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2020 conclusions slide

• Number 1 conclusion:

Realising the promised benefits of ACT is still hard

• Need detailed and equal dialogue between theory &
domain experts

• Interdisciplinary work is very costly

• Designing good abstractions will always be an art form

• Software is necessary, string diagrams software not
necessary

• String diagrams may not even be the best representation!
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Categorical systems theory

We often consider categories where:

• Morphisms are some kind of open systems

• Objects are their boundaries

left boundary x
f−→ y right boundary

N.b. Why a category?

• i.e. why a strict separation into left and right boundaries?

We don’t need a category! Other operad algebras work too!
Categories are just convenient!
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Complex systems

The composition fg is coupling along a common boundary, and
yields a complex system, i.e. a system that is a complex of
smaller parts

Usually C also admits a monoidal structure1 for disjoint
(non-coupling) composition

1Usually much more, eg. †-compact closed
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Systems vs. processes

Side remark:
As well as systems theories we also have process theories

Most of this talk still applies, replace “left boundary” and
“right boundary” with input and output
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Behaviour

To each boundary x we associate a set B(x) of possible
behaviours that can be observed on that boundary

To each open system f : x → y we associate a set
B(f ) ⊆ B(x)× B(y)

• (a, b) ∈ B(f ) means “it is possible to simultaneously
observe a on the left boundary and b on the right
boundary of f ”

No observations can be made except on the boundary
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Behaviours compose

Suppose f and g share a common behaviour on their common
boundary:

(a, b) ∈ B(f ) and (b, c) ∈ B(g) for some b ∈ B(y)

In most situations, this implies that (a, c) ∈ B(fg) 2

So:
B(f )B(g) ⊆ B(fg)

(LHS composition in Rel)

2If your behaviour doesn’t satisfy this, you should probably try
something else
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In fancy terminology:

B is a lax functor3 C → Rel

• C is locally discrete 2-category (exactly one 2-cell)

• Rel is a locally thin 2-category (at most one 2-cell)

3Or lax pseudofunctor if being pedantic
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Emergent behaviours

In many practical situations, the converse fails:

fg can exhibit “emergent” behaviours that do not arise from
individual behaviours of f and g

Slick definition 1/3: An emergent behaviour of fg (w.r.t. the
decomposition (f , g)) is an element of B(fg) \ B(f )B(g)

So we do not have a functor B : C → Rel

In practice: This is much less interesting
Functoriality sometimes fails very badly in real examples
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Example: Open graph reachability4

OGph = structured cospan category of open graphs

• Objects: finite sets

• Morphisms: cospans of graph homomorphisms

L(X )
ι1−→ G

ι2←− L(Y )

L(−) = discrete graph on a set

4Not really systems theory, but easy to understand and easy to visualise
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Reachability

Define B : OGph→ Rel by:

• On objects: B(X ) = X

• On morphisms: B(X
ι1−→ G

ι2←− Y ) =

{(x , y) ∈ X × Y | ι1(x) and ι2(y) are connected in G}

Proposition. B is a lax functor
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Reachability is not a functor

Minimal counterexample: the zig-zag

B(f )B(g) = ∅ ( {(∗, ∗)} = B(fg)
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Better but handwaved examples

In general, naive compositionality is not enough
Relevant effects can cut across the obvious compositional
structure

• High frequency electronics: behaviour “jumps” across the
logical circuit structure between physically nearby
components

• Safety/failure analysis: catastrophic failures can cascade
through physically nearby components

• A system (e.g. an agent inside it) reasons about its
situation instead of passively reacting
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Not this talk: A grand challenge

Given a lax functor to Rel 5 associate some mathematical
object (cohomology?) that ‘describes’ how it fails to be a
functor (i.e. how the laxator fails to be an iso), in a useful way

“Useful” = encodes something worth knowing about emergent
behaviour

5Or linear/additive relations etc. as convenient
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Outcomes depend on contexts too

6

6This slide courtesy of David Perner, University of Alabama in
Huntsville, dp0101@uah.edu

mailto:dp0101@uah.edu
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The idea of contexts

Idea: a context is a hole into which a morphism can be put

Later we’ll make behaviours depend on both a system and a
context

Standard ACT methodology: axiomatise the structure they
must have, leaving freedom to do domain-specific things later
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Contexts form a functor

Write C(X ,Y ) for the set of possible contexts for morphisms
X → Y

C : C × Cop → Set
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Generalised states

A functor F : C → Set describes a theory of generalised states
(things that can be stuck to a left boundary) 7

An element e ∈ F (X ) behaves like a morphism e : I → X

Similarly, a functor G : Cop → Set describes a theory of
generalised costates (things that can be stuck to a right
boundary)
An element e ∈ G (X ) behaves like a morphism e : X → I

A context could be a pair of these: C(X ,Y ) = F (X )× G (Y )
This describes a thing stuck to the left boundary and another
(disjoint) thing stuck to the right boundary

7It also ought to be lax monoidal to (Set,×)
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Contexts for a monoidal category

This is less obviously described by functoriality
In particular this is not just a monoidal functor
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The obligatory optics slide

An optic (X+,X−)→ (Y +,Y−) in a monoidal category is a
pair of morphisms like this:

modulo sliding things along the A wire:

Optic(C)(X ,Y ) =

∫ A:C
C(X+,A⊗ Y +)× C(A⊗ Y−,X−)
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Optic composition goes outside-in
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Generalised states in optics

A functor Optic(C)→ Set describes things that can be stuck to
the outside boundary, and can be extended like this:

Slick definition 2/3: A context functor for a monoidal
category C is a lax monoidal functor C : Optic(C)→ (Set,×)
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Examples of context functors

• The representable one 8:

C(X ,Y ) = Optic(C)((I , I ), (X ,Y )

=

∫ A:C
C(I ,A⊗ X )× C(A⊗ Y , I )

• If C is traced, C(X ,Y ) = C(Y ,X ) is a context functor

• If C is compact closed, C(X ,Y ) = C(I ,X ⊗ Y ) is a
context functor

• Domain-specific examples can be tailored to individual
problems

8Open games uses this one (where C is itself a category of optics!)
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Optics can usually be avoided

Useful lemma: If C is compact closed, then Optic(C) ∼= Int(C)

Int-construction9: objects are pairs, morphisms
(X+,X−)→ (Y +,Y−) are morphisms X+ ⊗ Y− → Y + ⊗ X−

9Universal property: forget the compact closed structure, freely add a
new one generating the same trace
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How a context transforms
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Morphisms in context

Given:

• A monoidal category C (“systems”)

• A context functor C : Optic(C)→ Set

• A monoidal category D (“semantics”)

we can form a new category D[C]

• Objects are pairs (X ∈ C,A ∈ D)

• A morphism (X ,A)→ (Y ,B) is a pair f : C(X ,Y ) and

〈−|f 〉 : C(X ,Y )→ D(A,B)

Thats a system together with a behaviour for every possible
context 10

10It looks kinda like a fibred category / Grothendieck construction, but
it’s not
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The yoga of contexts

(X ,A)
f ,〈−|f 〉−−−−→ (Y ,B)

g ,〈−|g〉−−−−→ (Z ,C )

We need to get a function

〈−|fg〉 : C(X ,Z )→ D(A,C )

From c ∈ C(X ,Z ) and g : C(Y ,Z ) we can get g∗c ∈ C(X ,Y ),
and then 〈g∗c |f 〉 : D(A,B)
From c ∈ C(X ,Z ) and f : C(X ,Y ) we can get f∗c ∈ C(Y ,Z ),
and then 〈f∗c |g〉 : D(B,C )
Contextual composition law: 11

〈c |fg〉 = 〈g∗c|f 〉 〈f∗c|g〉

11It looks a tiny bit like a product rule for a derivation if you squint
really hard
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The contextual category

This rule is associative
The corresponding identity on (X ,A) is idX together with

〈c |idX 〉 = idA for all c ∈ C(X ,X )

That is: the identity system may only perform the identity
behaviour, no matter what context it is in. This is not as
innocent as it sounds!

D[C] is also a monoidal category - this is where we seriously
use Optic(C)
Fun fact: This isolates 1 of 3 ingredients making up open
games 12

12Bonus fun fact: optics appear in compositional game theory for 2
apparently unrelated reasons !!
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Contextual functors

There’s a forgetful functor U : D[C]→ C
• U(X ,A) = X

• U(f , 〈−|f 〉) = f

Slick definition 3/3: A C-contextual functor C → D is a
section C → D[C] of U
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Unpacking the definition

To specify a contextual functor C → D is equivalently to give:

• For each object X of C, an object F (X ) of D
• For each morphism f : C(X ,Y ) and context c ∈ C(X ,Y ),

a morphism 〈c |f 〉 : D(F (X ),F (Y ))

satisfying 2 conditions:

• (weird-unitality) 〈c|idX 〉 = idF (X )

• (weird-associativity) 〈c |fg〉 = 〈g∗c|f 〉 〈f∗c|g〉

The punchline: when I originally tried to define a “contextual
functor” by brute force, this is almost the definition I came up
with 13

13I left out the weird-uniltality law, which is a headache
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Contexts for graph reachability

It’s enough to know that some boundary nodes are connected
via other components
Idea: define OGph : Int(OGrph)→ Set by

OGph(X ,Y ) = {partitions of X} × {partitions of Y }

Work needed to check this really is a functor!

Note: I find

OGph(X ,Y ) = {partitions of X + Y } = {corelations X → Y }

more intuitive, but it goes wrong for subtle reasons
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How not to do reachability

Obvious idea: define a contextual functor OGph→ Rel by

〈L,R|G 〉 = {reachability in G after identifying

L-equivalent and R-equivalent nodes}

Weird-unitality fails: 〈L,R|id〉 might not be the identity
relation!

This seems to be a common phenomenon
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How maybe to do reachability

Brute-forcing the problem from the previous slide:

〈L,R|G 〉 = {(x , y) | (x , y) reachable in G + edges from L,R,

by a path either of length 0, or taking at least one step in G}

Bunch of fiddly combinatorics needed to prove this really is a
contextual functor
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Outlook

• Most importantly: actually compelling examples needed

• Normally, a functor leads to a linear time
divide-and-conquer algorithm

• Contextual functors do not yield efficient algorithms!

• This is the fundamental bamboozle of open games: how
to get “compositionality of Nash equilibria” without
implying that P = NP

• I think this could become a standard tool of ACT (similar
to decorated cospans)
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