1(x) ��Qi
τ2(x) (4) ε0 ≈ δ0 ��i ε1 ≈ δ1
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Algebraizability of InqB

Theorem

InqB is algebraisable.

Proof.

We let:

Q = Var(ML), where ML is Medvedev’s logic.

τ(ϕ) = ϕ ≈ 1;

∆(x , y) = x ↔ y ;

The core is defined by x ≈ ¬¬x , i.e. for all H ∈ Var(ML) we have
core(H) = {x ∈ H : x = ¬¬x}.

Our result follows from the fact that ML is generated by regular elements,
together with the fact that InqB is complete with respect to Var(ML).
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InqI is not algebraisable

Proposition

InqI is not algebraisable.

(Rough) proof idea

Assume that InqI is algebraisable by some (Q, τ, δ, ε ≈ β).
Recall that split axiom holds for

>

-formulas.
Then for any A ∈ Q, core(A) ⊆ {join-irreducible elements of A}.
Find a suitable Heyting algebra H ∈ Q, s.t. for any choice of core(H):

either we can build an embedding H → H× {2}, not preserving
core(H)

or show that H is not core-generated.

The contradiction stems from the fact that join-irreducible elements are not
equationally definable. �
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Properties of Algebraizable Logics

Proposition

If ` is algebraisable with equivalent algebraic semantics (Q, τ,∆, ε ≈ δ),
then for all σ ∈ Subst:

σ ∈ AS(`) ⇐⇒ σ ∈ Hom(Fm,Fm) s.t. σ[AT] ⊆ AT.

Let ` be a weak logic, we define its schematic fragment as follows:

Schm(`) := {(Γ, ϕ) : ∀σ ∈ Subst(L), σ[Γ] ` σ(ϕ)}.

Theorem

Let ` be algebraisable with equivalent algebraic semantics (Q, τ,∆, ε ≈ δ),
then we have Schm(`) = Log τ

∆(Q).
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Duality Between Filters and Congruences for Weak Logics

Let ` be a C -logic and A an expanded algebra, a set F ⊆ A is a deductive
filter if:

Γ ` ϕ =⇒ ∀h ∈ Hom(Fm,A), h[AT] ⊆ core(A) and h[Γ] ⊆ f

entails h(ϕ) ∈ F .

We denote by Fi`(A) the set of all deductive `-filters over A.

If A is an expanded algebra, a relation θ ⊆ A2 is a congruence of A if it is
an algebraic congruence of the algebraic reduct of A. We say that θ is a
Q-congruence if A/θ ∈ Q. We denote by CongQ(A) the set of all
Q-congruences of A.

Theorem

Let ` be a weak logic with equivalent algebraic semantics Q, then:

Fi`(A) ∼= CongQ(A) for all A ∈ Q.
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Conclusions and Further Directions

What we have done so far:

Introduced suitable notion of algebraisability for logics without uniform
substitution.

Proved uniqueness of the equivalent algebraic semantics of weak logics
and duality between filters and congruences.

Showed that InqB (and all negative variants) are algebraisable.

What we should do next:

Extension of our setting to non-algebraisable weak logics, e.g InqI.

Applications to other logics without uniform substitution.
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Thank you for your attention!
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