Fully abstract categorical semantics for digital circuits
Extended abstract

George Kaye, David Sprunger and Dan R. Ghica
July 20, 2022

Contribution. It is essential that we have ways to verify the correctness of digital circuits and reason with them. Conven-
tionally, this is done by translation into an executable model which can be simulated to observe its behaviour. An alternative
approach, used in software, is to reason syntactically: programs are formulated equationally and can be reduced step by step.
When provided with inputs, the goal of such a system is to apply reductions and derive an output value.

Such an equational system was first presented in [GJ16; GJL17], in which digital circuits with delay and (instant) feedback
are modelled as morphisms in a freely generated traced cartesian category, or dataflow category [C$94; Has97]. However, the
presentation was informal and, crucially, not complete: not all circuits could be reduced to a stream of values. Our work
brings this project to its conclusion, formalising the categorical semantics and completing the set of equations.

Syntax. Circuits are defined over a signature.

Definition 1 (Circuit signature). Let ¥ be a tuple (V,e,0,G) where V is a finite set of values with distinguished elements o,0 €V,
and G is a finite set of tuples (g, m) where g is a gate symbol and m € N is its arity.

The distinct elements e and o represent a disconnected wire (a lack of information) and a short circuit (inconsistent information)
respectively. Digital circuits are constructed as morphisms in a freely generated symmetric traced monoidal category (STMC).
To aid in the presentation, we shall use the graphical calculus of string diagrams [JS91; JSV96; Sel11].

Definition 2 (Sequential circuits). For a signature ¥, let SCircy be the symmetric traced monoidal category freely generated over:

@- foreachveV m for each (g,m) € G -@: :@' 4 ‘°‘

In turn each generator represents: values that flow through wires; gates; constructs for forking, joining and stubbing wires;

and finally a generator for delay. Circuits obtained by composing generators are drawn as dark green squares 4’—.4 ;

circuits containing only gates and structural generators are drawn in a lighter blue square . To avoid clutter, we
occasionally omit the backgrounds of concrete generators in large diagrams.

Semantics. Circuits specified syntactically have no computational content. To add semantics to circuits, first the signature
must be interpreted in some domain.

Definition 3 (Interpretation). An interpretation of £ =(V,e,0,G) is a tuple I = (V,1y,1g) where (V,C, L, T) is a finite lattice, Iy,
is a function V\ {e,0} — V\ {1, T}, and Zg is a map from each (g, m) € G to a monotone function g: V" — V such that g(1™) = L
and g(v) is in the image of I, for all ve V™.

Example 4. Let X, = ({o,t,f,0},8,0,{(AND,2),(OR, 2),(NOT, 1)}) be a signature. In SCircy_, the values are @, @, @ and
©&-; the gates are , @ and . Let V, be the lattice ({1,0,1,T},E), with the join defined as 01 = T and
the meet defined as 0111 = 1. Let {A,V,—} be the Belnap logic operators [Bel77]: the truth tables are listed in Fig. 1. Let
Zie = (Vi {f> 0,t > 1},{AND > A,OR - V,NOT +— —}).

The semantics of circuits is that of stream functions, which take as input a stream and output a stream. In particular, we are
interested in stream functions of the form (V")¥ — (V")?,

Example 5. For a value v €V, the stream function val,: (V)Y - Ve is defined as val,(e)(0) := Iy (v),val,(e)(i +1):= L. Fora
gate (g,m) € G, the stream function gate,: (VM)® — V@ is defined as gatey(0)(i) := Zg(g)(o(i)). Finally, the shift stream function
0: V¥ > V¥ isdefined as 6(c)(0) := L,0(0)(i+ 1) := o (i).

Definition 6. For a signature ¥ = (V,e,0,G) and its interpretation I = (V,1y,1Lg), let Streamy be the prop freely generated over
val, for each v €V, gate, for each (g, m) € G, and the shift stream 6. Composition and tensor are by function composition and
cartesian product; the symmetry swaps input streams.

Theorem 7. Stream7 is traced.

Definition 8. Let [-]; : SCircy — Streamy be a traced prop morphism, mapping circuits to appropriate stream functions. The
details are omitted, see [GKS22].

If two circuits map to the same semantics in Streamz, we say they are extensionally equivalent, written 4"—.—1 ~r 3’—.—"+ :

Theorem 9 ([GKS22]). Let SCircy 1 be the category obtained by quotienting SCircy by ~7. Then there is an isomorphism of
categories SCircy 7 = Stream7.

Equational reasoning. Circuits of non-equal syntax can have the same semantics as stream functions. However, in general
it is prohibitive to check that the corresponding streams for two circuits are equal: it is more efficient to reason equationally.

Equations are identities that hold in the quotient category SCircy 7: we write 3”—.—% = 4—.—+ if w—.—"r is equal to

m

+ under the equational theory. Note that since we are using string diagrams, the axioms of STMCs are ‘absorbed’ into
the notation and always hold by moving wires and boxes around.

Productivity. A common use of equational reasoning is to take a circuit and reduce it to its stream of output values.

Definition 10 (Productivity). For a set of equations £, a closed sequential circuit .—F is called productive under & if there exist

values @+ and sequential circuit .—"r such that .—"r =¢ ;’;}

A set of equations was presented in [G]16]. However, they were not complete: these axioms could not necessarily handle
circuits with non-delay-guarded feedback, in which every feedback loop does not pass through a delay generator. While in
some circuits ‘instant feedback’ is useful [Rie04; MSB12], in other cases it can result in an unproductive circuit. To tackle
this, we use the Kleene fixpoint theorem: since all the gates in an interpretation are monotone, they have a least fixpoint; since
our lattice is finite, we are able to compute it after a finite number of iterations.

Definition 11. For a combinational circuit , let its nth iteration be defined inductively as = .
m i X X
and = . Let T = (V,Iy,Ig) be an interpretation and let c be the length of the longest chain in V: the

fixpoint of in I, denoted as + , is defined as .
m n n n

The complete set of equations C for closed circuits under any interpretation is shown in Fig. 2. An important consequence of
these is that the unfolding rule for circuits with feedback can be derived, illustrated in Fig. 3.

Theorem 12. Any closed sequential circuit .—0' is productive under C.

By applying productivity, a sequence of values can be obtained for any sequential circuit 3"—.4 given some inputs @-.
This sequence is precisely the corresponding stream obtained using [-];.

Full abstraction. In the closed case these equations suffice, but when faced with an open circuit we must devise another

equation. To do this, we view circuits as state transition machines: recall that a circuit 3”—.—% is in global delay form if

it is in the form . We call the circuit a combinational core of 3’—.—1 : this circuit produces its state

transition and its output. To equate circuits with the same behaviour we essentially construct a bisimulation between these
state machines.

Proposition 13. Let 3‘—.—% and 4’—.4 be sequential circuits. Then, if their combinational cores produce the same outputs for

all accessible states, then 3’—.—"* = L._n*

This equivalence may look obtuse at first glance, but many familiar equations can be derived using it: a selection is shown in
Figs. 4 and 5. With this equation, the final result can be shown.

Theorem 14 (Full abstraction). +—.—"+ =C+MM w—.—"r if and only zf[3’—.—+] = [4—.—”&] .
I I

This allows us to reason purely equationally with digital circuits, instead of appealing to the potentially inefficient stream
semantics. Even so, this does not immediately yield an automatic rewriting framework, as computationally it is difficult to
handle the trace. A suitable strategy for tackling this problem was presented in [GJL17] using graph rewriting on framed
point graphs; a current thread of work is reworking this using recent work on rewriting with hypergraphs [Bon+16; Kay21].

O/T\l
N

Figure 1: The lattice structure on V,, and truth tables for the gates in X, under Z,.

4 = o kK[>
ok ok
cocoolo
4 = o k=
il el ol
=N ol]
g

~ - o o[
4 = ok|<

~ = =

~ o~ k|
4 ~ok

- = @ @Hs - = @— C=—== S=—= <> = -

Fo 5

Figure 2: Equations for reducing closed circuits.

Figure 3: Deriving the unfolding rule.

< -— <=- = ~=-«X
- - > =0 > = ==X

o-— - = D=z
Figure 4: The equations of a bialgebra, derivable using the ‘Mealy equation’

2 (M) 5):} 9 (M) S/D > MM - ™M
@b = - @D = - @D ¢ @ e Y ~e
> M M G5 (I — (I p—

o MW :l;>D<M:M) DY :1;>D<M:M> By

Figure 5: A set of equations derivable using the ‘Mealy equation’, .

References

[Bel77]

[Bon+16]

[CS94]

[GJ16]

[GJL17]

[GKS22]

[Has97]

J591]

[JSV96]

[Kay21]

[MSB12]

[Rie04]

[Selll]

Nuel D. Belnap. “A Useful Four-Valued Logic”. In: Modern Uses of Multiple-Valued Logic. Ed. by J. Michael Dunn
and George Epstein. Episteme. Dordrecht: Springer Netherlands, 1977, pp. 5-37. 1sBN: 978-94-010-1161-7. por:
10.1007/978-94-010-1161-7_2.

Filippo Bonchi et al. “Rewriting modulo Symmetric Monoidal Structure”. In: Proceedings of the 31st Annual
ACMY/IEEE Symposium on Logic in Computer Science. LICS "16. New York, NY, USA: Association for Computing
Machinery, July 5, 2016, pp. 710-719. 1sBNn: 978-1-4503-4391-6. por: 10. 1145/2933575.2935316.

Virgil Emil Cazanescu and Gheorghe Stefanescu. “Feedback, Iteration, and Repetition”. In: Mathematical Aspects
of Natural and Formal Languages. Vol. Volume 43. World Scientific Series in Computer Science Volume 43. World
Scientific, Oct. 1, 1994, pp. 43—61. 1sBn: 978-981-02-1914-7. por: 10.1142/9789814447133_0003.

Dan R. Ghica and Achim Jung. “Categorical Semantics of Digital Circuits”. In: 2016 Formal Methods in Computer-
Aided Design (FMCAD). 2016 Formal Methods in Computer-Aided Design (FMCAD). Oct. 2016, pp. 41-48. por:
10.1109/FMCAD.2016.7886659.

Dan R. Ghica, Achim Jung, and Aliaume Lopez. “Diagrammatic Semantics for Digital Circuits”. In: 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017). Ed. by Valentin Goranko and Mads Dam. Vol. 82. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2017, 24:1-24:16. 1sBN: 978-3-95977-045-3. por: 10.4230/LIPIcs.CSL.2017.24.

Dan R. Ghica, George Kaye, and David Sprunger. “Full Abstraction for Digital Circuits”. 2022. arXiv: 2201. 10456
[cs, math].

Masahito Hasegawa. “Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda
Calculi”. In: Typed Lambda Calculi and Applications. Ed. by Philippe de Groote and]. Roger Hindley. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1997, pp. 196-213. 1sBN: 978-3-540-68438-1. por:
10.1007/3-540-62688-3_37.

André Joyal and Ross Street. “The Geometry of Tensor Calculus, I”. In: Advances in Mathematics 88.1 (1991),
pp- 55-112. 1ssn: 0001-8708. por: 10.1016/0001-8708(91)90003-P.

André Joyal, Ross Street, and Dominic Verity. “Traced Monoidal Categories”. In: Mathematical Proceedings of the
Cambridge Philosophical Society 119.3 (Apr. 1996), pp. 447-468. 1ssn: 1469-8064, 0305-0041. por: 10.1017/50305
004100074338.

George Kaye. “Rewriting Graphically with Symmetric Traced Monoidal Categories”. 2021. arXiv: 2010.06319
[math].

Michael Mendler, Thomas R. Shiple, and Gérard Berry. “Constructive Boolean Circuits and the Exactness of
Timed Ternary Simulation”. In: Formal methods in system design : an international journal 40.3 (2012), pp. 283-329.
1ssN: 0925-9856. por: 10.1007/s10703-012-0144-6.

Marc D. Riedel. “Cyclic Combinational Circuits”. PhD thesis. United States: California Institute of Technology,
May 27, 2004. 112 pp. 1sBN: 9780496071005. por: 10.7907/410B-XR25.

Peter Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In: New Structures for Physics. Ed. by
Bob Coecke. Lecture Notes in Physics. Berlin, Heidelberg: Springer, 2011, pp. 289-355. 1sBN: 978-3-642-12821-9.
por: 10.1007/978-3-642-12821-9_4.

https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1142/9789814447133_0003
https://doi.org/10.1109/FMCAD.2016.7886659
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://arxiv.org/abs/2201.10456
https://arxiv.org/abs/2201.10456
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://arxiv.org/abs/2010.06319
https://arxiv.org/abs/2010.06319
https://doi.org/10.1007/s10703-012-0144-6
https://doi.org/10.7907/410B-XR25
https://doi.org/10.1007/978-3-642-12821-9_4

	References

