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Types to tell us what programs to write

A problem to be solved:
Γ ⊢ ? : A

We use the structure of A to guide us.

“Type Driven Development”, “Correct-by-Construction”, “Hole-driven development”, …

Terms are meaningless without their types.

Terms (generally) have a unique type.



Types to tell us about the programs we’ve written

Γ ⊢ t : ?

▶ t has meaning whether or not it has a type
▶ Every t may have multiple types; often related by subtyping
▶ Currently a “hot topic”: TypeScript; Typed Python; Typed Ruby; …



Intersection types

If a terms has multiple types, then…

Γ ⊢ t : 𝜏1 Γ ⊢ t : 𝜏2
Γ ⊢ t : 𝜏1 ∧ 𝜏2

t can act as described by 𝜏1 and 𝜏2.

A typical CBN function type:
(𝜏1 ∧ · · · ∧ 𝜏n) → 𝜏

because a function may make multiple demands on its input.

Intersection types have remarkable properties:
▶ Can be used to characterise terms that have normal forms
▶ Essentially because they completely describe all possible behaviours



Intersection types

If a terms has multiple types, then…

Γ ⊢ t : 𝜏1 Γ ⊢ t : 𝜏2
Γ ⊢ t : 𝜏1 ∧ 𝜏2

t can act as described by 𝜏1 and 𝜏2.

A typical CBN function type:
(𝜏1 ∧ · · · ∧ 𝜏n) → 𝜏

because a function may make multiple demands on its input.

Intersection types have remarkable properties:
▶ Can be used to characterise terms that have normal forms
▶ Essentially because they completely describe all possible behaviours



Intersection types

If a terms has multiple types, then…

Γ ⊢ t : 𝜏1 Γ ⊢ t : 𝜏2
Γ ⊢ t : 𝜏1 ∧ 𝜏2

t can act as described by 𝜏1 and 𝜏2.

A typical CBN function type:
(𝜏1 ∧ · · · ∧ 𝜏n) → 𝜏

because a function may make multiple demands on its input.

Intersection types have remarkable properties:
▶ Can be used to characterise terms that have normal forms
▶ Essentially because they completely describe all possible behaviours



Idempotency

Typical subtyping rules:
▶ 𝜏1 ∧ 𝜏2 ⊑ 𝜏1
▶ 𝜏1 ∧ 𝜏2 ⊑ 𝜏2
▶ 𝜏 ⊏ 𝜏1 and 𝜏 ⊏ 𝜏2 implies 𝜏 ⊏ 𝜏1 ∧ 𝜏2

Implies idempotency: 𝜏 = 𝜏 ∧ 𝜏.

If we know that a term has a behaviour, it doesn’t matter how much we know it.

This talk: non-idempotent intersection types:

(𝜏1 ⊓ · · · ⊓ 𝜏n) → 𝜏

Functions make multiple demands on their input, and we count how many times.
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Untyped 𝜆-calculus

s, t ::= x | 𝜆x.t | s t



Krivine Abstract Machine

An abstract machine for executing programs via a Call-by-Name strategy.

Environments and Closures
▶ An environment 𝜂 is a finite mapping from variables to closures;
▶ A closure c = (t, 𝜂) is a pair of a term t and an environment 𝜂 for all its free vars

Stacks and Configurations
▶ Stacks 𝜋 are lists of closures
▶ Configuration is a triple ⟨t, 𝜂, 𝜋⟩ of a term, an environment for it and a stack.



Execution rules

VaR ⟨x, 𝜂, 𝜋⟩ −→ ⟨t, 𝜂′, 𝜋⟩ 𝜂(x) = (t, 𝜂′)
Pop ⟨𝜆x.t, 𝜂, s · 𝜋⟩ −→ ⟨t, 𝜂[x ↦→ s], 𝜋⟩
Push ⟨s t, 𝜂, 𝜋⟩ −→ ⟨s, 𝜂, (t, 𝜂) · 𝜋⟩

Complete execution of a closed term t:

⟨t, ∅, []⟩ −→ ∗⟨𝜆x.t′, ∅, []⟩

Simulates CBN execution, keeping substitution and stack explicit.



Execution rules

VaR ⟨x, 𝜂, 𝜋⟩ −→ ⟨t, 𝜂′, 𝜋⟩ 𝜂(x) = (t, 𝜂′)
Pop ⟨𝜆x.t, 𝜂, s · 𝜋⟩ −→ ⟨t, 𝜂[x ↦→ s], 𝜋⟩
Push ⟨s t, 𝜂, 𝜋⟩ −→ ⟨s, 𝜂, (t, 𝜂) · 𝜋⟩

Complete execution of a closed term t:

⟨t, ∅, []⟩ −→ ∗⟨𝜆x.t′, ∅, []⟩

Simulates CBN execution, keeping substitution and stack explicit.



Execution rules

VaR ⟨x, 𝜂, 𝜋⟩ −→ ⟨t, 𝜂′, 𝜋⟩ 𝜂(x) = (t, 𝜂′)
Pop ⟨𝜆x.t, 𝜂, s · 𝜋⟩ −→ ⟨t, 𝜂[x ↦→ s], 𝜋⟩
Push ⟨s t, 𝜂, 𝜋⟩ −→ ⟨s, 𝜂, (t, 𝜂) · 𝜋⟩

Complete execution of a closed term t:

⟨t, ∅, []⟩ −→ ∗⟨𝜆x.t′, ∅, []⟩

Simulates CBN execution, keeping substitution and stack explicit.



The plan

A non-idempotent intersection type system where:
1. A closed term is typable if and only if it halts;
2. The size of the typing derivation is equal to the number of steps.



The types and judgements

Types
𝜏 ::= ∗ | 𝜎 ↦→ 𝜏
𝜎 ::= [𝜏1 ⊓ · · · ⊓ 𝜏n]

In intersection types: n can be zero, and order doesn’t matter (i.e. finite multisets).

Judgements
x1 : 𝜎1, · · · , xn : 𝜎n ⊢ t : 𝜏

where x1, · · · , xn are include the free variables of t.
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Typing Rules

x1 : [], · · · , xi : 𝜏, · · · , xn : [] ⊢ xi : 𝜏
VaR

Γ, x : 𝜎 ⊢ t : 𝜏
Γ ⊢ 𝜆x.t : 𝜎 ↦→ 𝜏

Lam

x1 : [], · · · , xn : [] ⊢ 𝜆x.t : ∗
Obs

Γ ⊢ s : [𝜏1 ⊓ · · · ⊓ 𝜏n] ↦→ 𝜏 ⟨Γi ⊢ t : 𝜏i⟩i
Γ + ΣiΓi ⊢ s t : 𝜏

App

where addition of contexts is pointwise multiset union.



Examples

A typing of the identity function:

⊢ 𝜆x.x : [∗] ↦→ ∗

Describing the behaviour of a term when it is applied to the identity function:

⊢ 𝜆f. 𝜆x. f x : [[∗] ↦→ ∗] ↦→ [∗] ↦→ ∗

A term that does the same thing, but uses its first argument twice:

⊢ 𝜆f. 𝜆x. f (f x) : [[∗] ↦→ ∗ ⊓ [∗] ↦→ ∗] ↦→ [∗] ↦→ ∗

Notes:
▶ If we had idempotency, then these two types would be the same
▶ There are infinitely many types / behaviours, these ones are describing what

behaviour we need from the inputs to get the desired final output.
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Putting it together

⊢ (𝜆f.𝜆x. f (f x)) (𝜆x. x) : [∗] ↦→ ∗

and

⊢ (𝜆f.𝜆x. f (f x)) (𝜆x. x) (𝜆x.t) : ∗

where t is any term.

The term 𝜆f.𝜆x. f x would have the same typing.

But the size of the derivation is different! The argument (𝜆x.x) gets typed twice!
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Typing KAM configurations

Environments and Closures

∀x.∀i. ⊢c 𝜂(x) : Γ(x)i
⊢e 𝜂 : Γ

Γ ⊢ t : 𝜏 ⊢e 𝜂 : Γ

⊢c (t, 𝜂) : 𝜏

Stacks and Configurations

⊢s [] : 𝜏 ⊸ 𝜏

⟨⊢c c : 𝜎i⟩i ⊢ 𝜋 : 𝜏1 ⊸ 𝜏2

⊢s c · 𝜋 : (𝜎 ↦→ 𝜏1) ⊸ 𝜏2

⊢c (t, 𝜂) : 𝜏1 ⊢s 𝜋 : 𝜏1 ⊸ 𝜏2

⊢cfg ⟨t, 𝜂, 𝜋⟩ : 𝜏2



Properties

Subject reduction
▶ ⊢cfg p : 𝜏 and p −→ q implies ⊢cfg q : 𝜏

Subject expansion
▶ ⊢cfg q : 𝜏 and p −→ q implies ⊢cfg p : 𝜏

Progress
▶ ⊢cfg p : ∗ and | ⊢cfg p : ∗| > 0, then exists q, p −→ q.

Subject reduction
▶ ⊢cfg p : 𝜏 and p −→ q implies ⊢cfg q : 𝜏

and | ⊢cfg p : 𝜏 | = | ⊢cfg q : 𝜏 | + 1
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Properties

Soundness & Completeness
▶ ⊢cfg p : ∗ iff p terminates in | ⊢cfg p : ∗| steps.



What is really going on?

Relational model of Linear Logic:
▶ Formulae interpreted as sets:

⟦A ⊗ B⟧ = ⟦A` B⟧ = ⟦A ⊸ B⟧ = ⟦A⟧ × ⟦B⟧
⟦!A⟧ = Mf(⟦A⟧)

▶ Proofs interpreted as relations
▶ Reflexive domain: D � (Mf(D) × D) + 1

Satisfies D ⊆ (!D ⊸ D)
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