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Algebraisable logic is a key concept from the field of Abstract Algebraic
Logic (ALL) — the general study of relations between logics and algebras.

@ Basic notion and results from AAL
© Inquisitive logics IngB and Inql

© Algebraising weak logics
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A brief history of AAL:

1840s-1850s — G. Boole and A. De Morgan developed algebraic
theories of Boolean algebras and relations algebras.

1920s-1930s — C.S. Lewis and A. Heyting gave the first
axiomatizations of modal and intuitionistic logics with focus on logical
validity.

1920s — J. Lukasiewicz, A. Lindenbaum and A.Tarski studied logic as
a consequence relation. During the same period, algebras started
appearing as formal semantics for logical languages

1970s — H. Rasiowa presented general theory of algebraisation for
implicative logic, predecessor to AAL

1980s — W. Blok and D. Pigozzi introduced the concept of
algebraisable logic. Their work is taken to be the origin of Abstract
Algebraic logic.
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Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

Algebraisable logics

@ Isomorphism theorems between deductive filters and congruences.

@ Equational completeness theorems and the Tarski - Lindenbaum process
°

Matrix semantics and the Leibniz congruence
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Overview of AAL

Overview of basic notions and results from Abstract Algebraic Logic:

@ Algebraisable logics

@ Isomorphism theorems between deductive filters and congruences.

@ Equational completeness theorems and the Tarski - Lindenbaum process
@ Matrix semantics and the Leibniz congruence

@ Various bridge theorems

e Example: An finitary and finitely algebraisable logic L has the
Deduction-detachment property iff its equivalent algebraic semantics has
equationally definable principal relative congruences.
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Logic as a consequence relation

Fix a countable set of variables AT in a signature L.
Let Fmg(AT) or simply Fm be free term algebra over L.
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Logic as a consequence relation

Fix a countable set of variables AT in a signature L.
Let Fmg(AT) or simply Fm be free term algebra over L.

A consequence relation is a relation = C P(Fm) x Fm, s.t. for all
FrUAU{p, v} C Fm:

Q@ ifoel, thenlT Fop;

Q ifTFforall pe Aand At ), then T+ 9.

A substitution is an endomorphism o : Fm — Fm.

A logic of type L is a consequence relation - on the set Fm, that is closed
under uniform substitution:

@ For all substitutions o, if I - ¢, then o[l F o[y].
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Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a
consequence relation?
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Logic as a consequence relation

Why don't we identify a logic with its set of tautologies instead of a
consequence relation?

Consider the following logics:

@ Global consequence of modal system K:

Keg ={(T, ) : VIW,R,v), if w,vIFT forall we W,
then w, v IF ¢ for all w € W}

@ Local consequence of K:
Ki={(l,¢): Y (W,R,v),Vwe W, if v, wi-T then w,v I ¢}

They have the same theorems, but x I—Kg Ox, but x %, Ox.
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Algebraic semantics

An equation is an expression of the form ¢ = §, where € and § are L-terms.
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Algebraic semantics

An equation is an expression of the form ¢ = §, where € and § are L-terms.
Given a class of L-algebras Q, the equational consequence relation
FqQ C P(Eq) x Eq is defined as:
©Fqe~d < forall A€ Q and for all h € Hom(Fm, A)
if h(x) =~ h(y) for all x = y € ©, then h(e) = h(J).
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Algebraic semantics

An equation is an expression of the form ¢ = §, where € and § are L-terms.
Given a class of L-algebras Q, the equational consequence relation
FqQ C P(Eq) x Eq is defined as:
©Fqe~d < forall A€ Q and for all h € Hom(Fm, A)
if h(x) =~ h(y) for all x = y € ©, then h(e) = h(J).

The class Q is an algebraic semantics for a logic - of type L if there exists
a set of equations 7(x), s.t.:

Nty <= 7 Eq 7(p).
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@ CPC <+ BAvia 7= {x~ 1}.
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CPC <» BA via 7 = {x ~ 1}.
CPC «» {2} via T = {x = 1}.
IPC <> HA via 7 = {x =~ 1}.
Kg <> Modal algebras, BCK logic <+ BCK algebras

No subclass of Modal Algebras is algebraic semantics for ;.
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CPC <» BA via 7 = {x ~ 1}.
CPC «» {2} via T = {x = 1}.
IPC <> HA via 7 = {x =~ 1}.
Kg <> Modal algebras, BCK logic <+ BCK algebras

No subclass of Modal Algebras is algebraic semantics for ;.

Slightly more unsettling:
By Glivenko's theorem, I Fgpc ¢ <= {——7y:v €T} Fpc 7.
Then it follows that CPC «» HA via 7 = {——x ~ 1}.
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Matrix semantics

A logical £-matrix is a pair (A, D), where A is an L-algebra and D C A is
a set of designated elements (truth set).
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Matrix semantics

A logical £-matrix is a pair (A, D), where A is an L-algebra and D C A is
a set of designated elements (truth set).

The matrix (A, D) is a model for a logic I, if :

'@ = forall h € Hom(Fm,A),
h(vy) € D for all vy € T implies h(y) € D

In case D is equationally definable, the definition reduces to the one for
algebraic semantics.

Every logic is complete wrt to the class of its matrix models. \
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Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can
have at most one?
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have at most one? Observe the following:

@ Although both Fga and Eya interpret Fcpe:

e only the BA interpretation can be reversed by a set of formulas
At t"):

Alx,y) ={x—=y,y = x}
A(@) }_cpc A(&,B) — 0O ':BA ER 5,
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Algebraizability — Motivations

Can we refine the notion of algebraic semantics so that a given logic can
have at most one? Observe the following:

@ Although both Fga and Eya interpret Fcpe:

e only the BA interpretation can be reversed by a set of formulas
At t"):

Alx,y) ={x—=y,y = x}
A(@) }_cpc A(&,B) — 0O ':BA ER 5,

e both directions are provably inverse to one another:

¢ Acpe A(T(0))
@ =~ FFa T(A(p, V).

@ Although both Ega and |={2} interpret Fcpc, only BA is a class of
equationally definable algebras, i.e. a variety.
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Quasi equations and Quasivarieties

A quasi equation is an expression of the form A ¢; =~ §; - e~ .
i<n
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Quasi equations and Quasivarieties

A quasi equation is an expression of the form A ¢; =~ §; - e~ .
i<n
Wewrite QF A eixdi —erdifOFgerdforei~d€0.
i<n
[(Q) :={A: A= B for some B € Q}
S(Q) := {A: A is a subalgebra of some B € Q}
P(Q) := {A: Ais a direct product of {B;}ic; C Q}
Py(Q) := {A: A'is an ultraproduct of {B;}ic; C Q}

A class of algebras Q closed under I, S, P, Py is a quasivariety.

Theorem (Maltsev)

A class of algebras Q is a quasivariety if and only if it can be axiomatized
by a set of quasi-equations.
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Algebraizability

Let 7: Fm — P(Eq) and A : Eq — P(Fm) be structural transformers.
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Algebraizability

Let 7: Fm — P(Eq) and A : Eq — P(Fm) be structural transformers.

A logic | is algebraisable (Blok and Pigozzi 1989) by a set of equations
7(x), a set of formulas A(x,y) and a quasi-variety Q if:

Nt @< 7l Eq 7(v) (Algl)

ABlF A(n,d) <= OFqn~d (Alg2)
¢ A= Alr(p)] (Alg3)

n = =Eq T[A(n, 9)]. (Algd)

We then call Q the equivalent algebraic semantics for .
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Algebraizability

@ CPC is algebraised by BA, 7(x) := {x ~ 1} and
Alx,y) ={x = y,y = x}.
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Algebraizability

e CPC is algebraised by BA, 7(x) := {x ~ 1} and
A(x,y)={x—=y,y = x}.

e IPC is algebraised by HA, 7(x) := {x ~ 1},
A(x,y) ={x—y,y = x}.

@ K; is not algebraisable.

Theorem (Uniqueness of Equivalent Semantics)

If (Q1, 71, A1) and (Q2, 72, A2) witness the algebraisability of logic \-, then:

(1) Q1=Q2 (2) n(x) A3Fk; 72(x)  (3) Au(x,y) A Do(x, y).

Note: Proof of (3) relies on substitution invariance.
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Inquisitive Logic

Motivation comes from analysis of questions in natural language.
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Inquisitive Logic

Motivation comes from analysis of questions in natural language.

While truth-conditional semantics could model declarative content, it is not
suitable for interrogatives:
It is raining. Is it raining?
Consider the embedded case:
I know that it is raining. | know whether it is raining.
Language of inquisitive logic:

@ The set of formulas of IngB is:
p=plLlerplevele—=pleve

o for the formulas of InqI, we drop the classical disjunction ¢ V .
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Inquisitive Logic

Given a possible world model M = (W, V) and a team t C W, define the
support semantics of IngB:
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e MtEp < V(w,p)=1forall wet
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Inquisitive Logic

Given a possible world model M = (W, V) and a team t C W, define the
support semantics of IngB:

e MtEp < V(w,p)=1forall wet

o MitE L «— t=10

o MtEpAYy < M,tEpand Mt FE .

o MtEpVy «— At t'st. t=t'Ut' M t'F ¢ and M, t" E 1.

e MtEp—1vY <= Vt' Ct,M,t' E pimplies M, t' E .

o MitFEpWy < M tEpor M tFE1.
Semantics for InqI is defined similarly, but on an intuitionistic Kripke
model (W, R, v).
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Inquisitive Logic

Given a possible world model M = (W, V) and a team t C W, define the
support semantics of IngB:

e MtEp < V(w,p)=1forall wet
o MitE L «— t=10
o MtEpAYy < M,tEpand Mt FE .
o MtEpVy «— At t'st. t=t'Ut' M t'F ¢ and M, t" E 1.
e MtEp—1vY <= Vt' Ct,M,t' E pimplies M, t' E .
o MitFEpWy < M tEpor M tFE1.
Semantics for InqI is defined similarly, but on an intuitionistic Kripke
model (W, R, v).
DNE is valid for all \-free formulas in IngB.

The split property (p — g\ r) = (p — q) V (p — r) is a theorem of
IngI, but replacing p with g \v r yields invalid formula.
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Inquisitive Logic

Given a possible world model M = (W, V) and a team t C W, define the
support semantics of IngB:

e MtEp < V(w,p)=1forall wet
o MitE L «— t=10
e MitE oAy < M,tE ¢ and M,tE 1.
o MtEpVy «— At t'st. t=t'Ut' M t'F ¢ and M, t" E 1.
e MtEp—1vY <= Vt' Ct,M,t' E pimplies M, t' E .
o MitFEpWy < M tEpor M tFE1.
Semantics for InqI is defined similarly, but on an intuitionistic Kripke
model (W, R, v).
DNE is valid for all \-free formulas in IngB.
The split property (p — g\ r) = (p — q) V (p — r) is a theorem of

IngI, but replacing p with g \v r yields invalid formula.
As a result, both IngB and InqgI are not closed under uniform substitution.
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Extending algebraisability — Motivation

Inquisitive logics IngB and InqgI are not logics in the strict sense of AAL.
Nonetheless, they have corresponding algebraic semantics (Bezhanishvili,
Grilletti, and Holliday 2019).

Other logics of interest that are not closed under uniform substitution:
@ Public Announcement Logic and various epistemic logics
@ Logic of Pure Provability
@ various logics based on team semantics (logic of dependence)

@ negative variants of intermediate logics (intermediate logics +
——p — p for atomic propositions p)

We shall extend AAL to take account for logics with weaker forms of
substitution.

G. Nakov Algebraisable logics December 1, 2021 16 /29



Weak Logics

Let Subst := Hom(Fm, Fm) and let AT be the set of substitutions o s.t.
o[AT] C AT.
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Weak Logics

Let Subst := Hom(Fm, Fm) and let AT be the set of substitutions o s.t.
o[AT] C AT.

Given a class of substitutions AT C C C Subst, a C-logic is a consequence
relation |, s.t.

forallo e C,TF¢ = o[l]F a(p).

A Weak Logic is a C-logic for some AT C C C Subst. Any (standard) logic
is a weak logic for C = Subst. (generalises the notion of weak-logic from
Ciardelli 2009).
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Core of a Weak logic

We define the set of admissible substitutions AS of a C-logic I as:

AS(F)={o €Subst :VTU{p} CFmTF ¢y = o[l ()}
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Core of a Weak logic

We define the set of admissible substitutions AS of a C-logic |- as:

AS(F)={o €Subst :VTU{p} CFmTF ¢y = o[l ()}

Admissible Substitutions of IngB

AS(IngB) = {0 : Vp € AT 0(p) =gz "0 (p)}-

The core of a C-logic F is the set core() C Fm of all formulas ¢ such that
¢ = o(p) for some p € AT and 0 € C, s.t. o(q) = q for g # p.

Core of IngB

core(IngB) = {¢ : ¢ is equivalent to a \V-free formula}.
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Core Semantics

Let £ be a language consisting only of functional symbols.
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Core Semantics

Let £ be a language consisting only of functional symbols. An expanded
algebra A is a structure of type £ U {P}, where P is a fresh predicate

symbol. We let core(A) := PA.

We say that A is equationally definable if there is some equation
£(x) =~ d(x) such that core(A) = {x € A:e(x) = I(x)}.
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Core Semantics

Let £ be a language consisting only of functional symbols. An expanded
algebra A is a structure of type £ U {P}, where P is a fresh predicate
symbol. We let core(A) := PA.

We say that A is equationally definable if there is some equation
£(x) =~ d(x) such that core(A) = {x € A:e(x) = I(x)}.

If Q is a class of expanded algebras and © U {¢ ~ §} a set of equations, we
define:

OFgerd < forall AcQ,
for all h € Hom(Fm, A), s.t. h[AT] C core(.A)
if h(ei) = h(6;) for all e; =~ 0; € ©, then h(e) = h(9).
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Core-generated Quasivarieties

@ An expanded algebra A is core-generated if A = (core(.A)).
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core-generated algebras.

@ Given a class of expanded algebras Q, let
Qcc = {(core(A)) : A€ Q}.

@ We say that B is a core superalgebra of A if A < B and
core(.A) = core(B).

o C(K):={A:B = A and core(A) = core(B) for some B € K}.

Algebraisable logics December 1, 2021 20/29



Core-generated Quasivarieties

@ An expanded algebra A is core-generated if A = (core(.A)).

@ A quasivariety Q is core-generated if Q = Q(K), where K is a class of
core-generated algebras.

@ Given a class of expanded algebras Q, let
Qcc = {(core(A)) : A€ Q}.

@ We say that B is a core superalgebra of A if A < B and
core(.A) = core(B).

o C(K):={A:B = A and core(A) = core(B) for some B € K}.

Proposition

The core validity of a quasi-equation A &; = §; — & ~ 4 is preserved by

i<n
I,S,P, Py and C.
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Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.
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A weak logic - is algebraisable if there are a set of equations 7(x), a set of

formulas A(x, y) and a core-generated quasivariety Q, equationally
definable by € = §, such that:
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A weak logic - is algebraisable if there are a set of equations 7(x), a set of
formulas A(x, y) and a core-generated quasivariety Q, equationally
definable by € = §, such that:

MF <7l Eg 7(¥) (Algl)

A[G] - A(n,d) <= O Fgn=6 (Alg2)
¢ - Alr(p)] (Alg3)

n =~ 4kq T[A(n,d)]. (Alg4)
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Algebraizability of Weak Logics

We adapt the notion of algebraisability to the setting of weak logics.

A weak logic - is algebraisable if there are a set of equations 7(x), a set of
formulas A(x, y) and a core-generated quasivariety Q, equationally
definable by € = §, such that:

MF <7l Eg 7(¥) (Algl)

A[G] - A(n,d) <= O Fgn=6 (Alg2)
¢ - Alr(p)] (Alg3)

n =~ 4kq T[A(n,d)]. (Alg4)

We then say that Q is the equivalent algebraic semantics of .
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Algebraizability of Weak Logics

Let Th°(Q) be the set of quasi-equations true in some class of expanded
algebras @ under core semantics.
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Algebraizability of Weak Logics

Let Th°(Q) be the set of quasi-equations true in some class of expanded
algebras @ under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let Q be a quasi-variety of expanded algebras, then:

A€ Qe < AE° Th*(Q).
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Algebraizability of Weak Logics

Let Th°(Q) be the set of quasi-equations true in some class of expanded
algebras @ under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let Q be a quasi-variety of expanded algebras, then:

A€ Qe — AES Th°(Q).

The following Uniqueness Theorem then follows:

Theorem (Uniqueness of Equivalent Semantics)

/f(Ql,Tl, Ai,61 ~ (51) and (Qg, T, Ao, e & (52) witness the
algebraisability of a weak logic =, then:

(1) Q1 =Q2 (3) A1(x,y) 1+ Aa(x,y)
(2) m1(x) FFq; T2(x) (4) eg = do AFj €1 = 61
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Algebraizability of IngB
IngB is algebraisable. I
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Algebraizability of IngB
IngB is algebraisable.

We let:
e Q = Var(ML), where ML is Medvedev's logic.
° T(p) =p~1;

o A(x,y) = x ¢ y;

@ The core is defined by x ~ ——x, i.e. for all H € Var(ML) we have
core(H) = {x € H : x = -—x}.
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Algebraizability of IngB

IngB is algebraisable.

Proof.

We let:
e Q = Var(ML), where ML is Medvedev's logic.
°oT(p)=pr1

o A(x,y) = x ¢ y;
@ The core is defined by x ~ ——x, i.e. for all H € Var(ML) we have
core(H) = {x € H : x = -—x}.
Our result follows from the fact that ML is generated by regular elements,
together with the fact that IngB is complete with respect to Var(ML). D)
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IngI is not algebraisable

Proposition
IngI is not algebraisable.
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IngI is not algebraisable.

(Rough) proof idea

Assume that InglI is algebraisable by some (Q, 7,0,¢ =~ f3).
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Recall that split axiom holds for \-formulas.
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IngI is not algebraisable.

(Rough) proof idea

Assume that InglI is algebraisable by some (Q, 7,0,¢ =~ f3).

Recall that split axiom holds for \-formulas.

Then for any A € Q, core(A) C {join-irreducible elements of A}.

Find a suitable Heyting algebra H € Q, s.t. for any choice of core(H):

@ either we can build an embedding H — #H x {2}, not preserving
core(H)

@ or show that H is not core-generated.
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IngI is not algebraisable

Proposition

IngI is not algebraisable.

(Rough) proof idea

Assume that InglI is algebraisable by some (Q, 7,0,¢ =~ f3).

Recall that split axiom holds for \-formulas.

Then for any A € Q, core(A) C {join-irreducible elements of A}.

Find a suitable Heyting algebra H € Q, s.t. for any choice of core(H):

@ either we can build an embedding H — #H x {2}, not preserving
core(H)
@ or show that H is not core-generated.

The contradiction stems from the fact that join-irreducible elements are not
equationally definable. O

v
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Properties of Algebraizable Logics

Proposition

If - is algebraisable with equivalent algebraic semantics (Q, 7, A, e = §),
then for all o € Subst:
o€ AS(F) <= o € Hom(Fm, Fm) s.t. o[AT] C AT.
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Properties of Algebraizable Logics

Proposition

If - is algebraisable with equivalent algebraic semantics (Q, 7, A, e ~ §),
then for all o € Subst:
o€ AS(F) <= o € Hom(Fm, Fm) s.t. o[AT] C AT.

Let - be a weak logic, we define its schematic fragment as follows:

Schm(F) := {(T, ) : Yo € Subst(L), o[[] - o(¢)}-

Let - be algebraisable with equivalent algebraic semantics (Q, T, A, e = §),
then we have Schm(-) = Logx(Q).
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Duality Between Filters and Congruences for Weak Logics

Let - be a C-logic and A an expanded algebra, a set F C A is a deductive
filter if:

'+ = Vh e Hom(Fm, A), h[AT] C core(A) and h[l'] C f
entails h(yp) € F.

We denote by Fii(A) the set of all deductive -filters over A.
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Duality Between Filters and Congruences for Weak Logics

Let - be a C-logic and A an expanded algebra, a set F C A is a deductive
filter if:
'+ = Vh e Hom(Fm, A), h[AT] C core(A) and h[l'] C f
entails h(yp) € F.

We denote by Fii(A) the set of all deductive -filters over A.

If A is an expanded algebra, a relation # C A? is a congruence of A if it is
an algebraic congruence of the algebraic reduct of A. We say that 6 is a
Q-congruence if A/6 € Q. We denote by Congq(.A) the set of all
Q-congruences of A.

Let - be a weak logic with equivalent algebraic semantics Q, then:

Fi-(A) = Congq(A) for all A € Q.
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Conclusions and Further Directions

What we have done so far:
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Conclusions and Further Directions

What we have done so far:
@ Introduced suitable notion of algebraisability for logics without uniform
substitution.
@ Proved uniqueness of the equivalent algebraic semantics of weak logics
and duality between filters and congruences.

@ Showed that IngB (and all negative variants) are algebraisable.

What we should do next:
@ Extension of our setting to non-algebraisable weak logics, e.g InqI.

@ Applications to other logics without uniform substitution.
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Thank you for your attention!
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