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We want to solve:
X ∼= XX

Unfortunately:

Theorem (Lawvere)
In a CCC, if there’s an onto map X→ YX, then every
endomorphism f : Y→ Y has a fixpoint.

No non-trivial sets satisfy this!
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Scott’s solution: define domains as objects of a different
category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the
Scott topology) s.t. continuous functions between them are
precisely DCPO morphisms.

DT becomes a full-fledged theory of computational spaces!
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However, DCPOs are pretty hard to deal with. One would like to
treat domains as sets

⇒ Define a (family of) topos(es) of
domains1 E in which:

• One can take fixpoints of endomorphisms X→ X.

• One can find fixpoints for various endofunctors E → E .
• A (known?) category of domains embeds into it.

We won’t talk about that right now...

1All the nice topological intuition carries over in a precise way.
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Suppose we want to solve:

W ∼= N ⇀fin T

T ∼=W →mon P(V× V)

Both Sets and Domains aren’t that helpful with that.
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Step indexing: Adding steps (natural numbers, in its most
simple form) at different places in definitions in order to get a
handle on recursion.

Let’s try changing a bit what we’re trying to solve and take:

P↓(N× V× V) := {ρ | (n, v,w) ∈ ρ⇒ (m, v,w) ∈ ρ ∀m ≤ n}
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Observe that P↓(N× V× V) comes equipped with the metric:

d(X,Y) = inf{2−n | ∀j < n.∀v,w ∈ V.(j, v,w) ∈ X↔ (j, v,w) ∈ Y}

Moreover:

1. All the distances are of the form 2−n.

2. d(X, Z) ≤ max{d(X,Y),d(Y, Z)} ∀X,Y, Z.

P↓(N× V× V) is a bisected (1) ultrametric (2) space!
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Let’s move to the category BiCUlt of complete bisected
ultrametric spaces and non-expansive2 functions.

A locally non-expansive functor is a BiCUlt-enriched functor.

A lne functor F : BiCUltop × BiCUlt→ BiCUlt is locally
contractive if ∀f, g : X→ Y and h, k : Z→ W we have:

d(F(f,h), F(g, k)) ≤ 1
2
·max{d(f, g),d(h, k)}

2f : X → Y is non-expansive if ∀a, b ∈ X.dY(f(a), f(b)) ≤ dX(a, b).
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Remark
Composing any lne functor with the functor 1

2 · −, which maps
the space (X,dX) to (X, 1

2 · dX) and acts as the identity on
morphisms, will give a locally contractive functor.

Theorem ([BST10])
Let F an lc functor s.t. F(1,1) is inhabited. Then, there exists an
inhabited X ∈ BiCUlt s.t. F(X,X) ∼= X. If moreover F(∅, ∅) is
inhabited, then such X is unique up to iso.
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Now we can upgrade our definition from earlier to:

T ∼=
(
N ⇀fin

1
2
· T

)
→mon, n.e. P↓(N× V× V)

And use the fixpoint theorem for lc functors to show that it has a
unique solution.

9/45



Cool! But, these spaces are awful to deal with. Again, one
would like to treat such objects as sets

⇒ Define a (family of)
topos(es) E in which:

• There’s a version of Banach’s fixpoint theorem3.

• One can find fixpoints for lc endofunctors E → E .
• There’s an operator that behaves like the 1

2 · − functor.

• (possibly?) BiCUlt embeds into it.

3Contractions on a non-empty complete metric space have a unique fixpoint.
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(E ,▶: E → E ,−† : E(▶ −,−)→ E(1,−)), where E has fin.
prods. and ▶ is pointed4. s.t. (incrementally):

• ∀f :▶ X→ X, f† is !s.t.

1 X

X ▶ X

f†

nX

f†

f

• ▶ preserves finite limits.

• E is cartesian closed.

• Every loc. contr. F : E → E has a fixpoint (up to iso).

• E is LCC + each slice is •.

4i.e. there’s a natural transformation n : idE →▶.
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Recall that an endofunctor F : C → C is strong if
∀X,Y.∃FX,Y : YX → FYFX s.t. ∀f : X→ Y.FX,Y ◦ JfK = JFfK5.

A strong endofunctor on E is locally contractive if each FX,Y is
contractive, i.e. ∃GX,Y s.t. GX,Y ◦ nXY = FX,Y and the following
diagrams commute:

▶ (YX)× ▶ (ZY) ▶ (YX × ZY) ▶ (ZX) 1 ▶ (XX)

FYFX × FZFY FZFX X

GX,Y×GY,Z

∼= ▶c

c

GX,Z

▶JidK
GX,XJidK

5JfK : 1 → YX is the curried version of f : X → Y.
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The general reference here is [BMSS11]

Proposition
If E is cartesian closed + •, then ▶ is strong.

Theorem
If E is LCC + •, then so is each of its slices.

Theorem
If E is LCC + •, then ▶ is fibred over the codomain fibration.
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Proposition
If E is •, let F : E → E be lc. If X ∼= F(X), then the two directions of
the isomorphism give an initial algebra and a final coalgebra
structure.

Theorem
If E is •, let F : (Eop × E)n+1 → E be lc in the (n+1)th variable
pair. Then ∃!F† : (Eop × E)n → E s.t. F ◦ ⟨id, F†⟩ ∼= F†6. Moreover,
if F is lc in all variables, then so is F†.

6F(X⃗, Y⃗) = ⟨F(Y⃗, X⃗), F(X⃗, Y⃗)⟩ is the symmetrization of F.
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• Taking ▶= idE and n = id▶, categories with an ordinary
fixpoint operator are •. For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

• If ▶ X = 1 and nX =!X, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

• Take E = BiCUlt,▶= 1
2 · − and n as the obvious “contracted

identity” mapping. Note that a n.e. f :▶ X→ X is the same
as a contractive endomap. Therefore Banach’s fixpoint
theorem yields a guarded fixpoint operator and BiCUlt is •.
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A morphism f : X→ Y is contractive if ∃g :▶ X→ Y s.t. f = g ◦ nX.
A morphism f : X× Y→ Z is contractive in the first variable if ∃g
s.t. f = g ◦ (nx × idY).

Theorem
All f : X× Y→ X cont. in the first variable have unique fixpoints.
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• Dulcis in fundo...

17/45



• Taking ▶= idE and n = id▶, categories with an ordinary
fixpoint operator are •. For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

• If ▶ X = 1 and nX =!X, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

• Take E = BiCUlt,▶= 1
2 · − and n as the obvious “contracted

identity” mapping. Note that a n.e. f :▶ X→ X is the same
as a contractive endomap. Therefore Banach’s fixpoint
theorem yields a guarded fixpoint operator and BiCUlt is •.

• Dulcis in fundo...

17/45



A poset A is well-founded if there are no infinite descending
sequences a0 > a1 > a2 > ...

Let A be a poset and let K ⊆ A. Then K is a basis for A if
∀a ∈ A.a =

∨
{k ∈ K | k ≤ a}.

Theorem
Let A be a complete Heyting algebra7 with a well-founded base.
Then Sh(A) is •.

7i.e. a poset with ⊤,⊥, all→, meets and joins. Also known as frames.
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Let A be a well-founded poset. Then its ideal completion Idl(A)
consisting of downward-closed subsets of A is a complete
Heyting algebra with a well-founded basis K = {↓ a | a ∈ A}
where ↓ a = {a′ ∈ A | a′ ≤ a}.

Proposition
If A is a poset, then Sh(Idl(A)) ≃ Psh(A).
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Take:
S := Psh(ω)

Its objects are of the form:

X1 X2 X3 . . .
r3r2r1

Its morphisms:

X1 X2 X3 . . .

Y1 Y2 Y3 . . .

r3r2r1

r′3r′2r′1

f1 f2 f3

20/45



Take:
S := Psh(ω)

Its objects are of the form:

X1 X2 X3 . . .
r3r2r1

Its morphisms:

X1 X2 X3 . . .

Y1 Y2 Y3 . . .

r3r2r1

r′3r′2r′1

f1 f2 f3

20/45



Take:
S := Psh(ω)

Its objects are of the form:

X1 X2 X3 . . .
r3r2r1

Its morphisms:

X1 X2 X3 . . .

Y1 Y2 Y3 . . .

r3r2r1

r′3r′2r′1

f1 f2 f3

20/45



The ▶ modality:

X X1 X2 X3 X4 . . .

▶ X {∗} X1 X2 X3 . . .
r′1 r′3r′2

r3r2r1 r4

!

And its point, nX:

X1 X2 X3 X4 . . .

{∗} X1 X2 X3 . . .
r′1 r′3r′2

r3r2r1 r4

!

! r1 r2 r3
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The NNO:

N N N N . . .
idNidN idN

The subobject classifier:

Ω {0,1} {0,1,2} {0,1,2,3} . . .
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The type of streams:

S ∼= N× S Nω Nω Nω . . .
idNωidNω idNω

The type of guarded streams:

S▶ ∼= N× ▶ S▶ N N2 N3 . . .
π1,2π1 π1,2,3
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A presheaf is flabby if all its restriction maps are surjective.

Theorem
There is an equivalence between BiCUlt and flab(S), the full
subcategory of flabby objects of the topos of trees.

Proposition
A morphism in BiCUlt is contractive in the metric sense iff it’s
contractive in S.

There should be some geometry sneaking around!
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For every topos E , there exists a geometric morphism to Set
called the global sections geometric morphism:

Γ : E Set : ∆⊣

Γ(X) = Set(1,X) ∆(S) =
⨿
|S|

1
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A geometric morphism f is essential if it has an additional left
adjoint f!

E T
f∗

f∗
f! ⊣

⊣

A topos is locally connected if Γ is essential.

Pretty common for models of SGDT!
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A geometric morphism f is local if it has an additional fully
faithful right adjoint f!

E Tf∗

f∗

f!

⊣
⊣

A topos is local if Γ is a local geometric morphism.

Is there any known local model of SGDT?
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A quadruple of adjoint functors:

E Set
Γ

∆

Π

K

⊣
⊣

⊣

Exhibits the cohesion of E over Set if:

• ∆ and K are fully faithful.

• Π preserves finite products.
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Fact: A quadruple of adjoints induces a triple of adjoints.

There is an adjoint triple of idempotent (co)Monads on E :

E Set EΓ∆

Γ K

Π ∆

• The shape monad S = ∆ ◦ Π
• The flat comonad ♭ = ∆ ◦ Γ
• The sharp monad ♯ = K ◦ Γ
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The topos Psh({0→ 1})8 exhibits cohesion over Set.

• Γ sends X→ Y to its domain X.

• Π sends X→ Y to its codomain Y.

• ∆ sends a set X to the identity X id−→ X.

• K sends a set X into its terminal morphism X !−→ 1.

Theorem
If C has both an initial and a terminal object, then Psh(C)
exhibits cohesion over Set with:

lim ⊣ const ⊣ colim ⊣ coconst

8Also known as the Sierpinski topos.
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The topos Psh(ω + 1) exhibits cohesion over Set.

Let X = X1 ← X2 ← · · · ← Xω

• Γ sends X to its domain Xω.

• Π sends X to its codomain X1.

• ∆ sends a set X to the constant object on X.

• K sends a set X to the object 1 id←− 1 id←− . . .
!←− X.

In general this works for every successor ordinal
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Languages like Idris and Agda use a (quite conservative)
syntactic approximation to productivity for recursive functions
on coinductive types: each recursive callmust be “guarded” by
a constructor.

-- The type of streams of naturals
-- in pseudo-haskell/idris/agda
data S : Type where

(::) : N → S → S

-- This one is recognized as productive, phew!
onOff : S
onOff = 1 :: 0 :: onOff
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These requirements are a bit too restrictive and often confusing.

interleave : S → S → S
interleave (x :: xs) ys = x :: interleave ys xs

-- Non-productive, gets rejected
dragon' : S
dragon' = interleave dragon' onOff

-- Productive, gets rejected anyways
dragon : S
dragon = interleave onOff dragon
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Another example:

-- Not always non-productive
mergeBy : (N → N → S → S) → S → S → S
mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)

Can we at least save something?
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Let’s switch to guarded streams:

data S▶ : Type where
(::) : N → ▶S▶ → S▶

-- Remember that ▶ is an applicative
-- and has a (guarded) fixpoint operator:
fix : (▶X → X) → X
pure : X → ▶X -- a.k.a. nX

<*> : ▶(X → Y) → ▶X → ▶Y
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We can now fix our function:

mergeBy : (N → N → ▶S▶ → S▶) → S▶ → S▶ → S▶
mergeBy f (x :: xs) (y :: ys) =

fix (λ g → f x y (g <*> xs <*> ys))

Cool! But something’s off...
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Adding ▶ alone is too rigid for productivity, for example:

dropSnd (x :: y :: xs) = x :: dropSnd xs

Violates causality9, and cannot be typed using S▶.

Possible solutions: [AM13]10 [BBM14] [Gua18]

9“For each write, the program is permitted to perform at most one read”
10The most polished one, see also [SH18]
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Fortunately, we have the right “modality” for our problem:

♭(▶ X) ∼= ♭X

With the fortunate consequence:

♭S▶ ∼= ♭(N× ▶ S▶) ∼= ♭N× ♭(▶ S▶) ∼= N× ♭S▶ ∼= S

Sadly, ♭ is not a type constructor.
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Formal fact: In a topos, all the idempotent comonads fibred
over the codomain fibration are of the form □U(A) = A× U for a
subterminal object U.

Clearly, ♭ doesn’t have this form⇒We cannot have ♭ as an
operation Type→ Type.
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Possible solution: In presence of a ♯ modality, we can describe
♭ as an operation ♯Type→ ♯Type.

Pros:

• Easily formalizable in an existing proof assistant [Shu11].

Cons:

• Requires a lot of work on the theory of ♯Type.

• It’s hard to “escape” from ♯Type [Shu11, Shu18].
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Today we learned:

• SGDT is both a generalization of step indexing in categories
of metric spaces [BST10] and Nakano-style guarded
recursion [Nak00].

• Models of SGDT are pretty easy to come by and (often)
have simple descriptions in terms of very simple presheaf
categories.

• Although there are many signs of geometry hiding in plain
sight in SGDT this aspect of the theory has been pretty
much ignored as of now.

• The ▶ modality saves us from coding around syntactic
productivity checks but it’s too rigid when considered
alone, ♭ and ♯ help us with that.
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See you ▶,🐊s!
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