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A wide variety of bidirectional data accessors, ranging from mixed optics to functor lenses, can be
formalized within a unique framework—dependent optics. Starting from two indexed categories,
which encode what maps are allowed in the forward and backward directions, we define the category
of dependent optics and establish under what assumptions it has coproducts. Different choices of
indexed categories correspond to different families of optics: we discuss dependent lenses and prisms,
as well as closed dependent optics. We introduce the notion of Tambara representation and use it to
classify contravariant functors from the category of optics, thus generalizing the profunctor encoding
of optics to the dependent case.

1 Introduction

Lenses [2, 10] are composable, bidirectional data accessors. They can be thought of as a collection of two
methods: a get method, to access a particular field of a data structure, and a put method, to build a new
instance of the data structure with an updated field value. Lenses and their more recent generalization,
optics, have been implemented and explored in the popular Haskell library lens [12]. The possible fields
of application vary widely, from game theory [9] to automatic differentiation [8].

The current formalization of optics [7, 20] extends the original theory of lenses from Cartesian
categories to arbitrary symmetric monoidal categories, or even actegories, thus including under a unique
formalism a wide variety of data accessors. Unfortunately, this approach fails to include a distinct elegant
generalization of lenses, namely functor lenses [21]: every pseudofunctor R : Cop → Cat induces a
fibration of categories LensR → C via the Grothendieck construction on the pointwise opposite of R.
Classical categories of lenses, as well as novel examples, can be obtained with this approach.

The aim of this work is to develop a common generalization of the theories of optics and functor
lenses, via the theory of bicategories and pseudofunctors. In section 2 we lay the fundamental definition
of dependent optic and show that it encompasses both regular optics and functor lenses. We show under
what conditions the category of dependent optics has coproducts. In section 3 we give some examples
of dependent optics—dependent (monoidal) lenses, dependent (monoidal) prisms, and closed dependent
optics—where the key ingredient is the operation of tensoring (co)modules over a (co)monoid in a
symmetric monoidal category. Finally, in section 4, we establish the notion of Tambara representation.
We show thatD-valued Tambara representations are equivalent to contravariant functors from the category
of optics to an arbitrary categoryD, thus generalizing the profunctor encoding of optics to the dependent
case.

2 Dependent optics

Classically, a lens from a domain (𝑋, 𝑋 ′) to a codomain (𝑌,𝑌 ′) has a get method get : 𝑋 → 𝑌 and a put
method put : 𝑋 ×𝑌 ′ → 𝑋 ′. This definition suggests two broad classes of generalizations. One approach,
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functor lenses [21], replaces the map put : 𝑋 × 𝑌 ′ → 𝑋 ′ with a map put : get∗(𝑄) → 𝑃, where 𝑃 and
𝑄 take the role of 𝑋 × 𝑋 ′ and 𝑌 × 𝑌 ′ and live in categories parameterized by 𝑋 and 𝑌 respectively.
Another approach, mixed optics [7, 20], replaces the Cartesian product with two general actions L , R

of a monoidal categoryM on a category C. This requires to tweak the original definition of lens to an
equivalent one expressed via a coend∫ 𝑀∈M

C(𝑋, 𝑀 L 𝑌 ) × C(𝑀 R 𝑌 ′, 𝑋 ′).

Remark 1. Some authors (see for instance [7]) work in the setting of enriched categories, so that the
above coend is not taken in Set but rather in some monoidal category V. For simplicity, in this article
we will work in the standard non-enriched setting.

It follows from the Yoneda reduction lemma [20, Lm. 1.2.2] that this definition recovers classical
lenses when a Cartesian category acts on itself. From a practical perspective, optics are equivalence
classes of pairs of morphisms

𝑙 : 𝑋 → 𝑀 L 𝑌 and 𝑟 : 𝑀 R 𝑌 ′ → 𝑋 ′,

where 𝑀 ∈ Ob(M) is called the representative.
The aim of this section is to establish a general definition of dependent optics which encompasses

both previous generalizations of lenses—functor lenses and optics. The definition is entirely analogous
to the definition of optics, but the monoidal actions are replaced by B-indexed categories, where B is a
bicategory [1] (see also [13] for a more modern treatment). We will consider the bicategory as a category
weakly enriched in categories, hence the notation B(𝐴, 𝐵), for 𝐴, 𝐵 ∈ Ob(B), will represent the category
of morphisms from 𝐴 to 𝐵.

To encode the data of a B-indexed category L, i.e. a pseudofunctor L : Bop → Cat, we will use the
following notation. L𝐴 for 𝐴 ∈ Ob(B) denotes the category L(𝐴) and 𝑓 ∗ for 𝑓 ∈ Ob(B(𝐴, 𝐵)) denotes
the functor L( 𝑓 ). Throughout this manuscript, we will work with two pseudofunctors, L and R. To
avoid ambiguities, we will use the notation 𝑓 ∗

′ to denote R( 𝑓 ).
Definition 1. Let B be a bicategory. Let L,R be B-indexed categories. The category OpticL,R of
dependent optics has, as objects, triplets (𝑋, 𝑋 ′)𝐴, with 𝐴 ∈ Ob(B), 𝑋 ∈ Ob(L𝐴), 𝑋 ′ ∈ Ob(R𝐴).
Morphisms between (𝑋, 𝑋 ′)𝐴 and (𝑌,𝑌 ′)𝐵 are given by the following coend:

OpticL,R
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
=

∫ 𝑓 :B(𝐴,𝐵)
L𝐴(𝑋, 𝑓 ∗𝑌 ) × R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′). (1)

To refer to specific morphisms explicitly, we denote by ⟨𝑙 | 𝑟⟩ the morphism given by 𝑙 ∈ L𝐴(𝑋, 𝑓 ∗𝑌 ) and
𝑟 ∈ R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′), and we say that it has representative 𝑓 .

More explicitly, morphisms in OpticL,R
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
are equivalence classes of pairs (𝑙, 𝑟)

with 𝑙 : 𝑋 → 𝑓 ∗𝑌 and 𝑟 : 𝑓 ∗
′
𝑌 ′ → 𝑋 ′, where 𝑓 : 𝐴 → 𝐵 is called the representative. The equivalence

relation is generated by
(L(𝑚)𝑌 ◦ 𝑙, 𝑟) ∼ (𝑙, 𝑟 ◦ R(𝑚)𝑌 ′) ,

with 𝑚 : 𝑓 ⇒ 𝑔, 𝑙 : 𝑋 → 𝑓 ∗𝑌 and 𝑟 : 𝑔∗′𝑌 ′ → 𝑋 ′, where 𝑓 , 𝑔 : 𝐴 ⇒ 𝐵 are parallel 1-morphisms in B.

Remark 2. Here and in what follows we assume that the above coend exists, either because the category
B(𝐴, 𝐵) is small (and small colimits exist in Set), or because we can compute it explicitly.
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The generalization of optics viaB-indexed categories, rather than monoidal actions, has been proposed
in [17], where composition of optics is explained in terms of Kan extensions. Here, we will adopt a
direct, explicit approach. While the chosen formalisms are different, the two definitions have been shown
to be equivalent in [4, Ex. 4.2].

Let 𝜃, 𝜃′ encode the coherence natural transformations for L,R respectively. In particular, we have
natural isomorphisms

𝜃𝐴 : IdL𝐴 ⇒ Id∗𝐴 and 𝜃 𝑓 ,𝑔 : 𝑓 ∗ ◦ 𝑔∗ ⇒ (𝑔 ◦ 𝑓 )∗.

𝜃′
𝐴

and 𝜃′
𝑓 ,𝑔

are defined in an analogous way. The identity optic is defined as follows:

Id(𝑋,𝑋′ )𝐴 :=
〈
(𝜃𝐴)𝑋 | (𝜃′−1

𝐴 )𝑋′
〉
. (2)

The map

L𝐵 (𝑌, 𝑔∗𝑍) × R𝐵 (𝑔∗′𝑍 ′, 𝑌 ′) × L𝐴(𝑋, 𝑓 ∗𝑌 ) × R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′)

OpticL,R
(
(𝑋, 𝑋 ′)𝐴, (𝑍, 𝑍 ′)𝐶

)
given by

⟨𝑙2 | 𝑟2⟩ ◦ ⟨𝑙1 | 𝑟1⟩ =
〈
(𝜃 𝑓 ,𝑔)𝑍 ◦ 𝑓 ∗(𝑙2) ◦ 𝑙1 | 𝑟1 ◦ 𝑓 ∗

′ (𝑟2) ◦ (𝜃′−1
𝑓 ,𝑔)𝑍 ′

〉
(3)

is extranatural in 𝑓 , 𝑔 and thus induces a composition function

OpticL,R
(
(𝑌,𝑌 ′)𝐵, (𝑍, 𝑍 ′)𝐶

)
×OpticL,R

(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
OpticL,R

(
(𝑋, 𝑋 ′)𝐴, (𝑍, 𝑍 ′)𝐶

)
.

Theorem 1. OpticL,R is a category.

Proof. Checking the category axioms (unity and associativity) is tedious but straightforward. Here, we
denote 𝜆 𝑓 , 𝜌 𝑓 the left and right unitors inB. We use the fact that 𝜃𝐴 (resp. 𝜃′−1

𝐴
) is a natural transformation

IdL𝐴 ⇒ Id∗𝐴 (resp. Id∗
′
𝐴 ⇒ IdR𝐴), as well as the identity coherence law for a pseudofunctor, keeping in

mind that Cat is a strict 2-category and hence has a trivial unitor. Given an optic ⟨𝑙 | 𝑟⟩ : (𝑋, 𝑋 ′)𝐴 →
(𝑌,𝑌 ′)𝐵 with representative 𝑓 :

⟨𝑙 | 𝑟⟩ ◦ Id(𝑋,𝑋′ )𝐴 =

〈
(𝜃Id𝐴, 𝑓 )𝑌 ◦ Id∗𝐴(𝑙) ◦ (𝜃𝐴)𝑋 | (𝜃

′−1
𝐴 )𝑋′ ◦ Id∗

′
𝐴 (𝑟) ◦ (𝜃

′−1
Id𝐴, 𝑓
)𝑌 ′

〉
=

〈
(𝜃Id𝐴, 𝑓 )𝑌 ◦ (𝜃𝐴) 𝑓 ∗𝑌 ◦ 𝑙 | 𝑟 ◦ (𝜃′−1

𝐴 ) 𝑓 ∗′𝑌 ′ ◦ (𝜃
′−1
Id𝐴, 𝑓
)𝑌 ′

〉
=
〈
(𝜃Id𝐴, 𝑓 )𝑌 ◦ (𝜃𝐴) 𝑓 ∗𝑌 ◦ 𝑙 | 𝑟 ◦ R(𝜌 𝑓 )𝑌 ′

〉
=
〈
L(𝜌 𝑓 )𝑌 ◦ (𝜃Id𝐴, 𝑓 )𝑌 ◦ (𝜃𝐴) 𝑓 ∗𝑌 ◦ 𝑙 | 𝑟

〉
= ⟨𝑙 | 𝑟⟩,
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where R(𝜌 𝑓 )𝑌 ′ can be moved to the left as L(𝜌 𝑓 )𝑌 thanks to the equivalence relation introduced by the
coend. Analogously,

Id(𝑌,𝑌 ′ )𝐵 ◦⟨𝑙 | 𝑟⟩ =
〈
(𝜃 𝑓 ,Id𝐵)𝑌 ◦ 𝑓 ∗((𝜃𝐵)𝑌 ) ◦ 𝑙 | 𝑟 ◦ 𝑓 ∗

′ ((𝜃′−1
𝐵 )𝑌 ′) ◦ (𝜃′−1

𝑓 ,Id𝐵)𝑌 ′
〉

=
〈
(𝜃 𝑓 ,Id𝐵)𝑌 ◦ 𝑓 ∗((𝜃𝐵)𝑌 ) ◦ 𝑙 | 𝑟 ◦ R(𝜆 𝑓 )𝑌 ′

〉
=
〈
L(𝜆 𝑓 )𝑌 ◦ (𝜃 𝑓 ,Id𝐵)𝑌 ◦ 𝑓 ∗((𝜃𝐵)𝑌 ) ◦ 𝑙 | 𝑟

〉
= ⟨𝑙 | 𝑟⟩.

To prove associativity, let us consider a sequence of morphisms

(𝑋, 𝑋 ′)𝐴
⟨𝑙1 | 𝑟1 ⟩−−−−−→ (𝑌,𝑌 ′)𝐵

⟨𝑙2 | 𝑟2 ⟩−−−−−→ (𝑍, 𝑍 ′)𝐶
⟨𝑙3 | 𝑟3 ⟩−−−−−→ (𝑊,𝑊 ′)𝐷 ,

with choices of representatives 𝑓 , 𝑔, ℎ respectively. Then,

(⟨𝑙3 | 𝑟3⟩ ◦ ⟨𝑙2 | 𝑟2⟩) ◦ ⟨𝑙1 | 𝑟1⟩ =
〈
(𝜃𝑔,ℎ)𝑊 ◦ 𝑔∗(𝑙3) ◦ 𝑙2 | 𝑟2 ◦ 𝑔∗

′ (𝑟3) ◦ (𝜃′−1
𝑔,ℎ)𝑊 ′

〉
◦ ⟨𝑙1 | 𝑟1⟩

= ⟨(𝜃 𝑓 ,𝑔;ℎ)𝑊 ◦ 𝑓 ∗((𝜃𝑔,ℎ)𝑊 ) ◦ 𝑓 ∗(𝑔∗(𝑙3)) ◦ 𝑓 ∗𝑙2 ◦ 𝑙1 |
𝑟1 ◦ 𝑓 ∗

′ (𝑟2) ◦ 𝑓 ∗
′ (𝑔∗′ (𝑟3)) ◦ 𝑓 ∗

′ ((𝜃′−1
𝑔,ℎ)𝑊 ′) ◦ (𝜃

′−1
𝑓 ,𝑔;ℎ)𝑊 ′⟩.

Whereas, when associating in a different order, one has

⟨𝑙3 | 𝑟3⟩ ◦ (⟨𝑙2 | 𝑟2⟩ ◦ ⟨𝑙1 | 𝑟1⟩) = ⟨𝑙3 | 𝑟3⟩ ◦
〈
(𝜃 𝑓 ,𝑔)𝑍 ◦ 𝑓 ∗(𝑙2) ◦ 𝑙1 | 𝑟1 ◦ 𝑓 ∗

′ (𝑟2) ◦ (𝜃′−1
𝑓 ,𝑔)𝑍 ′

〉
= ⟨(𝜃 𝑓 ;𝑔,ℎ)𝑊 ◦ ( 𝑓 ; 𝑔)∗(𝑙3) ◦ (𝜃 𝑓 ,𝑔)𝑍 ◦ 𝑓 ∗(𝑙2) ◦ 𝑙1 |
𝑟1 ◦ 𝑓 ∗

′ (𝑟2) ◦ (𝜃′−1
𝑓 ,𝑔)𝑍 ′ ◦ ( 𝑓 ; 𝑔)∗′ (𝑟3) ◦ (𝜃′−1

𝑓 ;𝑔,ℎ)𝑊 ′⟩
= ⟨(𝜃 𝑓 ;𝑔,ℎ)𝑊 ◦ (𝜃 𝑓 ,𝑔)ℎ∗𝑊 ◦ 𝑓 ∗(𝑔∗(𝑙3)) ◦ 𝑓 ∗(𝑙2) ◦ 𝑙1 |
𝑟1 ◦ 𝑓 ∗

′ (𝑟2) ◦ 𝑓 ∗
′ (𝑔∗′ (𝑟3)) ◦ (𝜃′−1

𝑓 ,𝑔)ℎ∗′𝑊 ′ ◦ (𝜃
′−1
𝑓 ;𝑔,ℎ)𝑊 ′⟩.

The two optics are equal, thanks to the relationships

L(𝛼 𝑓 ,𝑔,ℎ)𝑊 ◦ (𝜃 𝑓 ;𝑔,ℎ)𝑊 ◦ (𝜃 𝑓 ,𝑔)ℎ∗𝑊 = (𝜃 𝑓 ,𝑔;ℎ)𝑊 ◦ 𝑓 ∗((𝜃𝑔,ℎ)𝑊 ),
(𝜃′−1

𝑓 ,𝑔)ℎ∗′𝑊 ′ ◦ (𝜃
′−1
𝑓 ;𝑔,ℎ)𝑊 ′ ◦ R(𝛼

−1
𝑓 ,𝑔,ℎ)𝑊 ′ = 𝑓 ∗

′ ((𝜃′−1
𝑔,ℎ)𝑊 ′) ◦ (𝜃

′−1
𝑓 ,𝑔;ℎ)𝑊 ′ ,

where 𝛼 𝑓 ,𝑔,ℎ is the associator of B.

Remark 3. Unlike the dependent lenses case, here we generally do not have a pseudofunctor OpticL,R →
B. Such a pseudofunctor would be ill-defined on morphisms in OpticL,R due to the equivalence relation
imposed by the coend. To obviate this issue, a possible approach worthy of future exploration would be
to define a bicategory of dependent optics where, instead of identifying equivalent 1-morphisms, we add
2-morphisms between them. See [3] for a purely bicategorial approach to dependent optics.

2.1 Comparison with existent constructions

Dependent optics simultaneously generalize both mixed optics [20] and functor lenses [21]. Intuitively,
mixed optics are dependent optics where the bicategory B has a unique object, whereas functor lenses
are dependent optics where B is a 1-category and the B-indexed category L is trivial.
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Proposition 1. Mixed optics [20, Def. 6.1.1] are a particular case of dependent optics, where the source
bicategory has a unique object.

Proof. Let us consider two categories C𝐿 and C𝑅 acted on by a monoidal categoryM. We can consider
the bicategory BM obtained by delooping. Explicitly, BM has a unique object ∗ with endomorphism
category BM(∗, ∗) = M, where composition is given by the monoidal structure of M. Then the
action of M on another category C induces a pseudofunctor M → Cat. Under this correspondence,
optics for the actions 𝜓𝐿 : M → [C𝐿 , C𝐿] and 𝜓𝑅 : M → [C𝑅, C𝑅] are the same as optics for the
corresponding pseudofunctors L,R : BM ⇒ Cat, hence they are a special case of dependent optics with
B = (BM)op.

Proposition 2. Functor lenses, as defined in [21], are a particular case of dependent optics, where the
source bicategory B is a category and the B-indexed category L is trivial.

Proof. Let B be a 1-category. In [21], functor lenses are defined as the Grothendieck construction of the
pointwise oppositve of a B-indexed category R. Let • be the terminal B-indexed category. Then,

LensR ≃ Optic•,R .

Indeed, objects in Optic•,R are simply pairs (𝐴, 𝑋 ′), with 𝑋 ′ ∈ R𝐴, as there always is a unique object in
•𝐴. As B has no non-trivial 2-morphisms, we have∫ 𝑓 :B(𝐴,𝐵)

R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′) ≃
∐

𝑓 ∈B(𝐴,𝐵)
R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′).

2.2 Coproducts

One fundamental motivation for dependent lenses and, more generally, dependent optics is the lack of
coproducts in categories of ordinary lenses or optics. This situation is much improved in the dependent
case: for instance, adding coproducts to the category of lenses leads naturally to dependent lenses [3]. In
the following proposition, we show that there are general conditions to ensure that the category OpticL,R
has coproducts.
Proposition 3. Let B be a bicategory with finite coproducts. Let us assume that L,R turn finite
coproducts in B into finite products in Cat. Then, OpticL,R has finite coproducts.

Proof. Let
(
(𝑋𝑖 , 𝑋

′
𝑖
)𝐴𝑖

)
𝑖∈𝐼 be a finite family of objects in OpticL,R . Let 𝐴 =

∐
𝑖∈𝐼 𝐴𝑖 . Let 𝜄𝑖 : 𝐴𝑖 ↩→ 𝐴

be the inclusions. Let 𝑋 ∈ Ob(L𝐴) and 𝑋 ′ ∈ Ob(R𝐴) be such that, for all 𝑖 ∈ 𝐼,

𝜄∗𝑖 (𝑋) ≃ 𝑋𝑖 and 𝜄∗
′
𝑖 (𝑋 ′) ≃ 𝑋 ′𝑖 .

For all (𝑌,𝑌 ′)𝐵 ∈ Ob
(
OpticL,R

)
the following holds:

OpticL,R
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
=

∫ 𝑓 :B(𝐴,𝐵)
L𝐴(𝑋, 𝑓 ∗𝑌 ) × R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′)

≃
∫ ( 𝑓𝑖 )𝑖∈𝐼 :

∏
𝑖∈𝐼 B(𝐴𝑖 ,𝐵)∏

𝑖∈𝐼
L𝐴𝑖 (𝑋𝑖 , 𝑓

∗
𝑖 𝑌 ) × R𝐴𝑖 ( 𝑓 ∗′𝑖 𝑌 ′, 𝑋 ′𝑖 )

≃
∏
𝑖∈𝐼

OpticL,R
(
(𝑋𝑖 , 𝑋

′
𝑖 )𝐴𝑖 , (𝑌,𝑌 ′)𝐵

)
,
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where the last isomorphism is Fubini’s theorem for coends, hence (𝑋, 𝑋 ′)𝐴 is the coproduct of(
(𝑋𝑖 , 𝑋

′
𝑖
)𝐴𝑖

)
𝑖∈𝐼 .

3 Examples

Different choices of bicategories and functors give rise to different types of optics, see [7] for an overview
of the monoidal case, i.e., B = (BM)op, as in proposition 1. Here, we discuss dependent lenses [21],
dependent prisms, and generalizations thereof. We then show how the existence of a right adjoint to a
given functor can be used to construct further classes of examples of dependent optics. More examples
of dependent optics, such as polynomial optics, are described in [17].

3.1 Dependent lenses

Definition 2. Let C be a finitely complete category. Let SpanC be its bicategory of spans. Let C/– be
the SpanC-indexed category of slices. More explicitly,

C/– : Spanop
C → Cat

is a pseudofunctor that associates to each object 𝐴 ∈ Ob(C) the slice category C/𝐴. Functoriality is
given by pulling back and then pushing forward along the legs of the span. We define the category of
dependent lenses as follows:

DLensC := OpticC/–,C/–.

Objects in DLensC are cospans 𝑋 → 𝐴← 𝑋 ′. Morphisms between two cospans 𝑋 → 𝐴← 𝑋 ′ and
𝑌 → 𝐵← 𝑌 ′ are given by∫ 𝑀:C/(𝐴×𝐵)

C/𝐴(𝑋, 𝑀 ×𝐵 𝑌 ) × C/𝐴(𝑀 ×𝐵 𝑌 ′, 𝑋 ′). (4)

Equation (4) can be visualized as follows. A class of homomorphisms in DLensC with representative
𝐴← 𝑀 → 𝐵 is given by a pair of dotted arrows that make the following diagram commute.

𝑋 𝐴 𝑋 ′

𝑀 ×𝐵 𝑌 𝑀 𝑀 ×𝐵 𝑌 ′

Morphisms in DLensC can be computed explicitly:

DLensC
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
=

∫ 𝑀:C/(𝐴×𝐵)
C/𝐴(𝑋, 𝑀 ×𝐵 𝑌 ) × C/𝐴(𝑀 ×𝐵 𝑌 ′, 𝑋 ′)

≃
∫ 𝑀:C/(𝐴×𝐵) ∐

𝑋→𝑌

C/(𝐴 × 𝐵) (𝑋, 𝑀) × C/𝐴(𝑀 ×𝐵 𝑌 ′, 𝑋 ′)

≃
∐
𝑋→𝑌

∫ 𝑀:C/(𝐴×𝐵)
C/(𝐴 × 𝐵) (𝑋, 𝑀) × C/𝐴(𝑀 ×𝐵 𝑌 ′, 𝑋 ′)

≃
∐
𝑋→𝑌

C/𝐴(𝑋 ×𝐵 𝑌 ′, 𝑋 ′),

(5)
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where the last isomorphism follows from the Yoneda reduction lemma [20, Lm 1.2.2].
Even though this category is equivalent to the definition of dependent lenses via the Grothendieck

construction in [21], we believe it can have independent practical value. Encoding dependent lenses as
maps

𝑋 → 𝑀 ×𝐵 𝑌 and 𝑀 ×𝐵 𝑌 ′ → 𝑋 ′

can lead to a more efficient implementation of, for instance, reverse-mode automatic differentiation (as
done in the Julia library Diffractor [8]), where the representative 𝑀 is optimized to contain precisely the
information about the input that is required to compute the backward map. Features of the input that are
not needed can be discarded, and quantities computed in the forward map can be stored in 𝑀 if they are
useful for the backward map.

The documentation of the Diffractor library [8] hints at the need for dependent optics. Indeed, a
key motivation for this work was to build a rigorous dependently-typed framework for bidirectional data
transformations that would allow for reverse-mode automatic differentiation with an explicit notion of
representative. However, to formalize the difference between our construction of dependent lenses and
the one based on functor lenses, we would need to define the bicategory of dependent optics, where all
the information about the representative is preserved (cp. remark 3).

Unlike lenses, categories of dependent lenses admit finite coproducts, provided that the base category
is lextensive [6, Sect. 4.4].
Lemma 1. If C is a lextensive category, then the inclusion C ↩→ SpanC preserves coproducts.

Proof. Let 𝐴 =
∐

𝑖∈𝐼 𝐴𝑖 be a coproduct in C. Then, for all 𝐵 ∈ Ob(C),

SpanC (𝐴, 𝐵) = C/(𝐴 × 𝐵) ≃ C/
∐
𝑖∈𝐼
(𝐴𝑖 × 𝐵) ≃

∏
𝑖∈𝐼
C/(𝐴𝑖 × 𝐵) =

∏
𝑖∈𝐼

SpanC (𝐴𝑖 , 𝐵) ,

therefore 𝐴 is the coproduct of (𝐴𝑖)𝑖∈𝐼 in SpanC .

Proposition 4. If C is a lextensive category, then DLensC has finite coproducts.

Proof. By lemma 1, SpanC has finite coproducts, given by coproducts in C. It is straightforward to show
that C/– turns coproducts into products, as

C/𝐴 = C/
∐
𝑖∈𝐼

𝐴𝑖 ≃
∏
𝑖∈𝐼
C/𝐴𝑖 .

Thanks to proposition 3, DLensC has finite coproducts.

3.2 Dependent monoidal lenses

The construction in section 3.1 can be generalized to a symmetric monoidal category (C, ⊗) with reflexive
equalizers that are preserved by the tensor product. This is analogous to the approach taken in [21] to
generalize lenses to symmetric monoidal categories via commutative comonoids.

Let 𝐵 be a comonoidal object in C. Given a right 𝐵-comodule 𝑀 and a left 𝐵-comodule 𝑁 , we can
define their tensor product over 𝐵 as the following equalizer:

𝑀 ⊗𝐵 𝑁 := eq(𝑀 ⊗ 𝑁 ⇒ 𝑀 ⊗ 𝐵 ⊗ 𝑁).

The category of commutative comonoids in Ob(C), denoted CComonC,⊗, has finite limits: the pullback
of two 𝐵-coalgebras 𝑌1, 𝑌2 is isomorphic to the tensor product 𝑌1 ⊗𝐵 𝑌2 (see [11, C1.1 Lm. 1.1.8] and
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subsequent discussion for the dual statement). Let CCoalg(–) and Comod(–) be the SpanCComonC,⊗ -
indexed categories of commutative coalgebras and comodules respectively, where functoriality is given
by extension and restriction of scalars. We define the category of dependent monoidal lenses as follows:

DLensC,⊗ := OpticCCoalg(–) ,Comod(–) .

A computation analogous to the one in eq. (5) yields the following explicit formula:

DLensC,⊗
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
≃

∐
𝑋→𝑌

Comod𝐴(𝑋 ⊗𝐵 𝑌 ′, 𝑋 ′),

where the morphism 𝑋 → 𝑌 varies among comonoid homomorphisms.
Proposition 4 can be generalized to the monoidal case, establishing sufficient conditions for the

existence of finite coproducts in DLensC,⊗. In the following proposition, we rely on the fact that,
whenever C has finite coproducts, the forgetful functor CMonC,⊗ → C creates coproducts in CMonC,⊗.
See the proof of [15, Prop. 1.2.14] for the dual statement, which concerns limits of commutative monoids
rather than colimits of commutative comonoids.
Proposition 5. Let (C, ⊗) be a symmetric monoidal category, with reflexive equalizers that are preserved
by the tensor product. Let us assume that C has finite coproducts, and that for all finite coproduct of
commutative comonoids 𝐴 =

∐
𝑖∈𝐼 𝐴𝑖 , the map

Comod𝐴→
∏
𝑖∈𝐼

Comod𝐴𝑖
, given by 𝑀 ↦→ (𝑀 ⊗𝐴 𝐴𝑖)𝑖∈𝐼 , (6)

is an equivalence of categories. Then, DLensC has finite coproducts.

Proof. The equivalence in eq. (6) is monoidal, hence the functor

CCoalg𝐴→
∏
𝑖∈𝐼

CCoalg𝐴𝑖
, given by 𝑋 ↦→ (𝑋 ⊗𝐴 𝐴𝑖)𝑖∈𝐼 , (7)

is an equivalence. As CCoalg(–) = CComonC,⊗/–, the category CComonC,⊗ is lextensive. Indeed, in
the presence of pullbacks along coproduct injections, eq. (7) is a condition equivalent to extensivity, as
shown in [14, Prop. 1.3]. Thanks to lemma 1, the category SpanCComonC,⊗ has finite coproducts, given
by coproducts in C. It follows from eqs. (6) and (7) that the functors Comod(–) and CCoalg(–) turn finite
coproducts into products. Thanks to proposition 3, DLensC,⊗ has finite coproducts.

3.3 Dependent (monoidal) prisms

Dependent prisms are dual to dependent lenses. Let C be a finitely cocomplete category. Let CospanC =

SpanCop be its bicategory of cospans. Let –/C be the CospanC-indexed category of coslices. We define
the category of dependent prisms as follows:

DPrismC := Optic–/C,–/C .

Objects are given by spans 𝑋 ← 𝐴 → 𝑋 ′. Morphisms between two spans 𝑋 ← 𝐴 → 𝑋 ′ and
𝑌 ← 𝐵→ 𝑌 ′ are given by∫ 𝑀:(𝐴⨿𝐵)/C

𝐴/C(𝑋, 𝑀 ⨿𝐵 𝑌 ) × 𝐴/C(𝑀 ⨿𝐵 𝑌 ′, 𝑋 ′). (8)
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As is the case for dependent lenses, the coend in eq. (8) can be computed explicitly:

DPrismC
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
≃

∐
𝑌 ′→𝑋′

𝐴/C(𝑋, 𝑋 ′ ⨿𝐵 𝑌 ).

Dependent monoidal prisms are dual to dependent monoidal lenses. Given a symmetric monoidal
category (C, ⊗) with reflexive coequalizers that are preserved by the tensor product, let CMonC,⊗ be the
category of commutative monoids in Ob(C). Let CAlg(–) and Mod(–) be the CospanCMonC,⊗ -indexed
categories of commutative algebras and modules respectively, where functoriality is given by extension
and restriction of scalars. We define the category of dependent monoidal prisms as follows:

DPrismC,⊗ := OpticMod(–) ,CAlg(–) .

Morphisms can be computed via the explicit formula

DPrismC,⊗
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
≃

∐
𝑌 ′→𝑋′

𝐴/C(𝑋, 𝑋 ′ ⊗𝐵 𝑌 ),

where the morphism 𝑌 ′ → 𝑋 ′ varies among monoid homomorphisms.

3.4 Closed dependent optics

Using a technique analogous to coalgebraic optics [20], it is sometimes possible to explicitly compute
the coend in the Optic category using a right adjoint technique.

LetB be a bicategory, andL,R beB-indexed categories. We say that OpticL,R is a category of closed
dependent optics if, for any 𝐴, 𝐵 ∈ Ob(B) and 𝑌 ′ ∈ Ob(L(𝐵)), the functor (–)∗𝑌 ′ : B(𝐴, 𝐵) → R𝐴 has
a right adjoint 𝑌 ′ ⊲ –: R𝐴→ B(𝐴, 𝐵). Whenever that is the case, eq. (1) can be greatly simplified.∫ 𝑓 :B(𝐴,𝐵)

L𝐴(𝑋, 𝑓 ∗𝑌 ) × R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′) ≃
∫ 𝑓 :B(𝐴,𝐵)

L𝐴(𝑋, 𝑓 ∗𝑌 ) × B( 𝑓 , 𝑌 ′ ⊲ 𝑋 ′)

≃ L𝐴(𝑋, (𝑌 ′ ⊲ 𝑋 ′)∗𝑌 ).

A possible application of this technique is based on the bicategory of bimodules [1, Ex. 2.5] Bimod
and on the Bimod-indexed category Mod(–) . There,𝑌 ′⊲𝑋 ′ = [𝑌 ′, 𝑋 ′], considered as an (𝐴, 𝐵)-bimodule,
hence morphisms in OpticMod(–) ,Mod(–) can be computed explicitly:

OpticMod(–) ,Mod(–)

(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
= Mod𝐴(𝑋, [𝑌 ′, 𝑋 ′] ⊗𝐵 𝑌 ).

4 Tambara representations

Tambara modules [19] can be useful to define an interface for optics that does not depend on a choice
of representative. Here, we adapt the notion of generalized Tambara module from [7] to the dependent
case, and we generalize it to an aribtrary target category. For simplicity of notation, thorughout this
section we fix a bicategory B and two B-indexed categories L and R (with coherence isomorphisms 𝜃, 𝜃′
respectively), and we write Optic instead of OpticL,R .
Definition 3. Let D be a category. A D-valued Tambara representation consists of

• a functor 𝑃𝐴 :
(
L𝐴

)op × R𝐴→ D, for each object 𝐴 in B,
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• a natural transformation 𝜁 𝑓 : 𝑃𝐵 (–,=) ⇒ 𝑃𝐴( 𝑓 ∗–, 𝑓 ∗′=), for each morphism 𝑓 : 𝐴→ 𝐵 in B,

where 𝜁 𝑓 is extranatural in 𝑓 and satisfies the equations

𝑃𝐴(𝜃𝐴, 𝜃′−1
𝐴 ) ◦ 𝜁Id𝐴

= Id𝑃𝐴 and 𝑃𝐴(𝜃 𝑓 ,𝑔, 𝜃
′−1
𝑓 ,𝑔) ◦ 𝜁𝑔◦ 𝑓 = (𝜁 𝑓 )𝑔∗ (–) ,𝑔∗′ (=) ◦ 𝜁𝑔,

for all 𝐴, 𝐵, 𝐶 ∈ Ob(B), 𝑓 : 𝐴→ 𝐵, and 𝑔 : 𝐵→ 𝐶.

Remark 4. As the target category is arbitrary, 𝑃 does not correspond to a module over an enriched
category, hence we find the name representation more appropriate.

In more graphical terms, when D = Set and thus 𝑃𝐴, 𝑃𝐵 are profunctors, the relationship between
𝑃𝐴, 𝑃𝐵, and 𝜁 𝑓 can be visualized via the following 2-cell in Prof.

L𝐵 R𝐵

L𝐴 R𝐴

𝑓 ∗

|
𝑃𝐵

𝑓 ∗
′

|
𝑃𝐴

𝜁 𝑓

Set-valued Tambara representations can therefore be thought of as lax B-indexed profunctors.

Definition 4. Morphisms between Tambara representations (𝑃, 𝜁), (𝑄, 𝜁 ′) are natural transformations
𝜂𝐴 : 𝑃𝐴⇒ 𝑄𝐴 satisfying

𝜂𝐴

𝑓 ∗ (–) , 𝑓 ∗′ (=) ◦ 𝜁 𝑓 = 𝜁 ′𝑓 ◦ 𝜂
𝐵. (9)

D-valued Tambara representations and their morphisms form a category, which we denote TambD .

Functors from Opticop to an arbitrary category can be described explicitly, thanks to theorem 2.
The rest of the section is devoted to proving that result, via some intermediate steps, and exploring its
consequences.

4.1 The universal Tambara representation

We aim to establish that all Tambara representations can be expressed as a composition of a functor
with a universal Tambara representation 𝜄op. Here, we will define 𝜄 and prove that 𝜄op is a Tambara
representation. In section 4.2, we will show universality.

Definition 5. Let 𝐴 ∈ Ob(B). The functor 𝜄𝐴 : L𝐴 × (R𝐴)op → Optic is defined as follows. Given an
object (𝑋, 𝑋 ′), 𝜄𝐴(𝑋, 𝑋 ′) := (𝑋, 𝑋 ′)𝐴. Given a morphism

(𝑙, 𝑟) : (𝑋0, 𝑋
′
0) → (𝑋1, 𝑋

′
1),

where 𝑙 : 𝑋0 → 𝑋1 and 𝑟 : 𝑋 ′1 → 𝑋 ′0, we define 𝜄𝐴(𝑙, 𝑟) as the optic〈
(𝜃𝐴)𝑋1 ◦ 𝑙 | 𝑟 ◦ (𝜃′−1

𝐴 )𝑋′1
〉

: (𝑋0, 𝑋
′
0)

𝐴→ (𝑋1, 𝑋
′
1)

𝐴

with representative Id𝐴.

The following lemmas will make it much easier to do computations with 𝜄 and will allow us to prove
that 𝜄𝐴 is indeed a functor and that 𝜄op is a Tambara representation.
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Lemma 2. Let (𝑋0, 𝑋
′
0)

𝐴, (𝑋1, 𝑋
′
1)

𝐴 ∈ Ob(Optic). Let 𝑙1 : 𝑋0 → 𝑋1 and 𝑟1 : 𝑋 ′1 → 𝑋 ′0. Then, for all
optic ⟨𝑙2 | 𝑟2⟩ with domain (𝑋1, 𝑋

′
1)

𝐴,

⟨𝑙2 | 𝑟2⟩ ◦ 𝜄𝐴(𝑙1, 𝑟1) = ⟨𝑙2 ◦ 𝑙1 | 𝑟1 ◦ 𝑟2⟩. (10)

Proof. We use twice the fact that 𝜃𝐴 (resp. 𝜃′−1
𝐴

) is a natural transformation IdL𝐴 ⇒ Id∗𝐴 (resp.
Id∗

′
𝐴 ⇒ IdR𝐴). Specifically,

Id∗𝐴(𝑙2) ◦ (𝜃𝐴)𝑋1 ◦ 𝑙1 = (𝜃𝐴)𝑋2 ◦ 𝑙2 ◦ 𝑙1 = Id∗𝐴(𝑙2 ◦ 𝑙1) ◦ (𝜃𝐴)𝑋0

𝑟1 ◦ (𝜃′−1
𝐴 )𝑋′1 ◦ Id∗

′
𝐴 (𝑟2) = 𝑟1 ◦ 𝑟2 ◦ (𝜃′−1

𝐴 )𝑋′2 = (𝜃
′−1
𝐴 )𝑋′0 ◦ Id∗

′
𝐴 (𝑟1 ◦ 𝑟2).

As a consequence,

⟨𝑙2 | 𝑟2⟩ ◦ 𝜄𝐴(𝑙1, 𝑟1) = ⟨𝑙2 | 𝑟2⟩ ◦
〈
(𝜃𝐴)𝑋1 ◦ 𝑙1 | 𝑟1 ◦ (𝜃′−1

𝐴 )
〉
𝑋′1

= ⟨𝑙2 ◦ 𝑙1 | 𝑟1 ◦ 𝑟2⟩ ◦
〈
(𝜃𝐴)𝑋0 | (𝜃′−1

𝐴 )𝑋′0
〉

= ⟨𝑙2 ◦ 𝑙1 | 𝑟1 ◦ 𝑟2⟩.

Lemma 3. Let (𝑌1, 𝑌
′
1)

𝐵, (𝑌2, 𝑌
′
2)

𝐵 ∈ Ob(Optic). Let 𝑙2 : 𝑌1 → 𝑌2 and 𝑟2 : 𝑌 ′2 → 𝑌 ′1. Then, for all optic
⟨𝑙1 | 𝑟1⟩ with codomain (𝑌1, 𝑌

′
1)

𝐵 and representative 𝑓 ,

𝜄𝐵 (𝑙2, 𝑟2) ◦ ⟨𝑙1 | 𝑟1⟩ =
〈
𝑓 ∗(𝑙2) ◦ 𝑙1 | 𝑟1 ◦ 𝑓 ∗

′ (𝑟2)
〉
. (11)

Proof. As 𝑓 ∗ and 𝑓 ∗
′ are functors, eq. (3) implies that

𝜄𝐵 (𝑙2, 𝑟2) ◦ ⟨𝑙1 | 𝑟1⟩ =
〈
(𝜃𝐵)𝑌2 ◦ 𝑙2 | 𝑟2 ◦ (𝜃′−1

𝐵 )𝑌 ′2
〉
◦ ⟨𝑙1 | 𝑟1⟩

=

〈
(𝜃𝐵)𝑌2 | (𝜃′−1

𝐵 )𝑌 ′2
〉
◦
〈
𝑓 ∗(𝑙2) ◦ 𝑙1 | 𝑟1 ◦ 𝑓 ∗

′ (𝑟2)
〉

=

〈
𝑓 ∗(𝑙2) ◦ 𝑙1 | 𝑟1 ◦ 𝑓 ∗

′ (𝑟2)
〉
.

Proposition 6. For all 𝐴 ∈ Ob(B), 𝜄𝐴 is a functor.

Proof. We must verify that 𝜄𝐴 preserves identity and composition of morphisms. Preservation of identity
is straightforward, as

𝜄𝐴(Id𝑋, Id𝑋′) =
〈
(𝜃𝐴)𝑋 | (𝜃′−1

𝐴 )𝑋′
〉
= Id(𝑋,𝑋′ )𝐴 .

Let us now consider morphisms

𝑋0
𝑙1−→ 𝑋1

𝑙2−→ 𝑋2 and 𝑋 ′2
𝑟2−→ 𝑋 ′1

𝑟1−→ 𝑋 ′0.

Then, using eq. (10),

𝜄𝐴(𝑙2, 𝑟2) ◦ 𝜄𝐴(𝑙1, 𝑟1) =
〈
(𝜃𝐴)𝑋2 ◦ 𝑙2 | 𝑟2 ◦ (𝜃′−1

𝐴 )𝑋′2
〉
◦ 𝜄𝐴(𝑙1, 𝑟1)

=

〈
(𝜃𝐴)𝑋2 ◦ 𝑙2 ◦ 𝑙1 | 𝑟1 ◦ 𝑟2 ◦ (𝜃′−1

𝐴 )𝑋′2
〉

= 𝜄𝐴(𝑙2 ◦ 𝑙1, 𝑟2 ◦ 𝑟1).
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Proposition 7. 𝜄op is a Opticop-valued Tambara representation, whose associated natural transformations
are

〈
Id 𝑓 ∗ (–) | Id 𝑓 ∗′ (=)

〉op
(with representative 𝑓 ).

Proof. By inverting all morphisms in definition 3, we work with the category Optic rather than Opticop.
Let 𝑓 : 𝐴→ 𝐵. First, we need to ensure that〈

Id 𝑓 ∗ (–) | Id 𝑓 ∗′ (=)

〉
: 𝜄𝐴( 𝑓 ∗(–), 𝑓 ∗′ (=)) ⇒ 𝜄𝐵 (–, =)

is a natural transformation. Let us consider morphisms 𝑙 : 𝑌0 → 𝑌1 and 𝑟 : 𝑌 ′1 → 𝑌 ′0. Then, by eqs. (10)
and (11),

𝜄𝐵 (𝑙, 𝑟) ◦
〈
Id 𝑓 ∗𝑌0 | Id 𝑓 ∗′𝑌 ′0

〉
=

〈
𝑓 ∗(𝑙) | 𝑓 ∗′ (𝑟)

〉
=

〈
Id 𝑓 ∗𝑌1 | Id 𝑓 ∗′𝑌 ′1

〉
◦ 𝜄𝐴( 𝑓 ∗(𝑙), 𝑓 ∗′ (𝑟)).

Next, we must show that 𝜁 𝑓 is extranatural in 𝑓 . Let us consider 𝑓 , 𝑔 : 𝐴 ⇒ 𝐵 and 𝑚 : 𝑓 ⇒ 𝑔. The
following diagram commutes for all 𝑌 ∈ Ob(L𝐵), 𝑌 ′ ∈ Ob(R𝐵).

𝜄𝐴( 𝑓 ∗𝑌, 𝑔∗′𝑌 ′) 𝜄𝐴( 𝑓 ∗𝑌, 𝑓 ∗′𝑌 ′)

𝜄𝐴(𝑔∗𝑌, 𝑔∗′𝑌 ′) 𝜄𝐵 (𝑌,𝑌 ′)

This can be show by direct computation, using eq. (10):〈
Id𝑔∗𝑌 | Id𝑔∗′𝑌 ′

〉
◦ 𝜄𝐴(L(𝑚)𝑌 , Id𝑔∗′𝑌 ′) =

〈
L(𝑚)𝑌 | Id𝑔∗′𝑌 ′

〉
=
〈
Id 𝑓 ∗𝑌 | R(𝑚)𝑌 ′

〉
=

〈
Id 𝑓 ∗𝑌 | Id 𝑓 ∗′𝑌 ′

〉
◦ 𝜄𝐴(Id 𝑓 ∗𝑌 ,R(𝑚)𝑌 ′).

Finally, we need to show the coherence laws for Tambara representations. The identity law is straightfor-
ward, as 〈

IdId∗
𝐴
𝑋 | IdId∗′

𝐴
𝑋′

〉
◦ 𝜄𝐴((𝜃𝐴)𝑋, (𝜃′−1

𝐴 )𝑋′) =
〈
(𝜃𝐴)𝑋 | (𝜃′−1

𝐴 )𝑋′
〉
= Id(𝑋,𝑋′ )𝐴 .

Thanks to eq. (10)〈
Id(𝑔◦ 𝑓 )∗𝑍 | Id(𝑔◦ 𝑓 )∗′𝑍 ′

〉
◦ 𝜄𝐴((𝜃 𝑓 ,𝑔)𝑍 , (𝜃′−1

𝑓 ,𝑔)𝑍 ′) =
〈
(𝜃 𝑓 ,𝑔)𝑍 | (𝜃′−1

𝑓 ,𝑔)𝑍 ′
〉
.

Thanks to eq. (3), 〈
Id𝑔∗𝑍 | Id𝑔∗′𝑍 ′

〉
◦
〈
Id 𝑓 ∗ (𝑔∗𝑍 ) | Id 𝑓 ∗′ (𝑔∗′𝑍 ′ )

〉
=

〈
(𝜃 𝑓 ,𝑔)𝑍 | (𝜃′−1

𝑓 ,𝑔)𝑍 ′
〉
.

Hence, the composition law holds and 𝜄 is a Opticop-valued Tambara representation.

4.2 Tambara encoding

In this section, we establish that there is a functor [Opticop,D] → TambD given by composition with
the universal Tambara representation 𝜄. Furthermore, this functor is an isomorphism of categories, which
we will show in theorem 2. This isomorphism will allow us to recover a classical end formula linking
Tambara representations and optics. We start by showing that composition of a functor and a Tambara
representation yields a Tambara representation.
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Proposition 8. Let C,D be arbitrary categories. There is a functor [C,D] ×TambC → TambD given
by composition.

Proof. All conditions for Tambara representations are preserved by a functorial transformation. Given
natural transformation 𝜇 : 𝐹 ⇒ 𝐺 and a morphism of Tambara representations 𝜂 : 𝑃 ⇒ 𝑄, it is straight-
forward to verify that the horizontal composition of 𝜇 and 𝜂 is a morphism of Tambara representations
𝐹 ◦ 𝑃⇒ 𝐺 ◦𝑄:

𝜇𝑄𝐴 (𝑋,𝑋′ ) ◦ 𝐹 (𝜂𝐴
𝑋,𝑋′) ◦ 𝐹 ((𝜁 𝑓 )𝑌,𝑌 ′) = 𝜇𝑄𝐴 (𝑋,𝑋′ ) ◦ 𝐹 (𝜂𝐴

𝑋,𝑋′ ◦ (𝜁 𝑓 )𝑌,𝑌 ′)
= 𝜇𝑄𝐴 (𝑋,𝑋′ ) ◦ 𝐹 ((𝜁 ′𝑓 )𝑌,𝑌 ′ ◦ 𝜂𝐵𝑌,𝑌 ′)
= 𝐺 ((𝜁 ′𝑓 )𝑌,𝑌 ′ ◦ 𝜂𝐵𝑌,𝑌 ′) ◦ 𝜇𝑃𝐵 (𝑌,𝑌 ′ )

= 𝐺 ((𝜁 ′𝑓 )𝑌,𝑌 ′) ◦ 𝐺 (𝜂𝐵𝑌,𝑌 ′) ◦ 𝜇𝑃𝐵 (𝑌,𝑌 ′ )

= 𝐺 ((𝜁 ′𝑓 )𝑌,𝑌 ′) ◦ 𝜇𝑄𝐵 (𝑌,𝑌 ′ ) ◦ 𝐹 (𝜂𝐵𝑌,𝑌 ′).

Theorem 2. Let D be a category. Let 𝜄op be the universal Tambara representation. Then the functor

– ◦ 𝜄op : [Opticop,D] → TambD

is an isomorphism of categories.

Proof. Let 𝑃 be a D-valued Tambara representation, with associated natural transformations 𝜁 𝑓 . Let us
define 𝑃̃ : Opticop → D as follows. On objects,

𝑃̃

(
(𝑋, 𝑋 ′)𝐴

)
= 𝑃𝐴(𝑋, 𝑋 ′).

To extend 𝑃̃ to morphisms, we proceed as follows. As 𝜁 𝑓 is extranatural in 𝑓 , the map

L𝐴(𝑋, 𝑓 ∗𝑌 ) × R𝐴( 𝑓 ∗′𝑌 ′, 𝑋 ′) → D
(
𝑃

(
(𝑌,𝑌 ′)𝐵

)
, 𝑃

(
(𝑋, 𝑋 ′)𝐴

))
⟨𝑙 | 𝑟⟩ ↦→ 𝑃𝐴(𝑙, 𝑟) ◦ (𝜁 𝑓 )𝑌,𝑌 ′

induces a map

𝑃̃ : Optic
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
→ D

(
𝑃

(
(𝑌,𝑌 ′)𝐵

)
, 𝑃

(
(𝑋, 𝑋 ′)𝐴

))
.

Preservation of identity and composition follows from the coherence laws of definition 3, hence 𝑃̃ is a
functor.

It is straightforward to verify that 𝑃̃ ◦ 𝜄op = 𝑃 as Tambara representations. On objects,

(𝑃̃ ◦ 𝜄op)𝐴(𝑋, 𝑋 ′) = 𝑃̃((𝑋, 𝑋 ′)𝐴) = 𝑃𝐴(𝑋, 𝑋 ′).

On morphisms, given 𝑙 : 𝑋0 → 𝑋1 and 𝑟 : 𝑋 ′1 → 𝑋 ′0,

(𝑃̃ ◦ 𝜄op)𝐴(𝑙, 𝑟) = 𝑃̃(
〈
(𝜃𝐴)𝑋1 ◦ 𝑙 | 𝑟 ◦ (𝜃′−1

𝐴 )𝑋′1
〉
)

= 𝑃((𝜃𝐴)𝑋1 ◦ 𝑙, 𝑟 ◦ (𝜃′−1
𝐴 )𝑋′1) ◦ (𝜁Id𝐴

)𝑋1,𝑋
′
1

= 𝑃(𝑙, 𝑟) ◦ 𝑃((𝜃𝐴)𝑋1 , (𝜃′−1
𝐴 )𝑋′1) ◦ (𝜁Id𝐴

)𝑋1,𝑋
′
1

= 𝑃(𝑙, 𝑟).
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Finally,
𝑃̃(

〈
Id 𝑓 ∗𝑌 | Id 𝑓 ∗′𝑌 ′

〉
) = 𝑃𝐴(Id 𝑓 ∗𝑌 , Id 𝑓 ∗′𝑌 ′) ◦ (𝜁 𝑓 )𝑌,𝑌 ′ = (𝜁 𝑓 )𝑌,𝑌 ′ ,

hence 𝑃̃ ◦ 𝜄op = 𝑃 as Tambara representations, so – ◦ 𝜄op is surjective on objects.
Let 𝑃,𝑄 be Tambara representations, with associated natural transformation families 𝜁, 𝜁 ′ respec-

tively. Let 𝜂 : 𝑃 ⇒ 𝑄 be a morphism of Tambara representations. Then, we can define a natural
transformation

𝜂 : 𝑃̃⇒ 𝑄̃ given by 𝜂 (𝑋,𝑋′ )𝐴 := 𝜂𝐴
𝑋,𝑋′ .

Naturality can be verified via a direct computation:

𝑄(⟨𝑙 | 𝑟⟩) ◦ 𝜂 (𝑌,𝑌 ′ )𝐵 = 𝑄𝐴(𝑙, 𝑟) ◦ (𝜁 ′𝑓 )𝑌,𝑌 ′ ◦ 𝜂𝐵𝑌,𝑌 ′

= 𝑄𝐴(𝑙, 𝑟) ◦ 𝜂𝐴

𝑓 ∗𝑌, 𝑓 ∗′𝑌 ′
◦ (𝜁 𝑓 )𝑌,𝑌 ′

= 𝜂𝐴
𝑋,𝑋′ ◦ 𝑃𝐴(𝑙, 𝑟) ◦ (𝜁 𝑓 )𝑌,𝑌 ′

= 𝜂 (𝑋,𝑋′ )𝐴 ◦ 𝑃(⟨𝑙 | 𝑟⟩).
Here, we have used eq. (9) and the fact that 𝜂𝐴 is a natural transformation from 𝑃𝐴 to 𝑄𝐴. As 𝜂 𝜄𝐴 (𝑋,𝑋′ ) =
𝜂 (𝑋,𝑋′ )𝐴 = 𝜂𝐴

𝑋,𝑋′ , the functor – ◦ 𝜄op is full. Finally, if for all 𝐴 ∈ Ob(B), 𝑋 ∈ Ob(L𝐴), 𝑋 ′ ∈ Ob(R𝐴),

𝜂𝐴
𝑋,𝑋′ = 𝜇 𝜄𝐴 (𝑋,𝑋′ )

with 𝜇 : 𝑃̃⇒ 𝑄̃, then 𝜇 = 𝜂. Hence, the functor – ◦ 𝜄op is faithful.

Theorem 2 has wide practical applications, as it implies that a Tambara representation 𝑃 can be used
as an interface for optics. In other words, an optic 𝑜 ∈ Optic

(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
can be encoded as a

family of morphisms
𝑃𝐵 (𝑌,𝑌 ′) → 𝑃𝐴(𝑋, 𝑋 ′),

where 𝑃 varies amongD-valued Tambara representations. This encoding has several practical advantages.
It does not depend on a choice of representative, it simplifies composition of optics—replacing the rule
in eq. (3) with standard function composition—and it can be used to compose optics of different types, as
discussed in [7]. Furthermore, the dependent version of a classical result—the profunctor representation
theorem [7, Thm. 4.14]—is a direct consequence of theorem 2, specialized to the case D = Set.
Lemma 4. Let C be a locally small category, and let Ĉ denote its category of presheaves. Then, for all
𝑆, 𝑇 ∈ Ob(C),

C(𝑆, 𝑇) ≃
∫
𝐹∈ Ĉ

Set(𝐹 (𝑇), 𝐹 (𝑆)). (12)

Proof. Let us consider the representable presheaf C(–, 𝑇). Applying the Yoneda reduction lemma [20,
Lm. 1.2.2] to the evaluation-at-𝑆 functor Ĉ → Set, we obtain

C(𝑆, 𝑇) = C(–, 𝑇) (𝑆) ≃
∫
𝐹∈ Ĉ

Set(Ĉ(C(–, 𝑇), 𝐹), 𝐹 (𝑆)) ≃
∫
𝐹∈ Ĉ

Set(𝐹 (𝑇), 𝐹 (𝑆)),

where in the last step we have used the Yoneda lemma to compute Ĉ(C(–, 𝑇), 𝐹).

Theorem 3. [4, Thm. 3.5] Let (𝑋, 𝑋 ′)𝐴 and (𝑌,𝑌 ′)𝐵 be objects in Optic. Then,

Optic
(
(𝑋, 𝑋 ′)𝐴, (𝑌,𝑌 ′)𝐵

)
≃
∫
𝑃∈TambSet

Set
(
𝑃𝐵 (𝑌,𝑌 ′), 𝑃𝐴(𝑋, 𝑋 ′)

)
. (13)

Proof. By theorem 2, TambSet is isomorphic to the category of presheaves over Optic. Hence, eq. (13)
follows from eq. (12), with C = Optic, 𝑆 = (𝑋, 𝑋 ′)𝐴, and 𝑇 = (𝑌,𝑌 ′)𝐵.
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5 Discussion

In this work, we developed a theory of dependent optics that simultaneously generalizes (mixed) optics and
functor lenses. Natural examples of this construction arise from finitely complete (or finitely cocomplete)
categories or, more generally, from symmetric monoidal categories with reflexive equalizers (or reflexive
coequalizers) preserved by the tensor product. Motivated by the practical applicability of coproducts
of dependent lenses [3, 5, 8], we showed sufficient conditions under which the category of dependent
optics admits finite coproducts. In [18, 21], it was shown that the category of functor lenses admits a
monoidal structure whenever the underlying indexed category is monoidal. Although we did not pursue
this direction here, we believe that the key ingredient used in [18]—the notion of pseudomonoid in the
2-category of indexed categories—can be adapted to our setting to obtain an analogous result for the
category of dependent optics.

Aiming to mimic the profunctor encoding [7, 16] of optics, we defined a generalization of Tambara
modules—Tambara representations. We showed that contravariant functors from Optic to an arbitrary
category D can equivalenty be described as D-valued Tambara representations. Using this result, we
established a representative-free interface for dependent optics, where each dependent optic is encoded
as a polymorphic function, and recovered the profunctor representation theorem [7] in our setting. In the
future, it will be interesting to explore in which particular cases of dependent optics this general result
can be specialized to yield simplified encodings, akin to the van Laarhoven encoding for lenses [20].

A more general definition of optics, fiber optics, has been developed in [3]. Furthermore, the authors
sketched a possible formalization of the bicategory of dependent optics to simultaneously generalize
dependent lenses, mixed optics, and fiber optics. We believe that novel avenues of research can arise
from the interplay between the two works. From the construction in [3, Sect. 4.3], it is straightforward to
see that fiber optics are a particular case of dependent optics, as developed here, and they can probably
be used to unify many examples of dependent optics. Hopefully, the work done here can help fine-tune
the technical details of the definition of the bicategory of dependent optics.

Even though they appear different on the surface, our definition of dependent optics and the notion
of compound optics [17] are equivalent (see [4, Ex. 4.2]). In our view, this has several beneficial
consequences. On the one hand, our manuscript can be used to fill the gaps left in [17], such as the study
of the properties of the category of dependent optics or the generalization of Tambara modules and of
the profunctor representation theorem. On the other hand, the approach taken in [17] offers a different
perspective on dependent optics and their composition in terms of Kan extensions, which can help form
an intuitive understanding of our direct, explicit definitions. Finally, the existence of two equivalent,
independently-developed definitions supports the intuition that this is indeed a principled adaptation of
optics to the dependent case.
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