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Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have
been developed almost exclusively in the context of Lawvere metric spaces. We construct a meaning-
ful notion of magnitude for flow graphs based on the observation that topological entropy provides a
suitable map into the max-plus semiring, and we outline its utility. Subsequently, we identify a sepa-
rate point of contact between magnitude and topological entropy in digraphs that yields an analogue
of volume entropy for geodesic flows. Finally, we sketch the utility of this construction for feature
engineering in downstream applications with generic digraphs.

1 Introduction

Let M = (M,⊗,1) be a monoidal category (for background, see [26, 10]) and C a (small) M-category,
i.e., a (small) category enriched over M. Recall that this means that C is specified by a set Ob(C);
hom-objects C( j,k) ∈M for all j,k ∈ Ob(C); identity morphisms 1→ C( j, j) for all j ∈ Ob(C); and
composition morphisms C( j,k)⊗C(k, `)→ C( j, `) for all j,k, ` ∈ Ob(C); moreover, these hom-objects
and morphisms are required to satisfy associativity and unitality properties [19, 10].

The theory of magnitude [24, 23] incorporates a M-category C and a semiring S via a “size” map
σ : Ob(M)→ S that is constant on isomorphism classes and that satisfies σ(1)= 1 and σ(X⊗Y )=σ(X) ·
σ(Y ), where the semiring unit and multiplication are indicated on the right-hand sides. If n := |Ob(C)|<
∞ then its similarity matrix Z ∈M(n,S) has entries Z jk :=σ(C( j,k)). Introducing the (common) notation

( f [X ]) jk := f (X jk)

as a shorthand where X is a matrix over the semiring S and f is a function on S, we have Z := σ [C].
A weighting is a column vector w satisfying Zw = 1, where the semiring matrix multiplication and

column vector of ones are indicated. A coweighting is the transpose of a weighting for ZT . If Z has a
weighting and a coweighting, its magnitude is the sum of the components of either one of these: a line
of algebra shows these sums necessarily coincide.

The notion of magnitude has been the subject of increasing attention over the past 15 years, and
over the last year or so applications have begun to emerge based on boundary-detecting properties of
(co)weightings in the setting of metric spaces [2, 16], which is virtually the only case that has been
explored to date. 1 This setting emerges from the choice M = (([0,∞],≥),+,0), which with only a very
mild continuity assumption requires σ(x) = exp(−tx) for some constant t; varying this constant leads
to the notion of a magnitude function. The corresponding enriched categories are precisely the Lawvere
metric spaces, also known as extended quasipseudometric spaces since they generalize metric spaces
by allowing distances that are infinite (extended), asymmetric (quasi-), or zero (pseudo-). In §2 we will

1The only exception of which we are aware is [6], which details a nontrivial example of magnitude for a certain Vect-
category; see also Example 6.4.5 of [23].
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2 Magnitude and topological entropy of digraphs

show that seemingly adjacent monoidal structures on ([0,∞],≥) in fact lead to the same construction, so
to move away from the generalized metric space setting at all, it is necessary to move quite far indeed.

However, there are other interesting monoidal categories that yield applicable instantiations of mag-
nitude, though §2 shows that these must necessarily give rise to something quite different from metric
spaces. In §3, we introduce such a construction via a monoidal category Flow of flow graphs that in-
forms the analysis of computer programs (and also, e.g., business processes), encompassing constructs
that represent the transfer of control and data [7, 31] as in Figure 1. This category has two monoidal
products that model “series” and “conditional” (versus “parallel” per se) execution of programs as well
as the structure of an operad in Set [15] that dovetails with a hierarchical representation of input/output
structure [17].

For each generic flow graph D, there is a Flow-category described in Lemma 1. The topological
entropy of hom-objects in this category provides a suitable map σ into the max-plus semiring, and the
resulting weighting (resp., coweighting) indicate sub-flow graphs of maximal entropy in the “forward
direction” (resp., “reverse direction”). These constructions are attractive from the point of view of feature
engineering for graph matching [9] and machine learning problems involving flow graphs.

Meanwhile, once we consider interactions between magnitude and topological entropy in the setting
of digraphs, another point of contact is readily discernible, and we discuss it in §4. The magnitude
function of a ball in the universal cover of a strong loopless digraph is closely related to the topological
entropy of the digraph. In §5 we provide evidence of the utility for feature engineering based on this
observation in problems involving generic digraphs.

2 Rigidity of similarity matrix arithmetic

Here we show that there is even less choice in how the theory of magnitude can be applied to metric
spaces and their ilk than §2.3 of [24] suggests, wherein the usual addition operation on ([0,∞],≥) is
chosen for the monoidal structure. This rigidity illustrates that meaningful notions of magnitude outside
its usual arena are likely to involve very different monoidal structures and/or categories.
Proposition 1. Let f be a strictly increasing bijection from [0,∞] to a subset of [−∞,∞] containing 0.
Then x⊗ y := f−1( f (x)+ f (y)) gives rise to a strict symmetric monoidal structure on ([0,∞],≥) with
monoidal (additive) unit f−1(0).

A category C enriched over the strict symmetric monoidal category above has, for every j,k∈Ob(C),
some η jk := C( j,k) ∈ [0,∞] such that η j j = f−1(0) and η jk⊗ηk` ≥ η j`. That is, we have the triangle
inequality f (η jk)+ f (ηk`) ≥ f (η j`). Let us therefore assume f [η ] = d, and furthermore stipulate that
we want our similarity matrix Z to take values in the semiring R with the usual structure, as opposed to
some more exotic choice. Then we require a function σ : [0,∞]→ R such that σ(x⊗ y) = σ(x) ·σ(y)
in order to define Z := σ [η ]. If we require continuity, then this generalized Cauchy equation has the
unique family of solutions σ(x) = exp(−τ f (x)) for τ ∈R. Now Z = σ [η ] = σ [ f−1[d]] = exp[−τd], just
as usual: i.e., this attempted generalization actually has no material effect.

What about a more exotic semiring structure on R? The proposition above has a close analogue:
Proposition 2. Let g be a strictly increasing function from [−∞,∞] to itself, and taking on the value 0
(and also 1 for the final part of the statement). Then x⊕ y := g−1(g(x)+g(y)) gives rise to a strict sym-
metric monoidal structure on ([−∞,∞],≥) with monoidal (additive) unit g−1(0). Moreover, additionally
taking x� y := g−1(g(x) ·g(y)) gives a semiring with multiplicative unit g−1(1). 2

2We thank S. Tringali for this observation. If g(x) := sgn(x) · |x|p for p > 0, we get the semiring ([−∞,∞],⊕,0, ·,1). If
g(x) := exp(−τx) for τ < 0, then we get the semiring ([−∞,∞],⊕,−∞,+,0).
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Now the equation for a weighting is
⊕

k(Z jk�wk) = g−1(1), which unpacks to the matrix equation
g[Z]g[w] = 1 in ordinary arithmetic. Recalling that Z = σ [η ] and f [η ] = d, we have Z = σ [ f−1[d]].
Meanwhile, we have the generalized Cauchy equation σ(x⊗ y) = σ(x)�σ(y), which unpacks to

σ( f−1( f (x)+ f (y))) = g−1(g(σ(x)) ·g(σ(y))). (1)

Defining h := g ◦ σ ◦ f−1, this becomes h( f (x) + f (y)) = h( f (x)) · h( f (y)), i.e., h satisfies the usual
Cauchy equation; assuming continuity, we have h[d] = exp[−τd]. Since g[Z] = h[d], the weighting
equation is h[d]g[w] = 1, which apart from the transformation of w is the same as in ordinary arithmetic.

In short, it appears to be at least difficult–perhaps impossible–to get substantially different arithmetic
of similarity matrices than the “default” while still working over the extended real numbers, regardless of
which underlying arithmetic we use. The thin silver lining is that we can legitimately apply a very broad
class of componentwise transformations to a (co)weighting and still interpret the result as a (co)weighting
also, albeit with respect to a different underlying semiring structure.

Nevertheless, the notion of magnitude still affords useful application to quite different monoidal
categories; in the sequel, we give an example.

3 Max-plus magnitude for flow graphs

Throughout this paper, by digraph we mean the usual notion in combinatorics. In particular, we do not
allow multiple edges between vertices (i.e., a quiver is generally not a digraph per se). See footnote 3.

Consider the specific notion of flow graph discussed in [15], viz. a digraph D with exactly one source
and exactly one target, such that there is a unique (entry) edge from the source and a unique (exit) edge
to the target, and such that identifying the source of the entry edge with the target of the exit edge yields
a strong digraph (i.e., a digraph in which every two vertices are connected by some path). An example is
the digraph in the right panel of Figure 1.

Let Flow be the full subcategory of reflexive digraphs 3 whose objects are (combinatorially realized
as) flow graphs. It turns out that there are both “series” and “parallel” tensor products on Flow, as well
as the structure of an operad in Set which has a conceptually and algorithmically attractive instantiation.
We are presently interested in the “series” tensor product, denoted �. The idea of � is just to identify
the exit edge of its first argument with the entry edge of its second argument (so unlike the “parallel”
tensor product, this does not give rise to a symmetric monoidal structure). It turns out that this yields
(the monoidal base of) an enriched category, viz. the Flow-category SubFlowD of sub-flow graphs of a
flow graph D (these correspond to subroutines in the context of program control flow).

Lemma 1. [15] For a flow graph D, we can form a category SubFlowD enriched over Flow as follows:

• Ob(SubFlowD) := E(D) (i.e., the objects of SubFlowD are the edges of the digraph D); 4

3 An object in the category Dgph of reflexive digraphs is G = (U,α,ω), where U is a set and α,ω : U→U are head and tail
functions that satisfy α ◦ω = ω and ω ◦α = α . For G′ = (U ′,α ′,ω ′), a morphism f ∈ Dgph(G,G′) is a function f : U →U ′

such that f ◦α = α ′ ◦ f and f ◦ω = ω ′ ◦ f . The vertices of G = (U,α,ω) are the (mutual) image V ≡ V (G) of α and ω; the
loops are the set L≡ L(G) := {u ∈U : α(u) = ω(u)} (so that V ⊆ L), and the edges are the set E ≡ E(G) :=U\L. We recover
the usual notion of a digraph by considering α ×ω and its appropriate restrictions on U2, L2, and E2: e.g., we can abusively
write E = (α ×ω)(E2), where the LHS and RHS respectively refer to usual and reflexive notions of digraph edges. Thus a
morphism f : U →U ′ restricts to f |V : V → V ′, f |L : L→ L′, and f |E : E →U ′. Since morphisms are only partially specified
by their actions on vertices, defining Flow as a full subcategory of Dgph is essentially a convention about vertex identification.

4Loops and reflexive self-edges are not included here, though the former may be accommodated without substantial changes.
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1 START

2 repeat

3 repeat

4 repeat

5 if b goto 7

6 if b

7 repeat

8 S

9 until b

10 endif

11 until b

12 do while b

13 do while b

14 repeat

15 S

16 until b

17 enddo

18 enddo

19 until b

20 until b

21 HALT

  START:#1  repeat:#2  repeat:#3  repeat:#4  if b goto 7:#5  if b:#6
  repeat:#7  S:#8
  until b:#9  endif:#10  until b:#11  do while b:#12

  do while b:#13
  repeat:#14  S:#15
  until b:#16  enddo:#17

  enddo:#18

  until b:#19  until b:#20  HALT:#21

Figure 1: (L) A simple imperative program. S denotes a generic statement (or subroutine); b denotes a
generic Boolean predicate. (R) The corresponding control flow graph: branches are shaded black (resp.,
gray) if the corresponding b evaluates to > or ⊥.

• for es,et ∈ SubFlowD, the hom object SubFlowD(es,et) ∈ Flow is the (possibly empty) induced
sub-flow graph of D with entry edge es and exit edge et: we denote this by D〈es,et〉;

• the composition morphism is induced by �;

• the identity element is determined by the flow graph e with one edge.

A digraph D determines a (sub)shift of finite type, i.e., a dynamical system on the space of paths
in D with an evolution operator that simply shifts path indices. The corresponding topological entropy
h(D) := limN↑∞ N−1 logW (D,N) measures the growth of the number W (D,N) of paths in D of length N
[20]. A basic result in symbolic dynamics is that h(D) is given by the logarithm of the spectral radius of
the adjacency matrix of D. (If D is strong, the spectral radius is the Perron eigenvalue ≥ 1.)

Lemma 2. For D j ∈ Flow,

h(� jD j) = max
j

h(D j). (2)

Proof. To see the ≥ direction, consider paths that are confined to whichever D j has highest topological
entropy. For the ≤ direction, note that the number of paths that are not so confined cannot grow at a
faster rate.

Remark 1. In fact more is true: writing A(D) for the adjacency matrix of D, we have via standard
Perron-Frobenius theory that (as multisets)

spec A(� jD j) = {0}∪
⋃

j

spec A(D j).
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(The zero is due to the first column/last row [using the obvious indexing] of A(� jD j) being identically
zero.) Defining the zeta function ζD(t) := 1/det(I− tA(D)) [30], we furthermore have that

ζ� jD j = ∏
j

ζD j .

For examples, see Figures 2 and 3.
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Figure 2: Left: D1 �D2 for two flow graphs D1 and D2 on 10 vertices. Upper right: spectra specx ⊂ C
of the adjacency matrices A(Dx) for x = 1, x = 2, and x = 12 with D12 := D1 �D2. Lower right: zeta
functions ζ12 and ζ1 ·ζ2 with ζx ≡ ζDx .
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Figure 3: As in Figure 2, but for two flow graphs D1 and D2 on 20 vertices.

Recall that max furnishes a monoidal structure on the poset ([0,∞],≥) of extended nonnegative
real numbers, and that categories enriched over this are Lawvere ultrametric spaces [32]. Similarly,
([−∞,∞),≤,−∞,max) is a monoidal poset. This is sufficient data for us to define (following [24]) the
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e−

e(0,1)

e(1,1)

e(2,1)

e(0,2)

e(1,2)

e(2,2)

e(0,3)

e(1,3)
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Figure 4: Flow graph of the form D := ⊗K
k=1 �

Jk
j=1 D〈e( j−1,k),e( j,k)〉 for Jk ≡ 2 and K = 3. The large

nodes indicate nontrivial interiors of sub-flow graphs.

magnitude of SubFlowD over the max-plus or tropical semiring [14, 33]. 5

Unpacking the details, we have the similarity matrix

(Z�
D )st ≡ Z�

D (es,et) := h(D〈es,et〉). (3)

Now if there exist v, w satisfying the max-plus matrix (co)weighting equations

max
s

[vs +(Z�
D )st ] = 0 = max

t
[(Z�

D )st +wt ],

then the maxima of v and w coincide and also equal the magnitude of Z�
D . Such linear equations can

be solved via methods described in [14], and we simply report the result here: the unique “principal
solutions” (which may not be bona fide solutions in general) are v̂s :=−maxt(Z�

D )st ; ŵt :=−maxs(Z�
D )st .

We therefore obtain the following
Lemma 3. Z�

D , and hence SubFlowD, has well-defined magnitude z over the max-plus semiring iff

max
s

[−max
t
(Z�

D )st ] = z = max
t
[−max

s
(Z�

D )st ]. (4)

It is not obvious when such a z can exist. However, by Lemma 5 of [15], any nontrivial D〈es,et〉must
be of the form � jD〈e j−1,e j〉 where the D〈e j−1,e j〉 are minimal. Appealing to Lemma 2, we therefore
obtain the following
Theorem 1. Z�

D , and hence SubFlowD, has well-defined magnitude over the max-plus semiring.
Example 1. Consider a flow graph of the form D := ⊗K

k=1 �
Jk
j=1 D〈e( j−1,k),e( j,k)〉, where ⊗ denotes the

parallel tensor/composition on Flow described in [15]. For an example, see Figure 4. For convenience,
further assume that the program structure trees of D〈e( j−1,k),e( j,k)〉 are all trivial, i.e., there are no
nontrivial sub-flow graphs. Then (Z�

D )( j0,k),( j1,k) = max j0< j≤ j1 h(D〈e( j−1,k),e( j,k)〉), (Z�
D )−∞,∞ = h(D),

where ∓∞ indicate the entry and exit edges of D, and all other entries of Z�
D are trivial.

The nontrivial weighting components are therefore

w( j,k) =−max
j0< j

h(D〈e( j0,k),e( j,k)〉) =−max
j0< j

h(D〈e( j0,k),e( j0+1,k)〉),

5It is important to distinguish between the magnitude of SubFlowD as an enriched category and the magnitude of D as a
digraph with the usual (asymmetric) notion of distance. Here we are concerned only with the former.
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while the nontrivial coweighting components are

v( j,k) =−max
j1> j

h(D〈e( j,k),e( j1,k)〉) =−max
j1> j

h(D〈e( j1−1,k),e( j1,k)〉).

That is, the weighting and coweighting respectively encode the cumulative forward and reverse maxima
of the topological entropy along the K “backbones” �Jk

j=1D〈e( j−1,k),e( j,k)〉 of D. In particular, v( j∗−1,k) =
w( j∗,k) when j∗ = argmax j h(D〈e( j−1,k),e( j,k)〉).

Finally, it is evident that similar behavior to that detailed in Example 1 should occur for the case
where each D〈e( j−1,k),e( j,k)〉 is itself of the form⊗m�`D′〈e′(`−1,m),e

′
(`,m)〉, and so on. That is, (co)weightings

reliably encode salient features for “series-parallel” flow graphs. It seems likely that the same is true for
flow graphs that correspond to “structured” control flow, which can always be obtained from “unstruc-
tured” control flow [41] in the event that it makes any practical difference.

Operationally, the (co)weighting identifies regions of high topological entropy. 6 This echoes the
observations of [2] that (co)weightings pick out salient features of Euclidean point clouds (e.g., “strata”
of sampled psuedomanifolds). In turn, this suggests a strategy for “anchoring” graph matching methods
for related flow graphs (e.g., for different versions of the same program or business process). Namely,
iteratively coarsen suitably (re)structured flow graphs using the technique of [15], attempting to match
regions of high topological entropy at each stage of the process. Recalling Example 1, suppose that
D′ := ⊗K

k=1 �
Jk
j=1 D′〈e′( j−1,k),e

′
( j,k)〉 is somehow related to D. We can hope to leverage the respective

(co)weightings for graph matching between D and D′.

4 Magnitudes of balls in the universal cover of a digraph

For a finite strong digraph, a ball around any vertex (defined by, e.g. distance to or from that vertex)
eventually saturates. It is helpful to shift perspectives to the universal cover [8] to avoid this saturation
while using a notion of the size of these balls to characterize the digraph. 7 This perspective shift is
motivated by the context of a (compact connected) Riemannian manifold, for which the volume entropy
[27] is defined via limr↑∞ r−1 logvol(Bx(r)), where Bx(r) is the ball of radius r around a point x in the
universal cover of the manifold. It turns out that the volume entropy is independent of the point x. Also,
the volume entropy is bounded above by the topological entropy of the geodesic flow, with equality in
the case of nonpositive sectional curvature. Proposition 5 is a very close analogue of this result. 8

Returning to the context of digraphs, the universal cover of a digraph is a polytree, (i.e., an acyclic
digraph whose corresponding undirected graph is a tree) that “locally looks like the digraph everywhere.”
A telling advantage of this construction is that (at the cost of implicitly encoding structure) it renders the
calculation of magnitude functions trivial:

Lemma 4. Let F be a polyforest, i.e., an acyclic digraph whose corresponding undirected graph is a
forest. Then the magnitude function of F (i.e., the magnitude of exp[−td] where d is the usual Lawvere
metric on F) is |V (F)|− |E(F)|e−t . 9

Proof (sketch). The proof can be adapted almost wholesale from an analogous result for undirected trees
(or for that matter, forests) in §4 of [22]: apart from checking and slightly adjusting definitions, the

6NB. Both Z�
D and its (co)weighting are efficiently computable, as is any necessary preprocessing/restructuring of D.

7For the conventional notion of a universal cover in topology, see [13, 11].
8There is a kind of volume entropy for metric graphs [25, 21] (see also [18]), but we are unaware of a digraph analogue.
9Note that if F is a polytree, then |V (F)|= |E(F)|+1.
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key observation is that the magnitude function of a digraph with a single (directed) edge is 2− e−t (by
comparison, the magnitude function of a graph with a single edge is 2(1+ e−t)−1).

The universal cover UD := (VU ,EU) of a weak digraph D = (V,E) is a polytree defined as follows
[8]: pick v0 ∈V and set

VU := {(v0,v1, . . . ,vL) : (v j−1,v j) ∈ E;v j−1 6= v j}∪{(vL,vL−1, . . . ,v0) : (v j,v j−1) ∈ E;v j 6= v j−1}

where v j ∈V and e j ∈ E identically; and set

EU := {((v0,v1, . . . ,vL−1),(v0,v1, . . . ,vL)) : (vL−1,vL) ∈ E}
∪{((v0,v1, . . . ,vL),(v0,v1, . . . ,vL−1)) : (vL,vL−1) ∈ E}.

Example 2. Consider the digraph D in the left panel of Figure 5. Its universal cover has local structure
shown in the right panel of Figure 5, and the covering map is depicted in Figure 6 (which also shows a
larger local region of the universal cover).

1

2

3

(0)

(0,3,1)

(0,2,3,1)

(1,3,0)

(1,2,3,0)

(0,2)

(0,3,1,2)

(2,3,0) (0,3)

(0,2,3)

(0,3,1,3)

(3,0)

(3,1,3,0)

Figure 5: (L) A strong loopless digraph D with basepoint v0 = 1 highlighted in red. (R) The portion
of UD with vertices at distance ≤ 3 to or from v0. Vertices of UD are labeled by the corresponding
sequence of D-vertices, with 0 explicitly indicating the basepoint. The ball B0(3) is formed by taking the
arborescence of depth 3 rooted at 0, i.e., the right-hand part.

Figure 6: (Cf. Figure 5.) (L) The portion of UD with vertices at distance≤ 3 to or from v0 with covering
of D (at bottom) indicated. (R) The portion of UD with vertices at distance ≤ 10 to or from v0.

Proposition 3. Let γ ∈VU . Then there is either a unique path in UD from v0 to γ or vice versa.
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The number of paths from v0 of length L in UD equals the number of loopless paths from v0 of length
L in D. Define Bv0(L) to be the sub-polytree of UD (defined with basepoint v0) induced by its vertices at
(the usual notion of digraph) distance ≤ L from (versus to) v0. We can compute the magnitude function
of Bv0(L) very easily using the following proposition.

Proposition 4. If D is loopless, then Bv0(L) is an arboresence with |V (Bv0(L))|= ∑
L
`=0 ∑k(A`) jk, where

A is the adjacency matrix of D and j is the matrix index corresponding to v0.

Remark 2. By comparison, the Katz centrality is ∑
∞
`=1 α`

∑i(A`)i j, where α is restricted to ensure con-
vergence [12]. The Katz centrality of the graph with all edges reversed is therefore ∑

∞
`=1 α`

∑k(A`) jk.

Since an arborescence (or more generally a polytree) has one more vertex than it has edges, Lemma
4 yields that for D loopless, the magnitude function of Bv0(L) is

Mag(Bv0(L), t) = |V (Bv0(L))|− (|V (Bv0(L))|−1)e−t , (5)

and the most recent proposition gives an elementary algorithm for computing |V (Bv0(L))|. If D is loop-
less and strong, we have h(D) = h(UD) =: limL↑∞ L−1 log |V (Bv0(L))| independent of the basepoint v0.

Proposition 5. Let D be a strong loopless digraph and v0 ∈V (D). Then

lim
L↑∞

L−1 logMag(Bv0(L), t)≤ h(D) (6)

with equality at t = ∞, and the left hand side is independent of v0 for any t. Here Mag(·, t) denotes the
magnitude function of the first argument.

Example 3. Continuing Example 2, h(D)≈ 0.2812 is the logarithm of the so-called plastic number, i.e.,
the unique real solution of x3− x−1 = 0. Numerics suggest that |V (B1(L))| is given by [1]. Assuming
this to obtain values for large L, we show the convergence of L−1 logMag(Bv0(L), t) in Figure 7.

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

Figure 7: L−1 logMag(Bv0(L), t)→ h(D) for t > 0, but depends strongly on t even for fairly large L.

5 Example: correlated features for digraph matching

In this section we detail how log-magnitudes of small balls associated to the Lawvere metric structure on
a digraph are both interesting and useful from the perspective of feature engineering; for completeness
and comparison, we start by considering the ambient (co)weighting. In keeping with the general theme
of providing tools for graph matching, we focus on the import graph of the Flare software hierarchy,
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accessed from https://observablehq.com/@d3/hierarchical-edge-bundling/2 in November
2020 and depicted in Figure 8.

As an experiment, we considered N = 100 realizations of a pair of random subgraphs of the “ambi-
ent” digraph of Figure 8 obtained by removing edges with probability 3/4 and then retaining the largest
weak component. We then computed the (co)weightings at scale 0, the log-magnitudes of balls of ra-
dius ≤ 3 at scale t = 100 (which is virtually equivalent to t = ∞), and various common vertex centrality
measures. For each of these quantities and N realizations, we then computed the correlation coeffi-
cients on vertices shared by the pair of subgraphs. The results are shown in Figure 9, which shows that
the coweighting and log-magnitudes of balls in the universal cover of the digraph with edges reversed
are very strongly correlated. This suggests the utility of such features for graph comparison [38] and
matching [9]. 10

The strong correlations of log-magnitudes of balls are more robust than those of (co)weightings, as
an experiment along the same lines as above but using different realizations of an Erdős-Renyı́ digraph
(n = 100 vertices; edge probability q = 4/n) as the ambient digraph for each of N = 100 trials shows.
We formed two subgraphs by removing edges with probability 1/2, then retaining the largest weak
component. Figure 10 shows the results, which are qualitatively echoed for different parameters.

One theoretical advantage of using log-magnitudes of balls is that unlike (co)weightings, these are
nonnegative by construction. 11 12 This may be advantageous in the context of graph matching via
optimal transport techniques that require a sensible distribution on vertices. In particular, the recently
developed Gromov-Wasserstein distance [28, 29] is useful for analyzing weighted digraphs endowed with
measures [3] and has been applied to (mostly but not exclusively undirected) graph matching with state of
the art performance [36, 40, 39, 5, 4, 37]. For instance, although [39] did not consider digraphs, it used a
distribution proportional to (deg+a)b, where a and b are hyperparameters, and remarked that “the node
distributions have a huge influence on the stability and the performance of our learning algorithms.”
Meanwhile, this particular sort of distribution is rather similar to the log-magnitude of a unit ball for
a = 1 and b = 0. In short, we can plausibly expect to improve upon the approach of [39] in the context
of digraphs by using weightings rather than a more ad hoc distribution.
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Figure 8: Import graph of the Flare software hierarchy, displayed using the divided edge bundling
approach of [35]. Edge sources and targets are respectively colored red and blue; the hierarchy is depicted
along the figure periphery (and without any material loss of information from occlusions).
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Figure 9: Distribution of correlations for various centralities between two random subgraphs of the
digraph in Figure 8. * indicates a ball in the digraph with all edges reversed. As L increases, boundary
effects cause the log-magnitudes of balls in the universal cover to become (slightly) more correlated to
each other than the log-magnitudes of balls in the digraph itself. Note that the three best-performing
centralities are computing almost exactly the same thing.

Figure 10: Distribution of correlations for various centralities between two random subgraphs of distinct
Erdős-Renyı́ digraphs with n = 100 vertices and edge probability q = 4/n; cf. Figure 9.
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