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Prologue

One of me toxic traits is pointing at things and justify them: ‘that’s a coend’, ‘that’s a cartesian

lift’, ‘that’s an enriched quasi-limit’.

One could call this ‘semiotics’1: analyzing a sign to understand how it decouples in a signifier

(a syntactic hence logical/categorical object) with a certain semantics (a choice of ambient to

interpret it).

For a while I’ve been thinking about argmax and softmax: can we make sense of their

similarity?

1Debatable.
2
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Softmax
Definition. Let f : X ! [0,∞] be an integrable function over X measure space. Its softmax is

the probability distribution X ! [0, 1] defined as

(softmax f)(x∗) =
f(x∗)∫

x∈X f(x) dx
.

1. not as brittle than argmax

2. all the cool kids are doing it
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Softmax vs. argmax

Definition. Let f : X ! [0,∞] be an integrable function over X measure space. Its softmax is

the probability distribution X ! [0, 1] defined as

(softmax f)(x∗) =
f(x∗)∫

x∈X f(x) dx
.

Definition. Let f : X ! R be a function. Its argmax is the predicate X ! Prop defined as

(argmax f)(x∗) = ∀x ∈ X , f(x) ≤ f(x∗).
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Idea

In general, the fact that
∫

‘behaves like’ ‘∃/colim’ has been noted before:

From (Loregian 2021):
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Idea

1. Can the analogy be made precise?

2. What are even quantifiers in this setting?

One could say I’m trying to combine two of Lawvere’s most famous papers:

I ‘Adjointess in Foundations’ (Lawvere 1969) and

I ‘Metric spaces, generalized logic, and closed categories’ (Lawvere 1973)

.

Radu & collaborators have done lots of work in this direction already! I’m an amateur.
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Logic of the Reals



The multiplicative reals

Definition. The poset ([0,∞],≤) is a ∗-autonomous quantale, meaning:

1. it has all small joins
∨

i ai , given by suprema;

2. it is equipped with a join-preserving tensor product ⊗ : [0,∞] × [0,∞]! [0,∞], defined by

multiplication and satisfying commutativity, associativity and unitality, with unit 1 ∈ [0,∞].

3. it is equipped with a duality (−)∗ : [0,∞]op ! [0,∞], defined as

∀a ∈ (0,∞), a∗ := 1/a, 0∗ = ∞, ∞∗ = 0,

satisfying the property

∀a ∈ [0,∞], a ⊗ b ≤ c∗ ⇐⇒ a ≤ (b ⊗ c)∗.

8
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0∞ =?

The definition of ⊗ involving ∞ is dictated by the requirement ⊗ preserves joins: for any

unbounded set (ui)i∈I, we have

a ⊗∞ := a ⊗
∨

i

ui =
∨

i

a ⊗ ui = ∞

0 ⊗∞ := 0 ⊗
∨

i

ui =
∨

i

0 ⊗ ui = 0

Also: the law (a ⊗ b)∗ = a∗ ⊗ b∗ isn’t required to hold. In fact

0 = 0 ⊗∞ = ∞∗ ⊗ 0∗ , (∞⊗ 0)∗ = ∞

It does hold for all 0 < a, b < ∞ though.

9



0∞ =?

The definition of ⊗ involving ∞ is dictated by the requirement ⊗ preserves joins: for any

unbounded set (ui)i∈I, we have

a ⊗∞ := a ⊗
∨

i

ui =
∨

i

a ⊗ ui = ∞

0 ⊗∞ := 0 ⊗
∨

i

ui =
∨

i

0 ⊗ ui = 0

Also: the law (a ⊗ b)∗ = a∗ ⊗ b∗ isn’t required to hold. In fact

0 = 0 ⊗∞ = ∞∗ ⊗ 0∗ , (∞⊗ 0)∗ = ∞

It does hold for all 0 < a, b < ∞ though.

9



0∞ =?

The reason this doesn’t hold is that a ∗-autonomous category really features two distinct

monoidal products, where the second is de Morgan dual to the first:

a ⊗∗ b = (a∗ ⊗ b∗)∗

In the case of [0,∞], ⊗∗ coincides with ⊗ except for the rule

0 ⊗∗ ∞ = ∞

Thus they (lax) linearly distribute over each other:

a ⊗ (b ⊗∗ c) ≤ (a ⊗ b) ⊗∗ c

where, again, equality holds for all finite values and breaks for (a, b , c) = (0, 0,∞).
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Closure

Bonus: every ∗-autonomous category is closed (not compact though):

a ( b := a∗ ⊗ b =


0 b = 0 or a = ∞

∞ a = 0 and b , ∞

b/a else

...and coclosed:

a � b := a ⊗∗ b∗ =


∞ a = 0 or b = ∞

0 b = 0 and a , ∞

a/b else
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Sums
Crucially, [0,∞] also has sums:

a ⊕ b :=

∞ a = ∞ or b = ∞

a + b else

which are commutative, associative and unital, with unit 0;

and harmonic sums:

a ⊕∗ b := (a∗ ⊕ b∗)∗ =



0 a = 0 or b = 0

a b = ∞

b a = ∞
1

1/a + 1/b
else

which are commutative, associative and unital, with unit ∞.
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Algebro-logical structures on the multiplicative reals

and three kinds of distributivity (+ duals not shown):

multiplicative a ⊗∗ (b ⊗ c) ≤ (a ⊗∗ b) ⊗ c 1 ≤ >

multiplicative-additive a ⊗ (b ⊕p c) = (a ⊗ b) ⊕p (a ⊗ c) a ⊗ 0 = 0

linear-nonlinear a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c) a ⊗ false = false

a ⊕ (b ∨ c) = (a ⊕ b) ∨ (a ⊕ c) a ⊕ true = true
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Conjectures

I’m not a logician so don’t laugh:

Conjecture 1. There is an extension of classical linear logic featuring an extra generation of

linear connectives:

linear ‘very linear’

additive ∨,∧ non-linear ∨,∧

multiplicative ⊗,⊗∗ linear additive ⊕,⊕∗

linear multiplicative ⊗,⊗∗

Open question: what are the rules associated to ⊕ and ⊕∗?
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Conjectures

Conjecture 2. The Lambek side of this logic is

∗-autonomous symmetric bimonoidal bicartesian categories.

A symmetric bimonoidal category is a category A equipped with two monoidal structures

(1,⊗) and (0,⊕) and coherent isomorphisms:

a ⊗ (b ⊕ c) � (a ⊗ b) ⊕ (a ⊗ c), a ⊗ 0 � 0.

It is ∗-autonomous when it is a Frobenius pseudomonoid, i.e. it comes with a symmetric

monoidal functor (−)∗ : Aop ! A and natural isomorphisms

A(a ⊗ b , c∗) � A(a, (b ⊗ c)∗).

It is bicartesian when instead of starting from a category A, we start from a bicartesian

category A (so that all operations commute with
∨

).
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Comparison with Polynomial Lawvere Logic (PL)

Recently Radu & co2 introduced PL, a logic valued in ([0,∞],≥,⊕) with ⊗ (my notation).

The link with the above is given by the following well-known diagram of quantales:

[0,∞]⊗ (−∞,∞)op
⊕

[1,∞]⊗ [0,∞]op
⊕

− log

1/ exp

− log

1/ exp

o
o

Some observations:

1. the ⊗ world seems to ‘have more natural structure’: 1/ exp and − log don’t see ⊕ on the left

2. working with unsigned truth values allows to represent more ‘degrees of falsehood’

3. additive enrichment seems to work better than multiplicative one

4. less obvious candidates for quantifiers: can’t use ⊕ for ∃.

2(Bacci, Mardare, Panangaden, and Plotkin 2024)
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Coda: from quantitative to qualitative

To extract ‘qualitative’ truth from ‘quantitative’ one chooses an ideal representing truth:

F ⊆ [0,∞]⊗ which is


inhabited ∞ ∈ F ,

upper-closed a ∈ F , a ≤ b =⇒ b ∈ F

⊗-closed a, b ∈ F =⇒ a ⊗ b ∈ F

Lemma. Every ideal in [0,∞]⊗ is principal and has one of four forms:

{∞} [1 + ε,∞], ε ≥ 0 (0,∞] [0,∞]

Definition. We say ϕ ∈ [0,∞]⊗ is F-qualitatively true when ϕ ∈ F .

My favourite ideal is [1,∞], and it corresponds to ‘positive evidence’. Indeed this the choice

made in the additive world of PL.

17
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Quantifiers



The spectrum of p-sums

Definition. For any p ∈ (−∞,∞), p , 0, the p-sum of a finite set of numbers (ai)i∈I is

⊕
i∈I

p
ai :=

⊕
i∈I

ap
i

1/p

when p < 0 we call p-sums harmonic.

One extends the above definition to p = ±∞ (but not p = 0) by taking suitable limits.

∧
· · ·

⊕−p
· · ·

⊕∗
∞

⊕
· · ·

⊕p
· · ·

∨
−∞ −p −1 0 1 p ∞
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The spectrum of p-sums

We have
⊕−p

≤
∧
≤

∨
≤

⊕p , with the (exterior) gap narrowing as p increases:

p

0

2

4

6

8

10

5 10 15 20 25 30

harmonic p-sum max min p-sum
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The spectrum of p-sums
We have

⊕−p
≤

∧
≤

∨
≤

⊕p , with the (exterior) gap narrowing as p increases:

p

0

2

4

6

8

10

5 10 15 20 25 30
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So deforming ⊕ to ⊕p doesn’t change the ‘logic’ of [0,∞]⊗, and in fact it converges to classical

linear logic as p ! ∞.
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The amazing p-sums

The fundamental relation of harmonic sums is:

⊕
i∈I

−p
(bi ( a) =

⊕
i∈I

p
bi

( a  
⊕

i∈I

−p a
bi

=
a⊕p
i∈I bi

which is analogous to ∀i (bi ! a) = (∃i bi)! a.

In fact we also have: ⊕
i

−p
(b ( ai) = b (

⊕
i

−p
ai

 ,
which is analogous to ∀i (b ! ai) = b ! (∀i ai).
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The amazing p-sums

Lemma. Sum and harmonic sums...

1. are monotonic in the argument: if, for each i ∈ I, ai ≤ bi , then⊕
i∈I

∗

ai ≤
⊕

i∈I

∗

bi ,

2. are, resp. monotonic and antitonic in the index: when J ⊆ I, one has⊕
i∈I

p
ai ≥

⊕
j∈J

p
aj ,

⊕
i∈I

−p
ai ≤

⊕
j∈J

−p
aj .

However... p-sums are susceptible to cumulative effects: their truth value can pass any

threshold given enough ‘false’ values (too easy to satisfy); vice versa for harmonic p-sums (too

hard to satisfy). We need to compensate for size!

22
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The spectrum of p-means

Definition. For any p ∈ (−∞,∞), p , 0, the p-mean of a finite set of numbers (ai)i∈I is

∫ p

i∈I
ai :=

⊕
i∈I

p ap
i

|I|

1/p

when p < 0 we call p-means harmonic.

One extends the above definition to p = ±∞ by taking suitable limits.

∧
· · ·

∫ −p
· · ·

∫ ∗
GM

∫
· · ·

∫ p
· · ·

∨
−∞ −p −1 0 1 p ∞

Fact. p-means satisfy the same properties as p-sums: Fubini, monotonicity in the argument

and index, fundamental relation and homogeneity.
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The spectrum of p-means
We have

∧
≤

∫ −p
≤

∫ p
≤

∨
, with the (exterior) gap narrowing as p increases:

p

3

4

5

6

5 10 15 20 25 30

harmonic p-mean max min p-mean

Unlike p-sums, p-means compensate for cumulative effects.
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Means as bounded quantifiers

Idea. Mean and harmonic mean correspond to bounded quantification:

∃i. (i ∈ I) ∧ a(i)
⊕

i∈I

p 1
|I|
⊗ a(i)

A mean is a just an integral over a probability space so we can directly generalize:

∃i ∈ I. a(i)
∫ p

i∈I
a(i) di.

for I any probability space. Duality also suggests this interpretation since

∀i ∈ I. a(i) = ¬∃i ∈ I. ¬a(i)
∫ −p

i∈I
a(i) =

(∫ p

i∈I
a(i)∗ di

)∗
,

i.e. we dualize a(i) but not the domain of quantification.

25



Means as bounded quantifiers

Idea. Mean and harmonic mean correspond to bounded quantification:

∃i. (i ∈ I) ∧ a(i)
⊕

i∈I

p 1
|I|
⊗ a(i)

A mean is a just an integral over a probability space so we can directly generalize:

∃i ∈ I. a(i)
∫ p

i∈I
a(i) di.

for I any probability space.

Duality also suggests this interpretation since

∀i ∈ I. a(i) = ¬∃i ∈ I. ¬a(i)
∫ −p

i∈I
a(i) =

(∫ p

i∈I
a(i)∗ di

)∗
,

i.e. we dualize a(i) but not the domain of quantification.

25



Means as bounded quantifiers

Idea. Mean and harmonic mean correspond to bounded quantification:

∃i. (i ∈ I) ∧ a(i)
⊕

i∈I

p 1
|I|
⊗ a(i)

A mean is a just an integral over a probability space so we can directly generalize:

∃i ∈ I. a(i)
∫ p

i∈I
a(i) di.

for I any probability space. Duality also suggests this interpretation since

∀i ∈ I. a(i) = ¬∃i ∈ I. ¬a(i)
∫ −p

i∈I
a(i) =

(∫ p

i∈I
a(i)∗ di

)∗
,

i.e. we dualize a(i) but not the domain of quantification.

25



Softmax is argmax!

Given the premise, it’s not hard to see what we are going to propose.

For X probability space

and f : X ! [0,∞], define

(p- softmax f)(x∗) =

∫ −p

x∈X
f(x)( f(x∗).

Then it’s easy to see that softmax = 1- softmax:

(1- softmax f)(x∗) =

∫ ∗

x∈X
f(x)( f(x∗) =

f(x∗)∫
x∈X f(x) dx

= (softmax f)(x∗)

Conversely, argmax is [1,∞]-qualitatively ∞- softmax:

(∞- softmax f)(x∗) =

∫ −∞

x∈X
f(x)( f(x∗) =

∧
x∈X

f(x∗)
f(x)

b−c
7−! (argmax f)(x∗)

The passage to qualitative is necessary since that’s where argmax lives!
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Conjecture: transporting quantifiers to PL

One can transport structure from [0,∞]⊗ to [−∞,∞]⊕ along Napier’s isomorphism.

Thus for ϕ : I ! [−∞,∞]⊕, define:

∃p(i ∈ I). ϕ(i) := − log

∫ p

i∈I
exp(−ϕ(i)) di

∀p(i ∈ I). ϕ(i) := − log

∫ −p

i∈I
exp(−ϕ(i)) di = log

∫ p

i∈I
exp(ϕ(i)) di

It’s also very typical to start with u : X ! [−∞,∞]⊕ and then construct (softmax e−u)(x∗). In

logistic regression, one actually goes all the way back to obtain a quantity called

log-likelihood:

Lu = − log softmax e−u = u − log

∫
x∈X

e−u(x) dx = “∀p(x ∈ X). u(x)( u(x∗)′′

And this is indeed argmax u in [−∞,∞]⊕ according to the proposed quantifiers.
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Exploration:
generalized logic via enriched category theory



The mirage of an enriched hyperdoctrine

To each probability space I we can try to associate an [0,∞]⊗-enriched p-Lindenbaum–Tarski

algebra of real-valued predicates:

LTp(I, [0,∞]) =


elements ϕ : I ! [0,∞]⊗

entailment ϕ `I ψ :=

∫ −p

i∈I
ϕ(i)( ψ(i) =

(∫
i∈I

ϕ(i)p

ψ(i)p di
)−1/p

If it worked, it would embody the enriched generalized logic as a functor

LTp : Probop −! [0,∞]⊗-Cat

and quantifiers would be given as adjoints to reindexing, justifying their definition.
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The mirage of an enriched hyperdoctrine

Fix πI : I × J ! I, an enriched left adjoint
∫ p

i a π
∗
I would satisfy

for all ϕ ∈ LTp(I × J), ψ ∈ LTp(I),
∫ p

i ϕ `I ψ = ϕ `I×J π
∗
I ψ

which unpacks to ∫ −p

i∈I

(∫ p

j∈I
ϕ(i, j)

)
( ψ(i) =

∫ −p

i∈I
j∈J

ϕ(i, j)( ψ(i)

which is true by the fundamental relation of harmonic sum.

Similarly, we would have π∗I a
∫ −p

.

Notice: it’s absolutely crucial that `I is enriched!
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The mirage of an enriched hyperdoctrine

Why doesn’t it just work?

Entailment isn’t transitive. It’s worth to see in detail why (for p = 1 for simplicity):

(ϕ `I ψ) ⊗ (ψ `I σ) ≤ (ϕ `I σ) ⇐⇒ (ϕ `I ψ)−1 ⊗ (ψ `I σ)−1 ≥ (ϕ `I σ)−1

Thus ∫
i∈I

∫
i′∈I

ϕ(i)
ψ(i)

ψ(i′)
σ(i′)

di di′ ≥
∫

i∈∆I

ϕ(i)

�
�ψ(i)

�
�ψ(i)

σ(i)
di di �

∫
i∈I

ϕ(i)
σ(i)

di

So there seems to be a metalevel issue in the way we combine these numbers: if ∆I was a

subset of
(
I × I, didi′

√
didi′

)
, there would be no problem!
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The mirage of an enriched equipment of relations

An equipment of relations is an alternative way to present a first-order logic.

Definition. Define [0,∞]⊗Rel as the [0,∞]⊗-enriched equipment with prob. spaces & their

maps as objects & tight maps, enriched relations as loose arrows, and squares given by

A B

C D

R
p

S
p

f g := R `A×B S(f , g) ∈ [0,∞]⊗.

There being ‘a’ square means 1 ≤
A B

C D

R
p

S
p

f g , in which case we draw an arrow inside.

Note this is parameterized by a choice of filter, but we fixed F = [1,∞].
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The mirage of an enriched equipment of relations

The existential quantifier is involved in composing relations:

A
R
!p B

S
!p C , (R � S)(a, c) :=

∫ p

b∈B
R(a, b) ⊗ S(b , c).

The universal quantifier gives right lifts and extensions:

A B C

A C

K
p

ranK F
p

F
p

cart
ranK F(b , c) =

∫ −p

a
K(a, b)( F(a, c),

A B C

A C

riftK F
p

K
p

F
p

cart
riftK F(a, b) =

∫ −p

c∈C
K(b , c)( F(a, c).
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The mirage of an enriched equipment of relations

There are also all restrictions, hence companions and conjoints:

A B

C D
S
p

f g

S(f ,g)
p

cart , S(f , g)(a, b) := S(f(a), g(b)),

Example. Take [0, 1] with its uniform distribution, for f : X ! [0, 1] as before we have:

X X

[0, 1] [0, 1](p

ff

f(f
p

cart

Incidentally, (f ( f)(x, x′) = 1 ∧ f(x)/f(x′) appears as in the Metropolis–Hastings’

Monte-Carlo sampling method.
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The mirage of a perfect correspondance of argmax and softmax

Argmax and softmax are the same operation performed in different worlds:

In the Prop∧-equipment Rel:

X 1 X

X X

[0, 1] [0, 1]
≤
p

ff

f≤f
p

argmaxP f
p

P
p

cart

cart

In the [0,∞]⊗-equipment [0,∞]⊗Rel:

X 1 X

X X

[0, 1] [0, 1](p

ff

f(f
p

softmaxP f
p

P
p

cart

cart

Here we are exhibiting constrained argmax, i.e. argmax subject to an optimization constraint P

given by a predicate. Put P = 1 for vanilla argmax.
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Conclusions



Takeaways

1. [0,∞]⊗ are a very rich setting!

2. It’s crucial to work enriched to get enriched results

3. Universal properties reflect meta-level structure, and thus the more structure in the

enrichment base, the wilder the zoo of internally-reflected structure

4. [0,∞]⊗-enriched universal properties are equations, and one can compute universal

objects by solving them

5. Lack of idempotency keeps biting back
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Open questions

1. Is ‘very linear’ logic a thing? What’s its relationship to PL?

2. How do we fix the enriched Lindenbaum–Tarski algebras?

Owen Lynch and David Jaz Myers’ have intriguing ideas about more sophisticated forms

of enrichment which might save the day.

3. Why are probability spaces natural domains of quantification?

4. Can we motivate other constructions in analysis and probability theory from a

logical/categorical POV?

e.g. Lp spaces, mutual information, Giry monad, etc.
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Thanks for your attention!
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