

An introduction to SGDT

+ some geometric remarks

Daniele Palombi

(Student @ Sapienza – University of Rome, Volunteer @ Progetto ItaCa)

February 2021

We want to solve:

$$X \cong X^X$$

We want to solve:

$$X \cong X^X$$

Unfortunately:

Theorem (Lawvere)

In a CCC, if there's an onto map $X \rightarrow Y^X$, then every endomorphism $f: Y \rightarrow Y$ has a fixpoint.

We want to solve:

$$X \cong X^X$$

Unfortunately:

Theorem (Lawvere)

In a CCC, if there's an onto map $X \rightarrow Y^X$, then every endomorphism $f: Y \rightarrow Y$ has a fixpoint.

No non-trivial sets satisfy this!

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the *Scott topology*) s.t. continuous functions between them are precisely DCPO morphisms.

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the *Scott topology*) s.t. continuous functions between them are precisely DCPO morphisms.

DT becomes a full-fledged *theory of computational spaces!*

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets

¹All the nice topological intuition carries over in a precise way.

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets \Rightarrow Define a (family of) topos(es) of domains¹ \mathcal{E} in which:

- One can take fixpoints of endomorphisms $X \rightarrow X$.
- One can find fixpoints for various endofunctors $\mathcal{E} \rightarrow \mathcal{E}$.
- A (known?) category of domains embeds into it.

¹All the nice topological intuition carries over in a precise way.

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets \Rightarrow Define a (family of) topos(es) of domains¹ \mathcal{E} in which:

- One can take fixpoints of endomorphisms $X \rightarrow X$.
- One can find fixpoints for various endofunctors $\mathcal{E} \rightarrow \mathcal{E}$.
- A (known?) category of domains embeds into it.

We won't talk about that right now...

¹All the nice topological intuition carries over in a precise way.

Suppose we want to solve:

$$\mathcal{W} \cong \mathbb{N} \multimap_{\text{fin}} \mathcal{T}$$

$$\mathcal{T} \cong \mathcal{W} \rightarrow_{\text{mon}} \mathcal{P}(\mathbf{V} \times \mathbf{V})$$

Suppose we want to solve:

$$\mathcal{W} \cong \mathbb{N} \rightarrow_{\text{fin}} \mathcal{T}$$

$$\mathcal{T} \cong \mathcal{W} \rightarrow_{\text{mon}} \mathcal{P}(\mathbf{V} \times \mathbf{V})$$

Both Sets and Domains aren't that helpful with that.

Step indexing: Adding steps (natural numbers, in its most simple form) at different places in definitions in order to get a handle on recursion.

Step indexing: Adding steps (natural numbers, in its most simple form) at different places in definitions in order to get a handle on recursion.

Let's try changing a bit what we're trying to solve and take:

$$\mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V}) := \{\rho \mid (n, v, w) \in \rho \Rightarrow (m, v, w) \in \rho \ \forall m \leq n\}$$

Observe that $\mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X, Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j, v, w) \in X \leftrightarrow (j, v, w) \in Y\}$$

Observe that $\mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X, Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j, v, w) \in X \leftrightarrow (j, v, w) \in Y\}$$

Moreover:

1. All the distances are of the form 2^{-n} .
2. $d(X, Z) \leq \max\{d(X, Y), d(Y, Z)\} \quad \forall X, Y, Z.$

Observe that $\mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X, Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j, v, w) \in X \leftrightarrow (j, v, w) \in Y\}$$

Moreover:

1. All the distances are of the form 2^{-n} .
2. $d(X, Z) \leq \max\{d(X, Y), d(Y, Z)\} \quad \forall X, Y, Z.$

$\mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ is a *bisected* (1) *ultrametric* (2) space!

Let's move to the category BiCUlt of *complete bisected ultrametric spaces* and *non-expansive*² functions.

² $f: X \rightarrow Y$ is non-expansive if $\forall a, b \in X. d_Y(f(a), f(b)) \leq d_X(a, b)$.

Let's move to the category BiCUlt of *complete bisected ultrametric spaces* and *non-expansive*² functions.

A *locally non-expansive* functor is a BiCUlt-enriched functor.

A lne functor $F : \text{BiCUlt}^{\text{op}} \times \text{BiCUlt} \rightarrow \text{BiCUlt}$ is *locally contractive* if $\forall f, g : X \rightarrow Y$ and $h, k : Z \rightarrow W$ we have:

$$d(F(f, h), F(g, k)) \leq \frac{1}{2} \cdot \max\{d(f, g), d(h, k)\}$$

² $f : X \rightarrow Y$ is non-expansive if $\forall a, b \in X. d_Y(f(a), f(b)) \leq d_X(a, b)$.

Remark

Composing any linear functor with the functor $\frac{1}{2} \cdot -$, which maps the space (X, d_X) to $(X, \frac{1}{2} \cdot d_X)$ and acts as the identity on morphisms, will give a locally contractive functor.

Remark

Composing any lne functor with the functor $\frac{1}{2} \cdot -$, which maps the space (X, d_X) to $(X, \frac{1}{2} \cdot d_X)$ and acts as the identity on morphisms, will give a locally contractive functor.

Theorem ([BST10])

Let F an lc functor s.t. $F(1, 1)$ is inhabited. Then, there exists an inhabited $X \in \text{BiCULt}$ s.t. $F(X, X) \cong X$. If moreover $F(\emptyset, \emptyset)$ is inhabited, then such X is unique up to iso.

Now we can upgrade our definition from earlier to:

$$\mathcal{T} \cong \left(\mathbb{N} \multimap_{\text{fin}} \frac{1}{2} \cdot \mathcal{T} \right) \rightarrow_{\text{mon, n.e.}} \mathcal{P}^\downarrow(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$$

And use the fixpoint theorem for lc functors to show that it has a unique solution.

Cool! But, these spaces are awful to deal with. Again, one would like to treat such objects as sets

³Contractions on a non-empty complete metric space have a unique fixpoint.

Cool! But, these spaces are awful to deal with. Again, one would like to treat such objects as sets \Rightarrow Define a (family of) topos(es) \mathcal{E} in which:

- There's a version of Banach's fixpoint theorem³.
- One can find fixpoints for lc endofunctors $\mathcal{E} \rightarrow \mathcal{E}$.
- There's an operator that behaves like the $\frac{1}{2} \cdot -$ functor.
- (possibly?) BiCUlt embeds into it.

³Contractions on a non-empty complete metric space have a unique fixpoint.

$(\mathcal{E}, \blacktriangleright: \mathcal{E} \rightarrow \mathcal{E}, -^\dagger: \mathcal{E}(\blacktriangleright -, -) \rightarrow \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \rightarrow \blacktriangleright$.

$(\mathcal{E}, \blacktriangleright: \mathcal{E} \rightarrow \mathcal{E}, -^\dagger: \mathcal{E}(\blacktriangleright -, -) \rightarrow \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

- $\forall f: \blacktriangleright X \rightarrow X, f^\dagger$ is !s.t.

$$\begin{array}{ccc}
 1 & \xrightarrow{f^\dagger} & X \\
 f^\dagger \downarrow & & \uparrow f \\
 X & \xrightarrow{n_X} & \blacktriangleright X
 \end{array}$$

- \blacktriangleright preserves finite limits.

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \rightarrow \blacktriangleright$.

$(\mathcal{E}, \blacktriangleright: \mathcal{E} \rightarrow \mathcal{E}, -^\dagger: \mathcal{E}(\blacktriangleright -, -) \rightarrow \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

- $\forall f: \blacktriangleright X \rightarrow X, f^\dagger$ is !s.t.

$$\begin{array}{ccc}
 1 & \xrightarrow{f^\dagger} & X \\
 f^\dagger \downarrow & & \uparrow f \\
 X & \xrightarrow{n_X} & \blacktriangleright X
 \end{array}$$

- \blacktriangleright preserves finite limits.
- \mathcal{E} is cartesian closed.
- Every loc. contr. $F: \mathcal{E} \rightarrow \mathcal{E}$ has a fixpoint (up to iso).

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \rightarrow \blacktriangleright$.

$(\mathcal{E}, \blacktriangleright: \mathcal{E} \rightarrow \mathcal{E}, -^\dagger: \mathcal{E}(\blacktriangleright -, -) \rightarrow \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

- $\forall f: \blacktriangleright X \rightarrow X, f^\dagger$ is !s.t.

$$\begin{array}{ccc}
 1 & \xrightarrow{f^\dagger} & X \\
 f^\dagger \downarrow & & \uparrow f \\
 X & \xrightarrow{n_X} & \blacktriangleright X
 \end{array}$$

- \blacktriangleright preserves finite limits.
- \mathcal{E} is cartesian closed.
- Every loc. contr. $F: \mathcal{E} \rightarrow \mathcal{E}$ has a fixpoint (up to iso).
- \mathcal{E} is LCC + each slice is \bullet .

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \rightarrow \blacktriangleright$.

Recall that an endofunctor $F : \mathcal{C} \rightarrow \mathcal{C}$ is *strong* if

$$\forall X, Y. \exists F_{X,Y} : Y^X \rightarrow FY^{FX} \text{ s.t. } \forall f : X \rightarrow Y. F_{X,Y} \circ \llbracket f \rrbracket = \llbracket Ff \rrbracket^5.$$

⁵ $\llbracket f \rrbracket : 1 \rightarrow Y^X$ is the curried version of $f : X \rightarrow Y$.

Recall that an endofunctor $F : \mathcal{C} \rightarrow \mathcal{C}$ is *strong* if

$$\forall X, Y. \exists F_{X,Y} : Y^X \rightarrow FY^{FX} \text{ s.t. } \forall f : X \rightarrow Y. F_{X,Y} \circ \llbracket f \rrbracket = \llbracket Ff \rrbracket^5.$$

A strong endofunctor on \mathcal{E} is *locally contractive* if each $F_{X,Y}$ is contractive, i.e. $\exists G_{X,Y}$ s.t. $G_{X,Y} \circ n_{X^Y} = F_{X,Y}$ and the following diagrams commute:

$$\begin{array}{ccc}
 \blacktriangleright (Y^X) \times \blacktriangleright (Z^Y) & \xrightarrow{\cong} & \blacktriangleright (Y^X \times Z^Y) \xrightarrow{\blacktriangleright^c} \blacktriangleright (Z^X) \\
 G_{X,Y} \times G_{Y,Z} \downarrow & & \downarrow G_{X,Z} \\
 FY^{FX} \times FZ^{FY} & \xrightarrow{c} & FZ^{FX}
 \end{array}
 \qquad
 \begin{array}{ccc}
 1 & \xrightarrow{\llbracket id \rrbracket} & \blacktriangleright (X^X) \\
 & \searrow \llbracket id \rrbracket & \downarrow G_{X,X} \\
 & & X
 \end{array}$$

⁵ $\llbracket f \rrbracket : 1 \rightarrow Y^X$ is the curried version of $f : X \rightarrow Y$.

The general reference here is [BMSS11]

Proposition

If \mathcal{E} is cartesian closed + \bullet , then \blacktriangleright is strong.

The general reference here is [BMSS11]

Proposition

If \mathcal{E} is cartesian closed + •, then \blacktriangleright is strong.

Theorem

If \mathcal{E} is LCC + •, then so is each of its slices.

The general reference here is [BMSS11]

Proposition

If \mathcal{E} is cartesian closed + •, then \blacktriangleright is strong.

Theorem

If \mathcal{E} is LCC + •, then so is each of its slices.

Theorem

If \mathcal{E} is LCC + •, then \blacktriangleright is fibred over the codomain fibration.

Proposition

If \mathcal{E} is \bullet , let $F : \mathcal{E} \rightarrow \mathcal{E}$ be lc. If $X \cong F(X)$, then the two directions of the isomorphism give an initial algebra and a final coalgebra structure.

⁶ $\underline{F}(\vec{X}, \vec{Y}) = \langle F(\vec{Y}, \vec{X}), F(\vec{X}, \vec{Y}) \rangle$ is the symmetrization of F .

Proposition

If \mathcal{E} is \bullet , let $F : \mathcal{E} \rightarrow \mathcal{E}$ be lc. If $X \cong F(X)$, then the two directions of the isomorphism give an initial algebra and a final coalgebra structure.

Theorem

If \mathcal{E} is \bullet , let $F : (\mathcal{E}^{op} \times \mathcal{E})^{n+1} \rightarrow \mathcal{E}$ be lc in the $(n+1)$ th variable pair. Then $\exists ! F^\dagger : (\mathcal{E}^{op} \times \mathcal{E})^n \rightarrow \mathcal{E}$ s.t. $F \circ \langle id, \underline{F}^\dagger \rangle \cong F^\dagger$ ⁶. Moreover, if F is lc in all variables, then so is F^\dagger .

⁶ $\underline{F}(\vec{X}, \vec{Y}) = \langle F(\vec{Y}, \vec{X}), F(\vec{X}, \vec{Y}) \rangle$ is the symmetrization of F .

- Taking $\blacktriangleright = id_{\mathcal{E}}$ and $n = id_{\blacktriangleright}$, categories with an ordinary fixpoint operator are \bullet . For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.

- Taking $\blacktriangleright = id_{\mathcal{E}}$ and $n = id_{\blacktriangleright}$, categories with an ordinary fixpoint operator are \bullet . For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If $\blacktriangleright X = 1$ and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.

- Taking $\blacktriangleright = id_{\mathcal{E}}$ and $n = id_{\blacktriangleright}$, categories with an ordinary fixpoint operator are \bullet . For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If $\blacktriangleright X = 1$ and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \text{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious “contracted identity” mapping. Note that a n.e. $f : \blacktriangleright X \rightarrow X$ is the same as a contractive endomap. Therefore Banach’s fixpoint theorem yields a guarded fixpoint operator and BiCUlt is \bullet .

A morphism $f: X \rightarrow Y$ is *contractive* if $\exists g : \blacktriangleright X \rightarrow Y$ s.t. $f = g \circ n_X$.

A morphism $f: X \times Y \rightarrow Z$ is *contractive in the first variable* if $\exists g$ s.t. $f = g \circ (n_X \times id_Y)$.

Theorem

All $f: X \times Y \rightarrow X$ cont. in the first variable have unique fixpoints.

- Taking $\blacktriangleright = id_{\mathcal{E}}$ and $n = id_{\blacktriangleright}$, categories with an ordinary fixpoint operator are \bullet . For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If $\blacktriangleright X = 1$ and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \text{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious “contracted identity” mapping. Note that a n.e. $f : \blacktriangleright X \rightarrow X$ is the same as a contractive endomap. Therefore Banach’s fixpoint theorem yields a guarded fixpoint operator and BiCUlt is \bullet .

- Taking $\blacktriangleright = id_{\mathcal{E}}$ and $n = id_{\blacktriangleright}$, categories with an ordinary fixpoint operator are \bullet . For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If $\blacktriangleright X = 1$ and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \text{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious “contracted identity” mapping. Note that a n.e. $f : \blacktriangleright X \rightarrow X$ is the same as a contractive endomap. Therefore Banach’s fixpoint theorem yields a guarded fixpoint operator and BiCUlt is \bullet .
- Dulcis in fundo...

A poset A is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > \dots$

⁷i.e. a poset with \top , \perp , all \rightarrow , meets and joins. Also known as *frames*.

A poset A is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > \dots$

Let A be a poset and let $K \subseteq A$. Then K is a *basis* for A if
 $\forall a \in A. a = \bigvee \{k \in K \mid k \leq a\}.$

⁷i.e. a poset with \top, \perp , all \rightarrow , meets and joins. Also known as *frames*.

A poset A is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > \dots$

Let A be a poset and let $K \subseteq A$. Then K is a *basis* for A if
 $\forall a \in A. a = \bigvee \{k \in K \mid k \leq a\}.$

Theorem

Let A be a complete Heyting algebra⁷ with a well-founded base. Then $\text{Sh}(A)$ is \bullet .

⁷i.e. a poset with \top, \perp , all \rightarrow , meets and joins. Also known as *frames*.

Let A be a well-founded poset. Then its *ideal completion* $\text{Idl}(A)$ consisting of downward-closed subsets of A is a complete Heyting algebra with a well-founded basis $K = \{\downarrow a \mid a \in A\}$ where $\downarrow a = \{a' \in A \mid a' \leq a\}$.

Let A be a well-founded poset. Then its *ideal completion* $\text{Idl}(A)$ consisting of downward-closed subsets of A is a complete Heyting algebra with a well-founded basis $K = \{\downarrow a \mid a \in A\}$ where $\downarrow a = \{a' \in A \mid a' \leq a\}$.

Proposition

If A is a poset, then $\text{Sh}(\text{Idl}(A)) \simeq \text{Psh}(A)$.

Take:

$$\mathcal{S} := Psh(\omega)$$

Take:

$$\mathcal{S} := Psh(\omega)$$

Its objects are of the form:

$$X_1 \xleftarrow{r_1} X_2 \xleftarrow{r_2} X_3 \xleftarrow{r_3} \dots$$

Take:

$$\mathcal{S} := Psh(\omega)$$

Its objects are of the form:

$$X_1 \xleftarrow{r_1} X_2 \xleftarrow{r_2} X_3 \xleftarrow{r_3} \dots$$

Its morphisms:

$$\begin{array}{ccccccc} X_1 & \xleftarrow{r_1} & X_2 & \xleftarrow{r_2} & X_3 & \xleftarrow{r_3} & \dots \\ f_1 \downarrow & & f_2 \downarrow & & f_3 \downarrow & & \\ Y_1 & \xleftarrow{r'_1} & Y_2 & \xleftarrow{r'_2} & Y_3 & \xleftarrow{r'_3} & \dots \end{array}$$

The \blacktriangleright modality:

$$X \quad X_1 \xleftarrow{r_1} X_2 \xleftarrow{r_2} X_3 \xleftarrow{r_3} X_4 \xleftarrow{r_4} \dots$$

$$\blacktriangleright X \quad \{*\} \xleftarrow[!]{} X_1 \xleftarrow{r'_1} X_2 \xleftarrow{r'_2} X_3 \xleftarrow{r'_3} \dots$$

The \blacktriangleright modality:

$$X \quad X_1 \xleftarrow{r_1} X_2 \xleftarrow{r_2} X_3 \xleftarrow{r_3} X_4 \xleftarrow{r_4} \dots$$

$$\blacktriangleright X \quad \{*\} \xleftarrow[!]{} X_1 \xleftarrow{r'_1} X_2 \xleftarrow{r'_2} X_3 \xleftarrow{r'_3} \dots$$

And its point, n_X :

$$\begin{array}{ccccccc} X_1 & \xleftarrow{r_1} & X_2 & \xleftarrow{r_2} & X_3 & \xleftarrow{r_3} & X_4 & \xleftarrow{r_4} & \dots \\ \downarrow ! & & \downarrow r_1 & & \downarrow r_2 & & \downarrow r_3 & & \\ \{*\} & \xleftarrow[!]{} & X_1 & \xleftarrow{r'_1} & X_2 & \xleftarrow{r'_2} & X_3 & \xleftarrow{r'_3} & \dots \end{array}$$

The NNO:

$$N \quad \mathbb{N} \xleftarrow{id_{\mathbb{N}}} \mathbb{N} \xleftarrow{id_{\mathbb{N}}} \mathbb{N} \xleftarrow{id_{\mathbb{N}}} \dots$$

The subobject classifier:

$$\Omega \quad \{0, 1\} \longleftarrow \{0, 1, 2\} \longleftarrow \{0, 1, 2, 3\} \longleftarrow \dots$$

The type of streams:

$$S \cong \mathbb{N} \times S \quad \mathbb{N}^\omega \xleftarrow{id_{\mathbb{N}^\omega}} \mathbb{N}^\omega \xleftarrow{id_{\mathbb{N}^\omega}} \mathbb{N}^\omega \xleftarrow{id_{\mathbb{N}^\omega}} \dots$$

The type of guarded streams:

$$S_\blacktriangleright \cong \mathbb{N} \times \blacktriangleright S_\blacktriangleright \quad \mathbb{N} \xleftarrow{\pi_1} \mathbb{N}^2 \xleftarrow{\pi_{1,2}} \mathbb{N}^3 \xleftarrow{\pi_{1,2,3}} \dots$$

A presheaf is *flabby* if all its restriction maps are surjective.

A presheaf is *flabby* if all its restriction maps are surjective.

Theorem

There is an equivalence between BiCUlt and flab(\mathcal{S}), the full subcategory of flabby objects of the topos of trees.

Proposition

A morphism in BiCUlt is contractive in the metric sense iff it's contractive in \mathcal{S} .

A presheaf is *flabby* if all its restriction maps are surjective.

Theorem

There is an equivalence between BiCUlt and flab(\mathcal{S}), the full subcategory of flabby objects of the topos of trees.

Proposition

A morphism in BiCUlt is contractive in the metric sense iff it's contractive in \mathcal{S} .

There should be some geometry sneaking around!

For every topos \mathcal{E} , there exists a geometric morphism to Set called the *global sections* geometric morphism:

$$\Gamma : \mathcal{E} \xrightleftharpoons{\perp} \text{Set} : \Delta$$

For every topos \mathcal{E} , there exists a geometric morphism to Set called the *global sections* geometric morphism:

$$\Gamma : \mathcal{E} \xrightleftharpoons{\perp} \text{Set} : \Delta$$

$$\Gamma(X) = \text{Set}(1, X) \qquad \qquad \Delta(S) = \coprod_{|S|} 1$$

A geometric morphism f is *essential* if it has an additional left adjoint $f_!$

$$\begin{array}{ccc} & f_! & \\ \mathcal{E} & \xleftarrow{f^*} & \xrightarrow{\perp} & \mathcal{T} \\ & f_* & \perp & \end{array}$$

A geometric morphism f is *essential* if it has an additional left adjoint $f_!$

$$\begin{array}{ccc} & f_! & \\ \mathcal{E} & \xleftarrow{f^*} & \xrightarrow{\perp} & \mathcal{T} \\ & f_* & \perp & \end{array}$$

A topos is *locally connected* if Γ is essential.

A geometric morphism f is *essential* if it has an additional left adjoint $f_!$

$$\begin{array}{ccc} & f_! & \\ \mathcal{E} & \xleftarrow{f^*} & \xrightarrow{\perp} & \mathcal{T} \\ & f_* & \perp & \end{array}$$

A topos is *locally connected* if Γ is essential.

Pretty common for models of SGDT!

A geometric morphism f is *local* if it has an additional fully faithful right adjoint $f^!$

$$\begin{array}{ccc} \mathcal{E} & \xleftarrow{f^*} & \mathcal{T} \\ & \xrightarrow{f_*} & \xrightarrow{\perp} \\ & \xleftarrow{f^!} & \end{array}$$

A geometric morphism f is *local* if it has an additional fully faithful right adjoint $f^!$

$$\begin{array}{ccc} \mathcal{E} & \xleftarrow{f^*} & \mathcal{T} \\ \xrightarrow{f_*} & \perp & \xrightarrow{\perp} \\ \xleftarrow{f^!} & & \end{array}$$

A topos is *local* if Γ is a local geometric morphism.

A geometric morphism f is *local* if it has an additional fully faithful right adjoint $f^!$

$$\begin{array}{ccc} \mathcal{E} & \xleftarrow{f^*} & \mathcal{T} \\ \xrightarrow{f_*} & \perp & \xrightarrow{\perp} \\ & \xleftarrow{f^!} & \end{array}$$

A topos is *local* if Γ is a local geometric morphism.

Is there any known local model of SGDT?

A quadruple of adjoint functors:

$$\begin{array}{ccccc} & & \Pi & & \\ & \swarrow & & \searrow & \\ \mathcal{E} & \xleftarrow{\Delta} & \perp & \xrightarrow{\perp} & \text{Set} \\ & \searrow & & \swarrow & \\ & & \Gamma & & \\ & \swarrow & & \searrow & \\ & & \kappa & & \end{array}$$

A quadruple of adjoint functors:

$$\begin{array}{ccccc} & & \Pi & & \\ & \swarrow & & \searrow & \\ \mathcal{E} & \xleftarrow{\Delta} & \perp & \xrightarrow{\Gamma} & \text{Set} \\ & \searrow & & \swarrow & \\ & & \mathbf{K} & & \end{array}$$

Exhibits the cohesion of \mathcal{E} over Set if:

- Δ and \mathbf{K} are fully faithful.
- Π preserves finite products.

Fact: A quadruple of adjoints induces a triple of adjoints.

Fact: A quadruple of adjoints induces a triple of adjoints.

There is an adjoint triple of idempotent (co)Monads on \mathcal{E} :

$$\begin{array}{ccccc} & \xrightarrow{\Pi} & & \xrightarrow{\Delta} & \\ \mathcal{E} & \xleftarrow{\Delta} & \text{Set} & \xleftarrow{\Gamma} & \mathcal{E} \\ & \xrightarrow{\Gamma} & & \xrightarrow{\kappa} & \end{array}$$

- The *shape* monad $\jmath = \Delta \circ \Pi$
- The *flat* comonad $\flat = \Delta \circ \Gamma$
- The *sharp* monad $\sharp = \kappa \circ \Gamma$

The topos $Psh(\{0 \rightarrow 1\})^8$ exhibits cohesion over Set.

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\{0 \rightarrow 1\})$ ⁸ exhibits cohesion over Set.

- Γ sends $X \rightarrow Y$ to its domain X .
- Π sends $X \rightarrow Y$ to its codomain Y .
- Δ sends a set X to the identity $X \xrightarrow{id} X$.
- \mathbf{K} sends a set X into its terminal morphism $X \xrightarrow{!} 1$.

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\{0 \rightarrow 1\})^8$ exhibits cohesion over Set.

- Γ sends $X \rightarrow Y$ to its domain X .
- Π sends $X \rightarrow Y$ to its codomain Y .
- Δ sends a set X to the identity $X \xrightarrow{id} X$.
- \mathbf{K} sends a set X into its terminal morphism $X \xrightarrow{!} 1$.

Theorem

If \mathcal{C} has both an initial and a terminal object, then $Psh(\mathcal{C})$ exhibits cohesion over Set with:

$$\lim \dashv \text{const} \dashv \text{colim} \dashv \text{coconst}$$

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let $X = X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_\omega$

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let $X = X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_\omega$

- Γ sends X to its domain X_ω .
- Π sends X to its codomain X_1 .
- Δ sends a set X to the constant object on X .
- \mathbf{K} sends a set X to the object $1 \xleftarrow{id} 1 \xleftarrow{id} \dots \xleftarrow{!} X$.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let $X = X_1 \leftarrow X_2 \leftarrow \dots \leftarrow X_\omega$

- Γ sends X to its domain X_ω .
- Π sends X to its codomain X_1 .
- Δ sends a set X to the constant object on X .
- \mathbf{K} sends a set X to the object $1 \xleftarrow{id} 1 \xleftarrow{id} \dots \xleftarrow{!} X$.

In general this works for every successor ordinal

Languages like [Idris](#) and [Agda](#) use a (quite conservative) syntactic approximation to productivity for recursive functions on coinductive types: each recursive call **must** be “guarded” by a constructor.

Languages like [Idris](#) and [Agda](#) use a (quite conservative) syntactic approximation to productivity for recursive functions on coinductive types: each recursive call **must** be “guarded” by a constructor.

```
-- The type of streams of naturals
-- in pseudo-haskell/idris/agda
data S : Type where
  (:) :  $\mathbb{N} \rightarrow S \rightarrow S$ 

-- This one is recognized as productive, phew!
onOff : S
onOff = 1 :: 0 :: onOff
```

These requirements are a bit too restrictive and often confusing.

These requirements are a bit too restrictive and often confusing.

```
interleave : S → S → S
```

```
interleave (x :: xs) ys = x :: interleave ys xs
```

-- Non-productive, gets rejected

```
dragon' : S
```

```
dragon' = interleave dragon' onOff
```

-- Productive, gets rejected anyways

```
dragon : S
```

```
dragon = interleave onOff dragon
```

Another example:

```
-- Not always non-productive
mergeBy : (N → N → S → S) → S → S → S
mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)
```

Another example:

```
-- Not always non-productive
mergeBy : (N → N → S → S) → S → S → S
mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)
```

Can we at least save something?

Let's switch to *guarded* streams:

```
data S▶ : Type where
  (::) : ℕ → ▶S▶ → S▶
```

```
-- Remember that ▶ is an applicative
-- and has a (guarded) fixpoint operator:
fix : (▶X → X) → X
pure : X → ▶X -- a.k.a. nX
<*> : ▶(X → Y) → ▶X → ▶Y
```

We can now fix our function:

```
mergeBy : (N → N → ▶S▶ → S▶) → S▶ → S▶ → S▶
mergeBy f (x :: xs) (y :: ys) =
  fix (λ g → f x y (g <*> xs <*> ys))
```

We can now fix our function:

```
mergeBy : (N → N → ▶S▶ → S▶) → S▶ → S▶ → S▶  
mergeBy f (x :: xs) (y :: ys) =  
  fix (λ g → f x y (g <*> xs <*> ys))
```

Cool! But something's off...

Adding \blacktriangleright alone is too rigid for productivity, for example:

```
dropSnd (x :: y :: xs) = x :: dropSnd xs
```

Violates causality⁹, and cannot be typed using S_{\blacktriangleright} .

⁹“For each write, the program is permitted to perform at most one read”

¹⁰The most polished one, see also [SH18]

Adding \blacktriangleright alone is too rigid for productivity, for example:

```
dropSnd (x :: y :: xs) = x :: dropSnd xs
```

Violates causality⁹, and cannot be typed using S_{\blacktriangleright} .

Possible solutions: [AM13]¹⁰ [BBM14] [Gua18]

⁹“For each write, the program is permitted to perform at most one read”

¹⁰The most polished one, see also [SH18]

Fortunately, we have the right “modality” for our problem:

$$\flat(\blacktriangleright X) \cong \flat X$$

Fortunately, we have the right “modality” for our problem:

$$\flat(\blacktriangleright X) \cong \flat X$$

With the fortunate consequence:

$$\flat S_\blacktriangleright \cong \flat(\mathbb{N} \times \blacktriangleright S_\blacktriangleright) \cong \flat \mathbb{N} \times \flat(\blacktriangleright S_\blacktriangleright) \cong \mathbb{N} \times \flat S_\blacktriangleright \cong S$$

Fortunately, we have the right “modality” for our problem:

$$\flat(\blacktriangleright X) \cong \flat X$$

With the fortunate consequence:

$$\flat S_\blacktriangleright \cong \flat(\mathbb{N} \times \blacktriangleright S_\blacktriangleright) \cong \flat \mathbb{N} \times \flat(\blacktriangleright S_\blacktriangleright) \cong \mathbb{N} \times \flat S_\blacktriangleright \cong S$$

Sadly, \flat is not a type constructor.

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\square_U(A) = A \times U$ for a subterminal object U .

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\square_U(A) = A \times U$ for a subterminal object U .

Clearly, \flat doesn't have this form

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\square_U(A) = A \times U$ for a subterminal object U .

Clearly, \flat doesn't have this form \Rightarrow We cannot have \flat as an operation $\text{Type} \rightarrow \text{Type}$.

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp\text{Type} \rightarrow \sharp\text{Type}$.

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp\text{Type} \rightarrow \sharp\text{Type}$.

Pros:

- Easily formalizable in an existing proof assistant [Shu11].

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp\text{Type} \rightarrow \sharp\text{Type}$.

Pros:

- Easily formalizable in an existing proof assistant [Shu11].

Cons:

- Requires a lot of work on the theory of $\sharp\text{Type}$.
- It's hard to "escape" from $\sharp\text{Type}$ [Shu11, Shu18].

Today we learned:

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].

Today we learned:

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often) have simple descriptions in terms of very simple presheaf categories.

Today we learned:

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often) have simple descriptions in terms of very simple presheaf categories.
- Although there are many signs of geometry hiding in plain sight in SGDT this aspect of the theory has been pretty much ignored as of now.

Today we learned:

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often) have simple descriptions in terms of very simple presheaf categories.
- Although there are many signs of geometry hiding in plain sight in SGDT this aspect of the theory has been pretty much ignored as of now.
- The \blacktriangleright modality saves us from coding around syntactic productivity checks but it's too rigid when considered alone, \flat and \sharp help us with that.

See you ►, s!

- Robert Atkey and Conor McBride, Productive coprogramming with guarded recursion, ACM SIGPLAN Notices **48** (2013), no. 9, 197–208.
- Aleš Bizjak, Lars Birkedal, and Marino Miculan, A model of countable nondeterminism in guarded type theory, Rewriting and Typed Lambda Calculi, Springer, 2014, pp. 108–123.
- Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian Stovring, First steps in synthetic guarded domain theory: step-indexing in the topos of trees, 2011 IEEE 26th Annual Symposium on Logic in Computer Science, IEEE, 2011, pp. 55–64.

- Lars Birkedal, Kristian Støvring, and Jacob Thamsborg, The category-theoretic solution of recursive metric-space equations, Theoretical Computer Science **411** (2010), no. 47, 4102–4122.
- Adrien Guatto, A generalized modality for recursion, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 2018, pp. 482–491.
- Hiroshi Nakano, A modality for recursion, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), IEEE, 2000, pp. 255–266.

 Jonathan Sterling and Robert Harper, Guarded computational type theory, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 2018, pp. 879–888.

 Michael Shulman, Internalizing the external, or the joys of codiscreteness, 2011, Blog Post available at https://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html.

 _____, Brouwer's fixed-point theorem in real-cohesive homotopy type theory, Mathematical Structures in Computer Science **28** (2018), no. 6, 856–941.