A Category of Surface-Embedded Graphs

Malin Altenmiiller Ross Duncan'!?

malin.altenmuller@strath.ac.uk ross.duncan@strath.ac.uk
1University of Strathclyde
2Cambridge Quantum Computing Ltd

We introduce a categorical formalism for rewriting surface-embedded graphs. Such graphs can
represent string diagrams in a non-symmetric setting where we guarantee that the wires do
not intersect each other. The main technical novelty is a new formulation of double pushout
rewriting on graphs which explicitly records the boundary of the rewrite. Using this boundary
structure we can augment these graphs with a rotation system, allowing the surface topology to
be incorporated.

1 Introduction

String diagrams [17] are a graphical formalism to reason about monoidal categories. Equational
reasoning in symmetric string diagrams can be implemented as graph or hyper-graph rewriting
subject to various side conditions to capture the precise flavour of the monoidal category intended
[5, 6,7, 14, 2, 1]. We want to use string diagrammatic reasoning for monoidal categories which are
not necessarily symmetric. Informally, the lack of symmetry is often stated as “the wires cannot
cross” — but what does that mean when the string diagram is a graph or other combinatorial
object? Where is this “crossing” taking place? To make sense of this we must move beyond the
situation where only the connectivity matters and add some topological information.

In this paper we make two steps in that direction. Firstly we borrow a tool from topological
graph theory — rotation systems — and use it to define a category of graphs which are embedded
in some surface. Secondly, we introduce a new refinement of double pushout rewriting [9] which
is adapted to this category. This refinement was motivated by the desire to do rewriting on
rotation systems, however it works on conventional directed graphs equally well, and removes
many annoyances encountered when using standard techniques from algebraic graph rewriting in
string diagrams. This is an important step towards formalising non-symmetric string diagrams
and their rewriting theory.

Our motivation is also twofold. From the abstract point of view, non-symmetric string
diagrams can capture a larger class of theories, including both the symmetric case and the
braided monoidal one. A more practical motivation comes from the area of quantum computing,
where string diagrams are often used to model quantum circuits [3], their connectivity restrictions
imposed by the qubit architecture [4] require a theory without implicit SWAP gates, and can
involve circuits defined on quite complex surfaces.

Curiously, Joyal and Street’s original work [12] formalised monoidal categories as plane
embedded diagrams, and used the plane to carry the categorical structure. Our work goes in the
opposite direction: to recover the topology from the combinatorial structure.

© M. Altenmiiller & R. Duncan



Graph Embeddings Graph embeddings are drawings of graphs on surfaces. A graph can
have multiple different embeddings on the same surface, as shown below.

We will only consider plane embeddings, like the one on the right, where the graph does not
intersect itself. A graph need not be embedded in the plane; different surfaces can permit different
embeddings. Indeed it may not be possible to embed a graph in the plane at all!

Dealing with lines and points as submanifolds of some surface (up to homeomorphism) is
quite unwieldy, so we use a combinatorial representation of graph embeddings called rotation
systems. A rotation system imposes an order on the edges incident at vertex (called a rotation).
The rotation information at each vertex is enough to fix the embedding of the graph into some
surface, as it defines the faces of the embedding uniquely. This is a well studied topic in graph
theory and we refer to the literature for more details [10].

Theorem 1.1. A rotation system determines the embedding of a connected graph into a minimal
surface up to homeomorphism [11, 8, 10].

Note that different rotation systems for the same graph may have different minimal surfaces,
which need not be the plane.

Boundary Graphs and Partitioning Spans When using string diagrams, graphs as usually
defined are not the most natural object; rather, we often think about open graphs which have
“half-edges” or “dangling wires” which represent the domain and codomain of the morphism
in question. The half-edges therefore provide the interface along which morphisms compose,
and also where substitutions can be made in rewriting. Unfortunately half-edges don’t work
particularly well with double pushout rewriting, necessitating various workarounds encoding
the “wires” as special vertices in a graph [7] or hypergraph [1]. This in turn leads to its own
complications when we consider the identity morphism, and other natural transformations which
are naturally “all string”; equations which should be trivial are no longer so. Surface embedded
graphs suggest a different approach to this question.

Naively, when picturing a rewrite on a surface embedded graph, we picture a disc-like region
of the surface which is removed and replaced. The edges which cross the boundary of this region
define the interface and we naturally require that the removed disc and its replacement should
have the same interface. From the outside, this disc is homeomorphic to a point, so it can be
treated as if it was a vertex equipped with a rotation system. However, the perspective from
inside and outside the region are completely equivalent, so we can dually view the rest of the
graph as a single vertex connected to the interior of the disc. We think of and draw a graph with
boundary in three different ways:

0 9



M. Altenmiiller & R. Duncan 3

&g

?

Nz

? ?
Figure 1: Example of a partitioning span, drawn in a region- and a vertex-style (edge directions
are omitted for readability)

On the left, the graph is depicted as a region of the surface with its outside being the rest of the
surface. In the middle, graph and its surrounding are both regions of the surface, and on the
right we have drawn the boundary as a vertex with the interconnecting edges attached.

This leads naturally to our notion of boundary graph: we contract both subgraphs on either
side of the boundary to points, leaving a two-vertex graph whose edges specify the connections
crossing the boundary. Boundary graphs form the vertex of partitioning spans, which specify the
whole graph as the two parts, as shown in Figure 1; the pushout of a partitioning span is the
original graph.

This formalism allow us to use a simple definition of graph, although our morphisms are
now built from partial functions, which introduces some complications around the required
injectivity properties to preserve the type of the vertices, which is essential if these graphs are to
be interpreted as string diagrams.

Limitations The astute reader will have noted that Theorem 1.1 applies only to connected
graphs. To specify an embedding of a disconnected graph a rotation system does not suffice. We
would also need to take into account the relationship between components and faces of the graph.
We have made no attempt to do so here.

2 A Suitable Category of Graphs

In this section we will introduce a category of directed graphs without reference to any topological
structure. The main difficulty here is arriving at the correct notion of graph morphism: our
intent here is that the graphs represent terms in some monoidal category — i.e. string diagrams
— and the morphisms represent embeddings of subterms. This implies that certain structures
should be preserved which conventional graph rewriting does not worry about. Our choices here
are also influenced by the variant of double-pushout rewriting we will define in the next section.
In later sections we will show how to incorporate the plane topology by adding rotation systems.

A total graph is a functor G : (e = e) — Set. Concretely, such a graph is a pair of sets V'
and F, of vertices and edges respectively, and a pair of functions s and ¢ assigning source and



target vertices to each edge.
E # V.

In the functor category [ = o Set], a morphism of graphs is a pair of functions fy : V — V', fp:
E — E’, such that the following squares commute:

E -7, g E -7, g
sl ls’ ti lt’ (1)
V — V! Vv — V!

fv fv

Sadly for us, this simple and elegant definition will not suffice.
We want to consider graph morphisms which can replace vertices with subgraphs, and
therefore forget these vertices, as shown below:

=0

To achieve this we could operate in a subcategory of [¢ = e, Pfn], the category of partial graphs
and maps, with only the total graphs as objects. However this is not quite enough. Commutation
of the naturality squares (1) in this category is strict, meaning it includes equality of the domains
of definition. Therefore if a morphism forgets a vertex it must also forget all the incident edges
at that vertex. This is no use. We address this issue by using the poset enrichment of Pfn, and
work in the category [e =% o, Pfn|< of functors and laz natural transformations:

E 12, g E_E, B
SJ( < ls’ tJ{ < lt' (2)
VeV VeV

The lax commutation allows the vertex component of a morphism to be undefined at some vertex
v while its incident edges may be preserved. However, if an edge is “forgotten” then its source
and target vertices must also be so. We’ll need more, but let’s take [ = o, Pfn]< as our ambient
category for now.

Proposition 2.1. The category Ptn of sets and partial functions has pushouts.
Proof. Given a span L L BSCO , the elements of the pushout are the same as in for Set, but
restricted to a subset B’ C B, with both I(b) and ¢(b) defined for b € B’. This is the only way the

square commutes for elements in B’, and the universal property of the pushout can be derived
from Set. ]

Proposition 2.2. The category Inj of sets and injective functions does not have pushouts.

Proof. If pushouts in Inj exist, they have to coincide with those of Set. Consider the span
{*} +— 0 — {x}, and commuting squares:



M. Altenmiiller & R. Duncan 5

{x} +—— 0

Y
/ /{*,*} — {x}
-

{x} o id

In the square all morphisms are injective, but the mediating map out of the pushout m : {*,%} —
{*} is not. O

We would like to be able to accommodate two further properties in our notion of graph
morphism: Firstly, since vertices represent morphisms of a monoidal category, their type should
be preserved. Secondly, we want to specify when a morphism is a graph embedding, which
requires an injectivity property. Merely asking for injectivity of the vertex and edge component
is not enough though, our setup requires the edge component to be non-injective, i.e. to represent
the identity morphism (or similar circumstances):

Example 2.3. A graph morphism with a non-injective edge component:

Both of the above requirements turn out to be properties of the connection points between
vertices and their incident edges, called flags:

Definition 2.4. Given a graph (V, E,s,t) its set of flags is defined
F={(e,s(e)) :ec E}+{(e,t(e)):e€ E}
Given a graph morphism f : G — G’ there is an induced flag map, fr: F — F’,
fr={exfv)+(fex[fv)

Note that the flag map is in general a partial map: it is undefined on (e,v), whenever fy is
undefined on v. Whenever fr is injective we say that f is flag injective.

Flag injectivity allows edges to be combined but prevents a morphism from decreasing a
vertex degree in the process. However, nothing said so far forbids a morphism from increasing
the degree of a vertex: we require a notion of flag surjectivity. Given f: G — G’, it doesn’t suffice
to require the flag map fr to be surjective, since in general G’ will contain more vertices than G,
and hence more flags. The resulting definition is unfortunately unintuitive.

Definition 2.5. Let f: G — G’ be a morphism between two total graphs; we say that f is flag
surjective if the two diagrams below commute laxly,

fv

v Vv’ V v’
Al oz e e 2 e ®
P(E) 5 P(E) P(E) 5 P(E)

where s~! and t~! are the preimage maps of s and ¢ respectively, and P is the powerset functor.



If a flag surjective morphism f is defined on a vertex v, it will ensure that all edges attached
to v’ = fy(v) are in the image of fg, thus no additional edges can be attached to v’ in the process.
An example of a morphism which is not flag surjective can be found in Figure 10 in Appendix B.
We'll call a morphism which is both flag injective and flag surjective a flag bijection. This is
quite a strong property; it’s almost enough to make the vertex map injective, but not quite.

Lemma 2.6. Let f: G — G’ be a flag bijection, and suppose that fy(vi) = fy(v2) and both are
defined; then degv; = degvs = 0.

Proof. Let v' = fy(v1) = fyv(ve); since f is flag injective, the set of flags at v/ must contain (the
image of) the disjoint union of the flags at v; and vo; hence degv’ > degv; +degwv,. Since (by
(2)) fg is defined on all the flags at vy, flag surjectivity implies that degv; > degv’, and similarly
for v9. Hence degv’ = degv; = degvy = 0. O

Lemma 2.7. Let G and G’ be total graphs, and let f: G — G’ be a flag bijection. For allv eV,
if fv(v) is defined, then fr defines a bijection between the flags at v and those incident at fy (v);
in consequence degv = deg fy (v).

Proof. Let v = fi/(v). The edges incident at v are given by the disjoint union of s~!(v) and
t~1(v), and likewise at v’. Since f is flag injective, fg is injective on the subset of flags defined
by v. Since f is flag surjective all the flags at v’ are in the image of fe(s™1(v))+ fe(t~1(v)).
Note that since fi/(v) is defined then fz is defined for all e € s~!(v) and all e € t~!(v) by Eq. (2).
Hence we have a bijection as required. O

Lemma 2.8. Let f:G— H and g: H — J be flag bijections; then go f is a flag bijection.
Proof. See Appendix A. O

By the preceding lemma, and by observing that the identity is a flag bijection, we may
conclude that the flag bijections define a wide subcategory of [e =% e, Pfn|<, which we will call B.

Example 2.3 suggests a confounding special case: the vertex of a self loop can be forgotten.
Here is another one:

Example 2.9. Let G be the (unique) total graph with one vertex and one edge; let G’ be the
(unique) partial graph with no vertices and a single edge. Define f: G — G’ by fy =0 and
fE =1d1. This is a valid flag bijection in B.

£
00— 0
While it is tempting to restrict to the subcategory defined by the total graphs, and ban such
monsters by fiat, they do occur quite naturally in the rewrite theory we propose, albeit in quite
restricted circumstances. So they must be tamed. To do so, we extend the definition of graph
with circles: closed edges which have neither a source nor a target vertex'. Unfortunately the

definition of graph morphism will get more complex and the resulting category is no longer a
functor category, as we shall now see.

IThis notion of graph has a long history; see, for example, the work of Kelly and Laplaza on compact closed
categories [13].



M. Altenmiiller & R. Duncan 7

Definition 2.10. A graph with circles is a 5-tuple G = (V, E,O,s,t) where (V, E,s,t) is a total
graph and O is a set of circles. For notational convenience we define the set of arcs as the disjoint
union A =FE+O.

A morphism f: G — G’ between two graphs with circles consists of two (partial) functions
fv:V —=V"as above, and f4: A — A, satisfying the conditions listed below. Note that any
such f4 factors as four maps,

fE:E—>EI oniE—>O/
fOE:O—>El fo:O—>O/

The following conditions must be satisfied:
1. fa:A— A is total;
2. the component fog: O — E’ is the empty function;

3. the pair (fy, fg) forms a flag surjection between the underlying graphs in B.
If, additionally, the following three conditions are satisfied, we call the morphism an embedding:
4. fy:V =V’ is injective;
5. the component fp is injective;
6. the pair (fy, fg) forms a flag bijection between the underlying graphs.
It’s worth noticing that if some f4 maps an edge e to a circle, then fg(e) is undefined, but
fro(e) is defined. This, by the lax naturality property, implies that fi is undefined on both
s(e) and t(e). Various examples and non-examples of morphisms and embeddings of graphs with
circles can be found in Appendix B.
Lemma 2.11. Defining composition point-wise, the composite of two morphisms of graphs

with circles is again such a morphism. Additionally, if both morphisms are embeddings, their
composition is an embedding as well.

Proof. See Appendix A. O

We finally have introduced all the necessary structure to define our suitable category of graphs.
Definition 2.12. Let G be the category whose objects are graphs with circles, and whose arrows
are morphisms as per Definition 2.10.

There is an obvious and close relationship between G and the category of partial graphs and
flag bijections, B. We can make this precise.
Definition 2.13. We define a forgetful functor U : G — B by

U:(V,E,O,s,t) —— (V,E,s,t)
Ui(fvva)l = l(f\th)
U:(V,E' O t)—— (VI E )

Example 2.14. Returning to Example 2.9, we see how this degenerate case fits in to the
framework. We start with GG, the unique total graph with a single vertex and a single edge (and
no circles). There a single valid way to erase the vertex in G.

Firstly observe that G’ = (0, {e},0,0,() as in the earlier example is not an object in G. However
G" = (0,0,{e},0,0) is a valid graph, and the map f: G — G” which is undefined on the vertex
and sends the edge to the circle is a valid morphism, indeed the only one.

Finally observe that the image of UG” is the empty graph and U f is the empty function.



The term “graph with circles” is unacceptably cumbersome, so henceforth we will simply say
“graph” and refer to G as the category of graphs. In practice the circles are rarely important,
although we will devote a disappointingly large amount of this paper to them.

3 DPO Rewriting in the Suitable Category

Double pushout rewriting [9] is an approach to formalising equational theories over graphs by
rewriting. Each equation is formalised as a rewrite rule L = R, and the substitution G[R/L] is
computed via a double pushout as shown below.

L+ B_".R

WL

G+—C —H

The upper span embeds a boundary graph B into both L and R; ensures that both graphs have
the same connectivity, and hence that R can validly replace L. The map m : L — G is the match,
an embedding of L into G, which shows where the rewrite will occur. The first pushout square is
completed by C, the context graph; it is basically G with L removed. In the DPO approach, C' is
computed as a pushout complement. Finally the graph H = G[R/L] is the graph resulting from
performing the rewrite L = R in G} it is computed as a pushout.

In the algebraic graph literature the notion of adhesive category [15, 16] is commonly used,
as DPO rewriting behaves well in such categories. However, adhesivity is not suitable for our
purposes, since the monomorphisms of G don’t play any special role in our formalism. We will
instead consider a specific case of maps in the DPO diagram only, and in that context show
the existence of pushouts and the existence and uniqueness of pushout complements, which are
similar properties to those of an adhesive categories. The key to this approach is to recognise
that B and C' are in some sense partial graphs, as to a lesser extent are L and R; our handling
of this partiality is one of the main novelties of this paper.

Notation 3.1. Almost every map in this section is an embedding of a small object into a larger
one. Wherever unambiguous to do so, we will treat these embeddings as actual inclusions so, for
example, we may write mpg(e) = e despite the fact that the domain and codomain of the map
are different graphs.

In our approach the graphs L and R that make up a rewrite rule have an additional
distinguished vertex, the boundary vertex 0, which represents the rest of the world, from the
perspective of L (or R). The incident edges at O represent the interface between L and the rest of
the graph it occurs in. The context graph C' also has a distinguished vertex, the dual boundary
0 which represents its interface. In our formalism, the graph B in the middle exists only to say
that these interfaces must be compatible.

Definition 3.2. A boundary graph is a graph with exactly two vertices, & and 0 (called
respectively the boundary and dual boundary vertices), where s(e) # t(e) for all its edges e, and
there are no circles.

Definition 3.3. A partitioning span is a span L L Besco in G, where B is a boundary graph,
the vertex component [y is defined on 9 and undefined on 9 and, dually, cy is undefined on 9
and defined on 0. Further, we require [ and ¢ to be embeddings.



M. Altenmiiller & R. Duncan 9

An example of a partitioning span and its pushout in G is depicted in Figure 2. The name
partitioning span arises from the fact that each of the maps out of the boundary graph replaces
one half of it. Hence each graph has two regions, connected via the edges present in the boundary

L, & @ -
bk ;
2 &P é%; =

Figure 2: Pushout of the partitioning span from Figure 1, drawn two different ways

Lemma 3.4. Let L <~ B -5 C be a partitioning span and suppose that e = lg(e1) =lg(e2) in
L for distinct e1 and es in Ep. Then e is a self-loop at J in L and for all other e3 # e1 # ea we
have e # lp(e3). The same holds mutatis mutandis for C.

Proof. By flag bijectivity all the flags at @ must be preserved, including distinct flags for (g (e1)
and Ig(ez). By hypothesis these two edges are identified so necessarily sp(e1) =0 and sp(ez) =0
or vice versa. Hence e is a self loop. Suppose further that [g(es) = e; then [ is not flag bijective,
which is a contradiction. O

Theorem 3.5. In G, pushouts of partitioning spans exist. Further, the maps into the pushout
are embeddings.

Proof. See Appendix A. O

Since pushouts of partitioning spans are the basis of the rewrite theory we wish to pursue, for
the rest of the paper the term “pushout” should be understood to imply “of partitioning span”.

Implicit in the proof of Theorem 3.5 there is a structure which will be important later, when
understanding when the edges in the boundary graph will be identified in a pushout.

Lemma 3.6. Let G be the pushout of L < B - C then the preimage of any arc in Ag defines
a (possibly empty) path in B.

Proof. Consider an arc e € Ag and e; € (mgolg)~'(e) (if there is no such e; we're done — the
path is empty.) Wlog say that sp(e1) = 0 and tp(e;) = 9. Look at the image of e; in Lj if
(spolg)(e1) # O then this is the first edge of the path; otherwise [g(e1) is a self loop in L, so (cf
Lemma 3.4) there exists es € Eg such that [gp(e1) =Ig(e2) and sp(e2) = 0. Add es to beginning



10

of the path. Now look at the image of e5 in C' and perform the same procedure. We continue
in this way, alternating sides of the span until we either reach the start of the path (in which
case e € F¢) or we reach e; again (in which case e € O¢g). Having found the start of the path we
repeat the trick with the target map to find the end. O

Another way to view this is a pairing graph P where the vertices are the edges of B, and the
edges are the self loops of L and C.

Definition 3.7. The pairing graph for a partitioning span L < B -5 C is a directed graph
whose vertices are Ep; each vertex receives a polarity: + if sp(e) = 9, — if sp(e) = 0. We draw
a blue edge between e; and ey if Ig(e;) =1g(e2) i.e. if e; and e form self-loop in L; similarly we
draw a red edge between e; and es if they form a self-loop in C. Blue edges are directed from
positive to negative polarity; red edges the reverse. (Note that if two edges form a self-loop they
must have opposite polarity.)

;’% =
&G

Figure 3: An examples of a partitioning span with its pairing graph

Corollary 3.8. Let P be the pairing graph of L L BS C, and let G be its pushout.
e FEach connected component of P determines an edge-disjoint path on B.
e Ife and €' are in the same connected component of G then (mgolg)(e) = (mprolg)(e).

We now move on to the other required ingredient for DPO rewriting: pushout complements.
Just as we did with partitioning spans and pushouts, we will introduce a specific kind of embedding
for which the complement must exist.

Definition 3.9. A boundary embedding is a pair of maps B L L™ G in G, where B is a
boundary graph, where : (i) ly/(9) is defined but ly(9) is undefined; and (ii) (my oly)(9) is
undefined. Further, L has to be a connected graph, and m an embedding.

Definition 3.10. Given a boundary embedding B L™ @ we can immediately construct
half a pairing graph P, consisting of only the blue edges using the mapping [ : B — L. The
re-pairing problem is to construct the other half (the red edges) so that the connected components
map to the edges of G (cf. Corollary 3.8). See Figure 5 for examples.



M. Altenmiiller & R. Duncan 11

é’_
K

Figure 5: Two different examples of the re-pairing problem, connecting one component in the
pushout.

Lemma 3.11. Given a boundary embedding B L L™ G a solution to the re-pairing problem
always exists, but it is not necessarily unique.

Proof. See Appendix A. O

Example 3.12. Consider the following boundary embedding:
) L SN @
b
'f—b 3
This embedding has two different solutions to the re-pairing problem:

2 9

Theorem 3.13. In G, pushout complements of boundary embeddings exist, and give rise to
partitioning spans.



12

Proof. We’ll use the boundary embedding B Ly L ™ @ to construct the complement C' such

that L <~ B -% Cis a partitioning span, and show that G is indeed the pushout of this span.
Let C have vertex set Vo = (Vg \ V) +{09}. We'll construct the edge set, and the source and
target maps, in three steps.

1. Let E¢ contain all the edges of the induced subgraph of GG defined by the vertices Vi, and
define the source and target maps on those edges correspondingly.

2. Let O¢ contain Og \ mg'(Og).

3. Finally we add the edges between 0 and the rest of the graph, and simultaneously define the

map c¢: B — C. Let P be a solution to the re-pairing problem given by B LIL™G Ifin
P there is a red edge between e; and ey in create a self-loop e at 9 and set c(e1) = c(eg) = e.
If there is any vertex e in P which has no incident red edge, add e to E¢; if its polarity is
positive set

sc(e) = (sgompolp)(e) to(e)=0
and if the polarity is negative, the source and target are reversed. We define cg(e) = e.

The resulting span L L B-SCis evidently partitioning, and by construction has G as its
pushout, as a consequence of Corollary 3.8 O

Theorem 3.14. In G, pushout complements are unique up to the solution of the re-pairing
problem.

Proof. Suppose that both B -% C 2, Gand BS 0L G are pushout complements for the

boundary embedding B Ly L ™ @. Observe that given the boundary embedding, a solution to
the re-pairing problem determines the map c¢: B — C and vice versa. Let’s assume for now a
that im(c) = im(c’) and hence they both correspond to the same pairing graph.

Since m is an embedding, it follows that every part of C not in im(c) is preserved isomorphically
in G, and similarly for C’. Since we have assumed im(c) =im(c’) this implies that C' ~ C".

Further, observe that different solution of the re-pairing also have the same number of edges,
and hence produce the same number of self loops at 0. Hence the difference between different
solutions is just the labels on the edges incident at 0. O

4 A Category of Rotation Systems

Despite some suggestive illustrations, up to this point we have operated in a purely combinatorial
setting, but now we introduce some topological information in the form of rotation systems. A
rotation system for a graph determines an embedding of the graph into a surface by fixing a
cyclic order of the incident edges, or more precisely the flags, at every vertex.

We augment our category of graphs with this extra structure, in the form of cyclic lists of
flags for each vertex, and strengthen the property of flag surjectivity (Equation 3). The requisite
categorical properties for DPO rewriting will follow more or less immediately from those of the
underlying category of directed graphs.

Definition 4.1. Let ClList : Set — Set be the functor where CList X is the set of circular lists
whose elements are drawn from X.



M. Altenmiiller & R. Duncan 13

Definition 4.2. A rotation system R for a graph with circles (V,E,O,s,t) is a total function
inc: V — CList E such that :

e ccinc(s(e))
e ccinc(t(e))
o t~1(v)+s71(v) Zinc(v) (when considering inc(v) as a set)
We call inc(v) the rotation at v.
Note that inc(v) is actually a cyclic ordering on the set of flags at v.

Definition 4.3. A homomorphism of rotation systems f: R — R’ is a G-morphism (fa4, fv)
between the underlying graphs, satisfying the following additional condition.

v vy

incl > linc’ (4)

. . ,
CListE m CListE

This condition requires the preservation of the edges ordering on vertices where fy is defined;
it implies flag surjectivity (Equation 3). Morphisms therefore either preserve a vertex with its
rotation exactly, or forget about it.

Definition 4.4. Let R be the category whose objects are tuples (V, E, O, s,t,inc) where (V, E, O, s,t)
is an object of the category of graphs, G (see Def. 2.10) and inc is a rotation system for this
graph. The morphisms of R are homomorphisms of rotation systems.

There is an evident forgetful functor U’ : R — G; this is especially clean since the morphisms of
R are just G-morphisms which satisfy an additional condition. Further, since we demand require
the inc structure to be preserved exactly, pushouts and complements are very easily defined here.

Definition 4.5. In R, objects B, spans L <- B -% C and composites B - L ™ G are respec-
tively boundary graphs, partitioning spans, and boundary embeddings if their underlying graphs
in G satisfy those definitions (respectively Definitions 3.2, 3.3, and 3.9).

Lemma 4.6. In R pushouts of partitioning spans exist.

Proof. The pushout candidate is the one in the underlying category (see Theorem 3.5), together
with the rotation system:

. _J ince(v), ifveVe
|ncG(v)—{ inc(v), ifveVy

The vertex set of the pushout is the disjoint union of vertices from both input graphs, Vg =
(VL +Ve) \ Vg. Therefore, by the mediating map from Theorem 3.5, inc is indeed the pushout
of the rotations. O

Lemma 4.7. In R pushout complements of boundary embeddings exist, and are unique up to
the solution of the re-pairing problem.

Proof. This follows from the underlying construction in G; see Theorem 3.14. Note that the
rotation for every vertex of C' is determined by either those of G or of B, so there is no choice
about the additional structure. O



14

Remark 4.8. We must sound a cautionary note about the “up to” in the preceding statement.
While in G pushout complements that arise from different pairing graphs are essentially the
same, this is not so in R. Since the rotation around 9 is preserved exactly by ¢: B — C, different
choices for which edges to merge as self loops will result in different local topology at 9. In
particular it can happen that a re-pairing problem can have planar and non-planar solutions; see
Figure 6 for an example.

Figure 6: Topologically different solutions (in red) of the same re-pairing problem (in blue).

With that caveat noted, since R has pushouts and their complements, specialised to the
setting where the rewrite rules explicitly encode the connectivity at their boundary, we can use
it as a setting for DPO rewriting of surface embedded graphs.

Remark 4.9. As illustrated in Figure 6, we require the pairing graph to conform to a certain
shape when reasoning topologically: vertices have to be ordered according to the edges in the
boundary graph, with red edges being drawn to one side of the vertices and blue edges to the
other. Though a restriction, this regulation admits encoding of surface information in the pairing
graph.

5 On Planarity

The way we construct the category of graphs makes adding rotation information to vertices
convenient. Because rotation systems determine graph embeddings, this adds topological
information to a graph, and considers its embeddings only. When working with embedded
graphs on a specific type of surface, one may be interested in a surface invariant: applying a
rewrite rule to a graph embedded on a specific surface should result in a graph embeddable
into the same surface again. Encoding embedding information in our setting is possible, but
preservation of topological properties may require some additional restrictions. As an example,
consider the case of plane graphs, i.e. graphs embedded into the surface of the sphere (or,
equivalently, the plane). A rewrite theory would ideally be able to provide rewrites which are
guaranteed to result in a plane graph again. Consider a rewrite rule:

9 9

This is a legitimate rewrite rule for plane graphs, and expanding it into a span for the top of a
double pushout diagram makes sense.



M. Altenmiiller & R. Duncan 15
€ (a e, fa
B, < —
Sy Sy
[ Vv

el3 e|3
O« & - H
e e

¥ Lo

g
€y

N

In this example we match the left hand side of the rule to the graph with one edge and no
vertices, and compute the complement and the result of substituting the right hand side into the
context graph.

When computing the pushout complement of this boundary embedding, we notice that there
is only one solution to the re-pairing problem, and that this solution is not plane. In a setting
where all embeddings are plane this is an unwanted case. The non-plane structure of the pushout
complement graph provides some very useful information though: the circle at the bottom left is
seemingly plane, but with the flags in L fixed, there is no way this circle can be drawn on the
plane without edges crossing.

3

Because rotation systems are orderings of edges around vertices, they do not store information
about the embedding of circles, because they are not attached to any vertex. But by observing
the structure of the solution to the re-pairing problem, we are able to distinguish plane and
non-plane embeddings of circles. Such rewrites should not allowed in a planar setting, and hence
will have to be prohibited. This can either be done by restricting the format of rewrite rules, or
allow rejection of a rewrite if the pushout complement shows that topological properties are not
preserved.



16

References

[1]

S

Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski & Fabio Zanasi (2016): Rewriting
modulo symmetric monoidal structure. In: LiCS’16 Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 707-719, doi:10.1145/2933575.2935316.

Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski & Fabio Zanasi (2017): Confluence
of Graph Rewriting with Interfaces. In: ESOP’17.

Bob Coecke, Ross Duncan, Aleks Kissinger & Quanlong Wang (2015): Generalised Compositional
Theories and Diagrammatic Reasoning. In G. Chirabella & R. Spekkens, editors: Quantum Theory:
Informational Foundations and Foils, Springer, doi:10.1007/978-94-017-7303-4__10.

Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons & Seyon Sivara-
jah (2019): On the qubit routing problem. In Wim van Dam & Laura Mancinska, editors: 14th Confer-
ence on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Leibniz
International Proceedings in Informatics (LIPIcs) 135, pp. 5:1-5:32, do0i:10.4230/LIPIcs. TQC.2019.5.
Available at http://drops.dagstuhl.de/opus/volltexte/2019/10397.

Lucas Dixon & Ross Duncan (2009): Graphical Reasoning in Compact Closed Categories for Quantum
Computation. Annals of Mathematics and Artificial Intelligence 56(1), pp. 23-42, doi:10.1007/s10472-
009-9141-x.

Lucas Dixon, Ross Duncan & Aleks Kissinger (2010): Open Graphs and Computational Reasoning.
In: Proceedings DCM 2010, Electronic Proceedings in Theoretical Computer Science 26, pp. 169-180,
doi:10.4204/EPTCS.26.16.

Lucas Dixon & Aleks Kissinger (2013): Open Graphs and Monoidal Theories. Math. Structures in
Comp. Sci. 23(2), pp. 308-359, doi:10.1017/50960129512000138.

J. R. Edmonds (1960): A combinatorial representation for polyhedral surfaces. Notices of the American
Mathematical Society 7(A646).

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science, Springer Berlin Heidelberg,
doi:10.1007/3-540-31188-2.

Jonathan L. Gross & Thomas W. Tucker (2001): Topological Graph Theory. Dover.

Lothar Heffter (1891): Uber das Problem der Nachbargebiete. Mathematische Annalen 38(4), pp.
477-508, doi:10.1007/BF01203357.

A. Joyal & R. Street (1991): The Geometry of Tensor Categories I. Advances in Mathematics 88, pp.
55-113.

G.M. Kelly & M.L. Laplaza (1980): Coherence for Compact Closed Categories. Journal of Pure and
Applied Algebra 19, pp. 193-213, doi:10.1016,/0022-4049(80)90101-2.

Aleks Kissinger & Vladimir Zamdzhiev (2015): FEquational Reasoning with Context-Free Families
of String Diagrams. In Francesco Parisi-Presicce & Bernhard Westfechtel, editors: Graph Transfor-
mation, Lecture Notes in Computer Science 9151, Springer International Publishing, pp. 138-154,
doi:10.1007/978-3-319-21145-9_ 9. Available at http://dx.doi.org/10.1007/978-3-319-21145-9_
9.

S. Lack & P. Sobocinski (2003): Adhesive categories. Technical Report BRICS RS-03-31, BRICS,
Department of Computer Science, University of Aarhus.

Stephen Lack & Pawel Sobocinski (2005): Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications 39(3), pp. 511 — 545, doi:10.1051/ita:2005028.

Peter Selinger (2011): A survey of graphical languages for monoidal categories. In Bob Coecke, editor:
New structures for physics, Lecture Notes in Physics 813, Springer, pp. 289-355, doi:10.1007/978-3-
642-12821-9_ 4.


http://dx.doi.org/10.1145/2933575.2935316
http://dx.doi.org/10.1007/978-94-017-7303-4_10
http://dx.doi.org/10.4230/LIPIcs.TQC.2019.5
http://drops.dagstuhl.de/opus/volltexte/2019/10397
http://dx.doi.org/10.1007/s10472-009-9141-x
http://dx.doi.org/10.1007/s10472-009-9141-x
http://dx.doi.org/10.4204/EPTCS.26.16
http://dx.doi.org/10.1017/S0960129512000138
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/BF01203357
http://dx.doi.org/10.1016/0022-4049(80)90101-2
http://dx.doi.org/10.1007/978-3-319-21145-9_9
http://dx.doi.org/10.1007/978-3-319-21145-9_9
http://dx.doi.org/10.1007/978-3-319-21145-9_9
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4

M. Altenmiiller & R. Duncan 17

A  Proofs

From Section 2
Lemma 2.8 Let f:G — H and g: H — J be flag bijections; then go f is a flag bijection.

Proof. For flag injectivity, we assume injectivity of the flag maps induced by f and g. If fy is
undefined, so is the flag map. Consider flags (e,v) and (¢/,v") where (fg x fy/) is defined, v = s(e),
v' = s(e’), and assume gp(fr(e,v)) = gr(fr(e’,v")). Because f is a flag surjection and defined on
the given flags, Equation 3 holds strictly on v and v'. Therefore we get: fr(e) = sy (fy(v)) and
fe(e")=sg(fy(v')). This lets us apply flag injectivity of g to get fr(e,v) = fr(e/,v’), and flag
injectivity of f to reach (e,v) = (¢/,v’). The argument applies equally to the target map.

For flag surjectivity we assume lax commutation of Equation 3 for f and g and show that
the composite diagram also commutes laxly.

Vir gv v, Ve fv Vir gv v

R

P(Ec) 5o P(En) 5~ P(E;)  P(Ec) i P(Eg) —— P(EJ)

P(gg) P(gE)
In the case of either fiy or gy being undefined, the composite (gy o fy) is also undefined and
the diagram commutes laxly immediately. If both fy, and gy are defined, both their diagrams
commute strictly, and by diagram gluing, their composite does as well. O

Lemma 2.11 Defining composition point-wise, the composite of two morphisms of graphs
with circles is again such a morphism. Additionally, if both morphisms are embeddings, their
composition is an embedding as well.

Proof. Let f:G — G’ and g: G’ — G” be two morphisms; then go f = ((gy/ o fv),(gar o fa));
since composition of partial functions is associative, we need only check that the four properties
of Definition 2.10 are preserved.

Conditions 1 and 4 follow from the properties of partial functions, and condition 6 (which
includes condition 3) follows from Lemma 2.8. Observe that

(9o f)o = lgro,90l°(for + fo)
= (9o o for) + (9o o fo)
= (9r0°0)+ (9o 0 fo)
=goo fo

hence (go f)o is injective since fo and go are, satisfying condition 5. Finally, by a similar
argument we have

(gof)eo =l9r0,90] 0 (fE+ fEO)
= (groo fE)+ (9oo fro)
= (Do fr)+(900°0)
=0

hence the remaining condition 2 is satisfied. O



18

From Section 3

Theorem 3.5 In G, pushouts of partitioning spans exist. Further, the maps into the pushout
are embeddings.

Proof. We explicitly construct the pushout graph G and show that it has the required universal
property in G. We first construct the underlying sets and functions by pushout in Pfn,

Vi <V 19,8} Ap 4 Ep
mvl 4 lcv mAl 1 \LCA (5)
Vo «5— Vo Ag 55— Ao

so explicitly we have

Va=Ve+VL)\ VB Ag = (AL+Ac)/~

where ~ is the least equivalence relation such that [g(e) = cg(e) for e € Ep. Next we define the
source map by

sp(e), if & =my(e) and sy (e) is defined and sy (e) #
sq(e') =1 scl(e), if ¢ =ga(e) and sc(e) is defined and sc(e) #
undefined otherwise.

)
5] (6)

for all ¢’ € Ag. The target map t¢ is defined similarly. (Strictly speaking we have defined s and
t on all of A; they will be restricted to £ when we have defined that.) Finally we divide the arcs
into edges and circles by setting

Eg ={e€ Ag: both sg(e) and tg(e) are defined } (7)
O¢ = Ac\ Eg (8)

Now we prove that G so defined is a valid graph.

We start by showing that s is well defined. Suppose that in L we have distinct ej, eo such
that ma(e1) =ma(e2) and s (e1) # 0. Since they are distinct in L and identified in G, we must
have distinct eq,e2 € B such that c4(e1) =ca(e2) in C. By Lemma 3.4 this gives a self-loop at
9 in C, which in turn implies that s r(e2) = 0. Hence L provides at most one candidate source
vertex for every edge in G, and a similar argument can be made for C.

Now suppose m4(e1) = ga(ez), and that sz(e;) # 0 and sc(es) # 0. Since the edges are
identified in G they are both present in B. Since sz (e1) # 0 we have sg(e;) = 0, from which
sc(er) = 9. Since sc(e2) # 0, e1 and ey are distinct in C. Therefore we must have e; and ey
identified in L; therefore, by Lemma 3.4, e; must be a self-loop at 0 which contradicts our
original assumption. Therefore there is at most one candidate source vertex and the map sg is
well defined in (6). The same argument applies to the target map tg.

Next we show that every arc is either an edge (with two ends) or a circle (with none). Suppose,
wlog, that for some edge e € Ag we have sg(e) = my(v); we want to show that t¢(e) is also
defined. If ¢y (e) # O then this is candidate, and by the preceding argument, the only one; hence
tg(e) is defined. Otherwise, t1,(e) = 0, which implies that e € Ep, and its image in C either
has tc(cg(e)) # 0 — in which case we are done — or it is a self loop. If it is a self loop we have
another edge €’ in B such that cp(e) = cp(€’); we can repeat this analysis with the image of €’ in



M. Altenmiiller & R. Duncan 19

L. Since the number of edges in B is finite this will eventually produce a candidate. Hence s¢(e)
is defined if and only if t¢(e) is defined. Therefore the division of Ag into edges and circles is
correct and G is indeed a valid graph.

Next we show that the map m is an embedding in G. Note that Properties 4 and 1 are
automatic from the underlying pushouts in Pfn. Since the graph B has no circles, the mgp
component is injective by construction (Property 5) and since no arc gets a source or target in G
unless its preimage had one, the component mog is empty as required (Property 2). Finally
we have to show that the induced map (my,mg) is a flag bijection. First note that if mg(e) is
undefined then e is necessarily a self-loop at 0, and my (9) is always undefined, so the squares (2)
commute. Otherwise if (fy osy)(e) is defined then the square commutes directly by the definition
of sg above, and similarly for tg. Finally for all v # 0 € Vg, we have that my (v) is defined.
By the definition of s¢ and tg, e is a flag at v if and only if mg(e) is a flag at my (v). Flag
injectivity and flag surjectivity follow immediately. Hence m is an embedding in G. A symmetric
argument will do the same for g.

Finally we must show that the cospan L ™% G & C has the required universal property.

Since the underlying sets and functions are constructed via pushout the required mediating map
f=(fv,fa) exists; we need to show that it is a morphism of G. Property 1 follows from m’
and ¢’ satisfying it as well. For the fog to be empty (Property 2), use the fact that my,; and
gop are empty for circles in L and C', because they are morphisms in G. The remaining case
for a circle to appear in G is as the pushout of some edges in B being identified in one instance
of the re-pairing problem. In this case, because the outer square has to commute for the edge
component, these edges have to be identified, and hence form a circle, in G’, too. This makes fog
empty. For flag surjectivity between the underlying graphs (Property 3), observe that the vertex
set Vi is the disjoint union of vertex sets V;, and V. Because m’ and ¢’ are valid morphisms in
g, they are flag surjective, and therefore so is f. O

Lemma 3.11 Given a boundary embedding B Ly L ™ @ a solution to the re-pairing problem
always exists, but it is not necessarily unique.

Proof. Note that any half-pairing graph has connected components of at most two vertices, linked
by a (blue) edge from a positive vertex to a negative one. Define the component of an arc by

k(a) = (maols) " (a) for all a € Ag

Note that this defines a partition of the set Ep ~ 37,4 k(a), and each (non-empty) k(a)
determines a connected component of the solution to the re-pairing problem. We’ll abuse
notation and use k(a) to also denote the subgraph of the half-pairing graph whose vertices are
k(a). There are two cases depending whether « is a circle or an edge.



20

1. Suppose a € Og; we form a closed loop involving all e € k(a), by adding red edges as follows.
Pick a degree-one positive vertex p follow the incident blue edge to the negative vertex n;
now pick another a degree-one positive vertex p’ which is not connected to n. Add a red
edge from n to p’. Repeat the process starting from p’. When no more vertices remain,
close the loop by adding a red edge from the final negative vertex back to p. Since a is a
circle, k(a) necessarily contains an even number of vertices, so closing the loop is always
possible.

2. The case when a is an edge is slightly more complex because edges have end points; k(a)

may contain zero, one, or two degree-zero vertices depending how many of its end points
are defined by vertices in L. We will connect the vertices as previously, but in a line, rather
than a loop. Since we can only add red edges, and only one at each vertex, the degree-zero
vertices will necessarily be the end points of this line.

O



M. Altenmiiller & R. Duncan 21

B Examples

This collection captures some of the corner cases we do or do not want to allow as morphisms in
the category of graphs with circles as described in Definition 2.10.

e —e
& e ee ¢
/4
D0 = O
Vl Ny V;.H\/ N

Figure 7: A flag surjective, but not flag bijective map. This is a valid of G.

3 \
e N e\—e N
e, e
— e
N ey v

Figure 8: An example of a flag surjective but not flag bijective morphism of G.

e N e \—~e e

e, e .
(O
N QL

N

Figure 9: An example of an embedding (hence a flag bijective morphism) in G.

e c
AY Y
Figure 10: This map is not flag surjective and therefore not a valid morphism in G.

e <

O — L0

N

Figure 11: This example is not a valid morphism in G because it does not respect Condition 2.



	Introduction
	A Suitable Category of Graphs
	DPO Rewriting in the Suitable Category
	A Category of Rotation Systems
	On Planarity
	Proofs
	Examples

