An introduction to SGDT

+ some geometric remarks

Daniele Palombi
(Student @ Sapienza — University of Rome, Volunteer @ Progetto ItaCa)

February 2021

We want to solve:

1/45

We want to solve:

Unfortunately:

Theorem (Lawvere)
Ina CCC, if there’s an onto map X — YX, then every

endomorphismf: Y — Y has a fixpoint.

1/45

We want to solve:

Unfortunately:

Theorem (Lawvere)
Ina CCC, if there’s an onto map X — YX, then every

endomorphismf: Y — Y has a fixpoint.

No non-trivial sets satisfy this!

1/45

Scott’s solution: define domains as objects of a different
category (pointed DCPOs).

2/45

Scott’s solution: define domains as objects of a different
category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the
Scott topology) s.t. continuous functions between them are
precisely DCPO morphisms.

2/45

Scott’s solution: define domains as objects of a different
category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the
Scott topology) s.t. continuous functions between them are
precisely DCPO morphisms.

DT becomes a full-fledged theory of computational spaces!

2/45

However, DCPOs are pretty hard to deal with. One would like to
treat domains as sets

LAll the nice topological intuition carries over in a precise way.

3/45

However, DCPOs are pretty hard to deal with. One would like to
treat domains as sets = Define a (family of) topos(es) of
domains® £ in which:

+ One can take fixpoints of endomorphisms X — X.
« One can find fixpoints for various endofunctors £ — £.

+ A (known?) category of domains embeds into it.

LAll the nice topological intuition carries over in a precise way.

3/45

However, DCPOs are pretty hard to deal with. One would like to
treat domains as sets = Define a (family of) topos(es) of
domains® £ in which:

+ One can take fixpoints of endomorphisms X — X.

« One can find fixpoints for various endofunctors £ — £.

+ A (known?) category of domains embeds into it.

We won’t talk about that right now...

LAll the nice topological intuition carries over in a precise way.

3/45

Suppose we want to solve:
WEN =i T

T =W —mon P(V x V)

4/45

Suppose we want to solve:
WEN =i T

T =W —mon P(V x V)

Both Sets and Domains aren’t that helpful with that.

4/45

Step indexing: Adding steps (natural numbers, in its most
simple form) at different places in definitions in order to get a
handle on recursion.

5/45

Step indexing: Adding steps (natural numbers, in its most
simple form) at different places in definitions in order to get a
handle on recursion.

Let’s try changing a bit what we’re trying to solve and take:

PN X VxV):={p|(nv,w)€p=(mv,w) € pVYm<n}

5/45

Observe that PHN x V x V) comes equipped with the metric:

diX,Y)=inf{27" | Vj < n¥Yv,w € V.(j,v,w) € X + (j,v,w) € Y}

6/45

Observe that PHN x V x V) comes equipped with the metric:

diX,Y)=inf{27" | Vj < n¥Yv,w € V.(j,v,w) € X + (j,v,w) € Y}

Moreover:

1. All the distances are of the form 2",
2. d(X,2) < max{d(X,Y),d(Y,2)} VX,Y,Z

6/45

Observe that PHN x V x V) comes equipped with the metric:

diX,Y)=inf{27" | Vj < n¥Yv,w € V.(j,v,w) € X + (j,v,w) € Y}

Moreover:

1. All the distances are of the form 2",
2. d(X,2) < max{d(X,Y),d(Y,2)} VX,Y,Z

PHN x V x V) is a bisected (1) ultrametric (2) space!

6/45

Let’s move to the category BiCUlt of complete bisected
ultrametric spaces and non-expansive? functions.

2f. X — Yis non-expansive if Va, b € X.dv(f(a),f(b)) < dx(a, b).

7/45

Let’s move to the category BiCUlt of complete bisected
ultrametric spaces and non-expansive? functions.

A locally non-expansive functor is a BiCUlt-enriched functor.

A lne functor F : BiCUIt?’ x BiCUlt — BiCUlt is locally
contractive iftVf,g : X — Yand h,k : Z— W we have:

d(F(f, h). F(g.K)) < =

< 5 - max{d(f,g),d(h, k)}

2f. X — Yis non-expansive if Va, b € X.dv(f(a),f(b)) < dx(a, b).

7/45

Remark
Composing any Ine functor with the functor % - —, which maps

the space (X, dx) to (X, 3 - dx) and acts as the identity on
morphisms, will give a locally contractive functor.

8/45

Remark
Composing any Ine functor with the functor % - —, which maps

the space (X, dx) to (X, 3 - dx) and acts as the identity on
morphisms, will give a locally contractive functor.

Theorem ([BST10])

Let F an lc functor s.t. F(1,1) is inhabited. Then, there exists an
inhabited X € BiCULt s.t. F(X,X) = X. If moreover F((),0) is
inhabited, then such X is unique up to iso.

8/45

Now we can upgrade our definition from earlier to:

1
T g (N —\fln 5 M T> _>m0n7n.e. P\L(N X V >< V)

And use the fixpoint theorem for lc functors to show that it has a
unique solution.

9/45

Cool! But, these spaces are awful to deal with. Again, one
would like to treat such objects as sets

3Contractions on a non-empty complete metric space have a unique fixpoint.

10/45

Cool! But, these spaces are awful to deal with. Again, one
would like to treat such objects as sets = Define a (family of)
topos(es) & in which:

- There’s a version of Banach’s fixpoint theorem?.

« One can find fixpoints for lc endofunctors £ — €£.

« There’s an operator that behaves like the % - — functor.

+ (possibly?) BiCUlt embeds into it.

3Contractions on a non-empty complete metric space have a unique fixpoint.

10/45

(Ep:E—=E T &0 —,—) = &E(1,-)), where & has fin.
prods. and » is pointed®. s.t. (incrementally):

4i.e. there’s a natural transformation n : ide —».

11/45

(Ep:E—=E T &0 —,—) = &E(1,-)), where & has fin.
prods. and » is pointed®. s.t. (incrementally):

« Vi X —= X, flis st

ﬁ
1 — X

il I

X —— X
nx

« » preserves finite limits.

4i.e. there’s a natural transformation n : ide —».

11/45

(Ep:E—=E T &0 —,—) = &E(1,-)), where & has fin.
prods. and » is pointed®. s.t. (incrementally):
« Vi X=X, flisls.t.

fr
1 ——

il I

X —— X
Ny

« » preserves finite limits.
« £ is cartesian closed.
« Every loc. contr. F: £ — £ has a fixpoint (up to iso).

4i.e. there’s a natural transformation n : ide —».

11/45

(Ep:E—=E T &0 —,—) = &E(1,-)), where & has fin.
prods. and » is pointed®. s.t. (incrementally):

« Vi X=X, flisls.t.

fr
1 ——

il I

X —— X
Ny

« » preserves finite limits.
« £ is cartesian closed.
« Every loc. contr. F: £ — £ has a fixpoint (up to iso).

« £isLCC +eachsliceise.

4i.e. there’s a natural transformation n : ide —».

11/45

Recall that an endofunctor F: C — C is strong if
VX, Y 3Fxy : Y — FYX st V1 X — Y.Fxy o [f] = [F°.

°[f : L — Y¥is the curried version of f : X — V.

12/45

Recall that an endofunctor F: C — C is strong if
VX, Y 3Fxy : Y — FYX st V1 X — Y.Fxy o [f] = [F°.

A strong endofunctor on £ is locally contractive if each Fy y is
contractive, i.e. 3Gxy s.t. Gy y o nyr = Fx y and the following
diagrams commute:

b ()x b (2) S e (K x2) 25w (2 178 (0
Gx,x

GX’YXGY’Zl lGX’Z [[m l

FY™ s FZFY FZ X

°[f : L — Y¥is the curried version of f : X — V.

12/45

The general reference here is [BMSS11]

Proposition .
If € is cartesian closed + e, then » is strong.

13/45

The general reference here is [BMSS11]

Proposition .
If € is cartesian closed + e, then » is strong.

Theorem
If £ s LCC + o, then so is each of its slices.

13/45

The general reference here is [BMSS11]

Proposition .
If € is cartesian closed + e, then » is strong.

Theorem
If £ s LCC + o, then so is each of its slices.

Theorem
If £ is LCC + o, then » is fibred over the codomain fibration.

13/45

Proposition
If€ise, letF: & — & belc. If X = F(X), then the two directions of

the isomorphism give an initial algebra and a final coalgebra

structure.

(F(Y,X), F(X, Y)) is the symmetrization of F.
14/45

Proposition
If€ise, letF: & — & belc. If X = F(X), then the two directions of

the isomorphism give an initial algebra and a final coalgebra
structure.

Theorem

If€ise, let F: (% x &)™ — &€ be c in the (n+1)th variable
pair. Then 31FT : (E% x E)* — £ s.t. Fo (id, Ff) = F16. Moreover,
if Fis lc in all variables, then so is F'.

(F(Y,X), F(X, Y)) is the symmetrization of F.
14/45

« Taking »= id¢ and n = (d,., categories with an ordinary
fixpoint operator are e. For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

15/45

« Taking »= id¢ and n = (d,., categories with an ordinary
fixpoint operator are e. For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

« If » X =1 and ny =y, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

15/45

« Taking »= id¢ and n = (d,., categories with an ordinary
fixpoint operator are e. For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

« If » X =1 and ny =y, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

- Take & = BiCULlt, »= % - —and n as the obvious “contracted
identity” mapping. Note that a n.e. f :» X — X'is the same
as a contractive endomap. Therefore Banach’s fixpoint
theorem yields a guarded fixpoint operator and BiCUlt is e.

15/45

A morphism f: X — Yis contractive if 3g :» X — Y s.t. f=gony.
A morphism f: X x Y — Zis contractive in the first variable if 3g
st.f= go (nX X [dy).

Theorem
Allf: X x Y — Xcont. in the first variable have unique fixpoints.

16/45

« Taking »= ide and n = id,., categories with an ordinary
fixpoint operator are . For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

« If » X =1 and ny =y, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

« Take & = BiCULlt, »= % - —and n as the obvious “contracted
identity” mapping. Note that a n.e. f :» X — X'is the same
as a contractive endomap. Therefore Banach'’s fixpoint
theorem yields a guarded fixpoint operator and BiCUlt is e.

17/45

Taking »= idg and n = id,., categories with an ordinary
fixpoint operator are . For a concrete example: the
category of pointed DCPOs with its usual least fixpoint
operator.

If » X =1 and ny =y, a trivial guarded fixpoint operator is
given by the identity map on the hom-sets.

Take & = BiCULlt, »= % - —and n as the obvious “contracted
identity” mapping. Note that a n.e. f :» X — X'is the same
as a contractive endomap. Therefore Banach'’s fixpoint
theorem yields a guarded fixpoint operator and BiCUlt is e.

Dulcis in fundo...

17/45

A poset A is well-founded if there are no infinite descending
sequences ap > dg > dy > ...

7i.e. a poset with T, L, all —, meets and joins. Also known as frames.

18/45

A poset A is well-founded if there are no infinite descending
sequences ap > dg > dy > ...

Let A be a poset and let K C A. Then K is a basis for A if
Vae Aa=\V{keK]|k<a}l

7i.e. a poset with T, L, all —, meets and joins. Also known as frames.

18/45

A poset A is well-founded if there are no infinite descending
sequences ap > dg > dy > ...

Let A be a poset and let K C A. Then K is a basis for A if

Vae Aa=\V{keK]|k<a}l

Theorem

Let A be a complete Heyting algebra’ with a well-founded base.
Then Sh(A) is e.

7i.e. a poset with T, L, all —, meets and joins. Also known as frames.

18/45

Let A be a well-founded poset. Then its ideal completion Idl(A)
consisting of downward-closed subsets of A is a complete
Heyting algebra with a well-founded basis K = {] a | a € A}
wherela={d € A|d <a}.

19/45

Let A be a well-founded poset. Then its ideal completion Idl(A)
consisting of downward-closed subsets of A is a complete
Heyting algebra with a well-founded basis K = {] a | a € A}
wherela={d € A|d <a}.

Proposition
If A'is a poset, then Sh(Idl(A)) ~ Psh(A).

19/45

Take:
S := Psh(w)

20/45

Take:
S := Psh(w)

Its objects are of the form:

r It [
Xp +—— Xo +2— X3

20/45

Take:

S := Psh(w)
Its objects are of the form:
X1 r X5 2 X I3
Its morphisms:
Xl r X2 r2 X3 r3
hl hl El
V16— Y2 ¢—— V3
|) I3

20/45

The » modality:

X

» X

X1

{*}

r

I3

X1

21/45

The » modality:

X Xp X, <2 B X,
> X) —— X1 —— X2 +—— X3
y I’i 1’2
And its point, ny:
Xl r X2 ra X3 I3 X4 ra
!l fll le fsl
{*} i Xj_ r’l X2 l"2 X3 f/3

21/45

The NNO:

N N Ly
The subobject classifier:
Q {0,1} «+— {0,1,2} +— {0,2,2,3} +—— ...

22/45

The type of streams:

S~NxS N idye N <[dNW . <[-
The type of guarded streams:
S> =~ Nx p S» N < ™ NZ 71,2 N3 <7T1,2,3

23/45

A presheafis flabby if all its restriction maps are surjective.

24145

A presheafis flabby if all its restriction maps are surjective.

Theorem

There is an equivalence between BiCUlt and flab(S), the full
subcategory of flabby objects of the topos of trees.
Proposition

A morphism in BiCULt is contractive in the metric sense iff it’s
contractive in S.

24145

A presheafis flabby if all its restriction maps are surjective.

Theorem
There is an equivalence between BiCUlt and flab(S), the full

subcategory of flabby objects of the topos of trees.

Proposition . o . o
A morphism in BiCULt is contractive in the metric sense iff it’s

contractive in S.

There should be some geometry sneaking around!

24145

For every topos &, there exists a geometric morphism to Set
called the global sections geometric morphism:

M:& 1 _ Set: A

25/45

For every topos &, there exists a geometric morphism to Set
called the global sections geometric morphism:

M:& 1 _ Set: A

(X) = Set(1,X) A(S)=]]1
Isi

25/45

A geometric morphism fis essential if it has an additional left
adjoint f,

f!J_
eI T
e

26/45

A geometric morphism fis essential if it has an additional left
adjoint f,

f!J_
eI T
e

A topos is locally connected if T is essential.

26/45

A geometric morphism fis essential if it has an additional left
adjoint f,

f!J_
eI T
e

A topos is locally connected if T is essential.

Pretty common for models of SGDT!

26/45

A geometric morphism fis local if it has an additional fully
faithful right adjoint f*

27/45

A geometric morphism fis local if it has an additional fully
faithful right adjoint f*

A topos is local if T is a local geometric morphism.

27/45

A geometric morphism fis local if it has an additional fully
faithful right adjoint f*

A topos is local if T is a local geometric morphism.

Is there any known local model of SGDT?

27/45

A quadruple of adjoint functors:

28/45

A quadruple of adjoint functors:

Exhibits the cohesion of £ over Set if;

« A and K are fully faithful.
- [1 preserves finite products.

28/45

Fact: A quadruple of adjoints induces a triple of adjoints.

29/45

Fact: A quadruple of adjoints induces a triple of adjoints.
There is an adjoint triple of idempotent (co)Monads on &:

I A

— —
E+nAn—Set«r— &
T Tk

« The shape monad [= Aol
« The flat comonad b = Aol
« The sharp monad f =Kol

29/45

The topos Psh({0 — 1})® exhibits cohesion over Set.

8Also known as the Sierpinski topos.

30/45

The topos Psh({0 — 1})® exhibits cohesion over Set.

e [sends X — Ytoits domain X.
« M sends X — Ytoits codomain Y.
« A sends a set X to the identity X . x

« Ksends a set Xinto its terminal morphism X 41

8Also known as the Sierpinski topos.

30/45

The topos Psh({0 — 1})® exhibits cohesion over Set.

I sends X — Ytoits domain X.

M sends X — Yto its codomain Y.
« A sends a set X to the identity X . x

« Ksends a set Xinto its terminal morphism X 41

Theorem
If C has both an initial and a terminal object, then Psh(C)

exhibits cohesion over Set with:

lim - const - colim - coconst

8Also known as the Sierpinski topos.

30/45

The topos Psh(w + 1) exhibits cohesion over Set.

31/45

The topos Psh(w + 1) exhibits cohesion over Set.
Let X = X1 < Xo - X,

31/45

The topos Psh(w + 1) exhibits cohesion over Set.
Let X = X1 < Xo - X,

« [sends X to its domain X,,,.
 [1sends X to its codomain X7.
« A sends a set X to the constant object on X.

. KsendsasetXtotheobjectlﬁ1<£...<LX.

31/45

The topos Psh(w + 1) exhibits cohesion over Set.
Let X =X, < Xy < -+ X,
« [sends X to its domain X,,,.

 [1sends X to its codomain X7.

« A sends a set X to the constant object on X.

. KsendsasetXtotheobjectlﬁ1<£...<LX.

In general this works for every successor ordinal

31/45

Languages like Idris and Agda use a (quite conservative)
syntactic approximation to productivity for recursive functions
on coinductive types: each recursive call must be “guarded” by
a constructor.

32/45

Languages like Idris and Agda use a (quite conservative)
syntactic approximation to productivity for recursive functions
on coinductive types: each recursive call must be “guarded” by
a constructor.

-- The type of streams of naturals
-- in pseudo-haskell/idris/agda
data S : Type where

(¢2) : N»S >S5S

-- This one is recognized as productive, phew!
on0ff : S
on0ff =1 :: 0 :: onOff

32/45

These requirements are a bit too restrictive and often confusing.

33/45

These requirements are a bit too restrictive and often confusing.

interleave : S » S » S
interleave (x :: xs) ys = x :: interleave ys xs

-- Non-productive, gets rejected
dragon' : S
dragon' = interleave dragon' onOff

-- Productive, gets rejected anyways

dragon : S
dragon = interleave onOff dragon

33/45

Another example:

-- Not always non-productive
mergeBy : (N> NS >S5) >S5 >S5
mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)

34/45

Another example:

-- Not always non-productive
mergeBy : (N> N» S =>S) »S >SS
mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)

Can we at least save something?

34/45

Let’s switch to guarded streams:

data S, : Type where
(¢:2) : N=» pS5, » S,

-- Remember that » is an applicative

-- and has a (guarded) fixpoint operator:

fix : (X » X) » X
pure : X » »X -- a.k.a. nx
<x> (X 2 Y) » pX 2> pY

35/45

We can now fix our function:

mergeBy : (N> N =» pS, » S,) » S, » S, » S,
mergeBy f (x :: xs) (y :: ys) =
fix (Mg » £ xy (g <*x> xs <*> ys))

36/45

We can now fix our function:

mergeBy : (N> N =» pS, » S,) » S, » S, » S,
mergeBy f (x :: xs) (y :: ys) =
fix (Mg » £ xy (g <*x> xs <*> ys))

Cool! But something’s off...

36/45

Adding » alone is too rigid for productivity, for example:

dropSnd (x :: y :: xs) = x :: dropSnd xs

Violates causality?, and cannot be typed using S,..

9“For each write, the program is permitted to perform at most one read”

10The most polished one, see also [SH18]

37/45

Adding » alone is too rigid for productivity, for example:

dropSnd (x :: y :: xs) = x :: dropSnd xs

Violates causality?, and cannot be typed using S,..

Possible solutions: [AM13]1° [BBM14] [Gual18]

9“For each write, the program is permitted to perform at most one read”

10The most polished one, see also [SH18]

37/45

Fortunately, we have the right “modality” for our problem:

b(» X) = bX

38/45

Fortunately, we have the right “modality” for our problem:

b(» X) = bX

With the fortunate consequence:

bSy 22 b(Nx » Sp) = bN x b(» Sp.) 2 N x bSy = S

38/45

Fortunately, we have the right “modality” for our problem:

b(» X) = bX

With the fortunate consequence:

bSy 22 b(Nx » Sp) = bN x b(» Sp.) 2 N x bSy = S

Sadly, b is not a type constructor.

38/45

Formal fact: In a topos, all the idempotent comonads fibred
over the codomain fibration are of the form Oy(A) = A x U for a
subterminal object U.

39/45

Formal fact: In a topos, all the idempotent comonads fibred
over the codomain fibration are of the form Oy(A) = A x U for a
subterminal object U.

Clearly, b doesn’t have this form

39/45

Formal fact: In a topos, all the idempotent comonads fibred
over the codomain fibration are of the form Oy(A) = A x U for a
subterminal object U.

Clearly, b doesn’t have this form = We cannot have b as an
operation Type — Type.

39/45

Possible solution: In presence of a # modality, we can describe
b as an operation fType — fType.

40/45

Possible solution: In presence of a # modality, we can describe
b as an operation fType — fType.

Pros:

« Easily formalizable in an existing proof assistant [Shu11].

40/45

Possible solution: In presence of a # modality, we can describe
b as an operation fType — fType.

Pros:
« Easily formalizable in an existing proof assistant [Shu11].
Cons:

« Requires a lot of work on the theory of §Type.
« It’s hard to “escape” from §Type [Shull, Shul8].

40/45

Today we learned:

« SGDT is both a generalization of step indexing in categories
of metric spaces [BST10] and Nakano-style guarded
recursion [Nak00].

41/45

Today we learned:

« SGDT is both a generalization of step indexing in categories
of metric spaces [BST10] and Nakano-style guarded
recursion [Nak00].

« Models of SGDT are pretty easy to come by and (often)
have simple descriptions in terms of very simple presheaf
categories.

41/45

Today we learned:

« SGDT is both a generalization of step indexing in categories
of metric spaces [BST10] and Nakano-style guarded
recursion [Nak00].

« Models of SGDT are pretty easy to come by and (often)
have simple descriptions in terms of very simple presheaf
categories.

+ Although there are many signs of geometry hiding in plain
sight in SGDT this aspect of the theory has been pretty
much ignored as of now.

41/45

Today we learned:

« SGDT is both a generalization of step indexing in categories
of metric spaces [BST10] and Nakano-style guarded
recursion [Nak00].

« Models of SGDT are pretty easy to come by and (often)
have simple descriptions in terms of very simple presheaf
categories.

+ Although there are many signs of geometry hiding in plain
sight in SGDT this aspect of the theory has been pretty
much ignored as of now.

« The » modality saves us from coding around syntactic
productivity checks but it’s too rigid when considered
alone, b and § help us with that.

41/45

See you », <=S!

42/45

[§ Robert Atkey and Conor McBride, Productive
coprogramming with guarded recursion, ACM SIGPLAN
Notices 48 (2013), no. 9, 197-208.

[§ Ale& Bizjak, Lars Birkedal, and Marino Miculan, A model of
countable nondeterminism in guarded type theory,
Rewriting and Typed Lambda Calculi, Springer, 2014,
pp. 108-123.

[§ Lars Birkedal, Rasmus Ejlers Mogelberg, Jan
Schwinghammer, and Kristian Stovring, First steps in
synthetic guarded domain theory: step-indexing in the
topos of trees, 2011 IEEE 26th Annual Symposium on Logic
in Computer Science, IEEE, 2011, pp. 55-64.

43/45

[§ Lars Birkedal, Kristian Stgvring, and Jacob Thamsborg, The
category-theoretic solution of recursive metric-space
equations, Theoretical Computer Science 411 (2010),
no.47,4102-4122.

[§ Adrien Guatto, A generalized modality for recursion,
Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, 2018, pp. 482-491.

[§ Hiroshi Nakano, A modality for recursion, Proceedings
Fifteenth Annual IEEE Symposium on Logic in Computer
Science (Cat. No. 99CB36332), IEEE, 2000, pp. 255-266.

44745

[§ Jonathan Sterling and Robert Harper, Guarded
computational type theory, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, 2018,
pp. 879-888.

[§ Michael Shulman, Internalizing the external, or the joys of
codiscreteness, 2011, Blog Post available at
https://golem.ph.utexas.edu/category/2011/
11/internalizing_the_external_or.html.

, Brouwer’s fixed-point theorem in real-cohesive
homotopy type theory, Mathematical Structures in
Computer Science 28 (2018), no. 6, 856—-941.

45/45

https://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html
https://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html

	The topos of trees
	Guarded recursion and the modality
	The problem with comonadic modalities

