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Contribution. It is essential that we have ways to verify the correctness of digital circuits and reason with them. Conven-
tionally, this is done by translation into an executable model which can be simulated to observe its behaviour. An alternative
approach, used in software, is to reason syntactically: programs are formulated equationally and can be reduced step by step.
When provided with inputs, the goal of such a system is to apply reductions and derive an output value.

Such an equational system was first presented in [GJ16; GJL17], in which digital circuits with delay and (instant) feedback
are modelled as morphisms in a freely generated traced cartesian category, or dataflow category [CŞ94; Has97]. However, the
presentation was informal and, crucially, not complete: not all circuits could be reduced to a stream of values. Our work
brings this project to its conclusion, formalising the categorical semantics and completing the set of equations.

Syntax. Circuits are defined over a signature.

Definition 1 (Circuit signature). Let Σ be a tuple (V ,•,◦,G) where V is a finite set of values with distinguished elements •,◦ ∈ V ,
and G is a finite set of tuples (g,m) where g is a gate symbol and m ∈ N is its arity.

The distinct elements • and ◦ represent a disconnected wire (a lack of information) and a short circuit (inconsistent information)
respectively. Digital circuits are constructed as morphisms in a freely generated symmetric traced monoidal category (STMC).
To aid in the presentation, we shall use the graphical calculus of string diagrams [JS91; JSV96; Sel11].

Definition 2 (Sequential circuits). For a signature Σ, let SCircΣ be the symmetric traced monoidal category freely generated over:

v for each v ∈ V gm for each (g,m) ∈ G

In turn each generator represents: values that flow through wires; gates; constructs for forking, joining and stubbing wires;

and finally a generator for delay. Circuits obtained by composing generators are drawn as dark green squares F
m n

;

circuits containing only gates and structural generators are drawn in a lighter blue square F
m n

. To avoid clutter, we
occasionally omit the backgrounds of concrete generators in large diagrams.

Semantics. Circuits specified syntactically have no computational content. To add semantics to circuits, first the signature
must be interpreted in some domain.

Definition 3 (Interpretation). An interpretation of Σ = (V ,•,◦,G) is a tuple I = (V,IV ,IG) where (V,⊑,⊥,⊤) is a finite lattice, IV
is a function V \ {•,◦} →V \ {⊥,⊤}, and IG is a map from each (g,m) ∈ G to a monotone function g : Vm→V such that g(⊥m) =⊥
and g(v) is in the image of IV for all v ∈Vm.

Example 4. Let Σ⋆ = ({•, t, f,◦},•,◦, {(AND,2), (OR,2), (NOT,1)}) be a signature. In SCircΣ⋆
, the values are , t , f and

; the gates are , and . Let V⋆ be the lattice ({⊥,0,1,⊤},⊑), with the join defined as 0 ⊔ 1 = ⊤ and

the meet defined as 0 ⊓ 1 = ⊥. Let {∧,∨,¬} be the Belnap logic operators [Bel77]: the truth tables are listed in Fig. 1. Let
I⋆ = (V⋆ , {f 7→ 0, t 7→ 1}, {AND 7→ ∧,OR 7→ ∨,NOT 7→ ¬}).

The semantics of circuits is that of stream functions, which take as input a stream and output a stream. In particular, we are
interested in stream functions of the form (Vm)ω→ (Vn)ω.

Example 5. For a value v ∈ V , the stream function valv : (V0)ω→Vω is defined as valv(•)(0) := IV (v),valv(•)(i + 1) :=⊥. For a
gate (g,m) ∈ G, the stream function gateg : (Vm)ω→Vω is defined as gateg (σ )(i) := IG(g)(σ (i)). Finally, the shift stream function
δ : Vω→Vω is defined as δ(σ )(0) :=⊥,δ(σ )(i + 1) := σ (i).

Definition 6. For a signature Σ = (V ,•,◦,G) and its interpretation I = (V,IV ,IG), let StreamI be the prop freely generated over
valv for each v ∈ V , gateg for each (g,m) ∈ G, and the shift stream δ. Composition and tensor are by function composition and
cartesian product; the symmetry swaps input streams.

Theorem 7. StreamI is traced.

Definition 8. Let [−]I : SCircΣ→ StreamI be a traced prop morphism, mapping circuits to appropriate stream functions. The
details are omitted, see [GKS22].



If two circuits map to the same semantics in StreamI , we say they are extensionally equivalent, written F
m n ≈I G

m n
.

Theorem 9 ([GKS22]). Let SCircΣ,I be the category obtained by quotienting SCircΣ by ≈I . Then there is an isomorphism of
categories SCircΣ,I � StreamI .

Equational reasoning. Circuits of non-equal syntax can have the same semantics as stream functions. However, in general
it is prohibitive to check that the corresponding streams for two circuits are equal: it is more efficient to reason equationally.

Equations are identities that hold in the quotient category SCircΣ,I : we write F
m n

= G
m n

if F
m n

is equal to

G
m n

under the equational theory. Note that since we are using string diagrams, the axioms of STMCs are ‘absorbed’ into
the notation and always hold by moving wires and boxes around.

Productivity. A common use of equational reasoning is to take a circuit and reduce it to its stream of output values.

Definition 10 (Productivity). For a set of equations E, a closed sequential circuit F
n

is called productive under E if there exist

values v
n

and sequential circuit G
n

such that F
n

=E
G

v
n

n .

A set of equations was presented in [GJ16]. However, they were not complete: these axioms could not necessarily handle
circuits with non-delay-guarded feedback, in which every feedback loop does not pass through a delay generator. While in
some circuits ‘instant feedback’ is useful [Rie04; MSB12], in other cases it can result in an unproductive circuit. To tackle
this, we use the Kleene fixpoint theorem: since all the gates in an interpretation are monotone, they have a least fixpoint; since
our lattice is finite, we are able to compute it after a finite number of iterations.

Definition 11. For a combinational circuit F

x

m

x

n

, let its nth iteration Fn
m

x

n

be defined inductively as F0
m

x

n

:= F

x

m

x

n

and Fk+1
m

x

n

:=
F

Fk
x

m

x

n

m . Let I = (V,IV ,IG) be an interpretation and let c be the length of the longest chain in V: the

fixpoint of F

x

m

x

n

in I , denoted as F†
m

n

x

, is defined as Fc+1
m

x

n

.

The complete set of equations C for closed circuits under any interpretation is shown in Fig. 2. An important consequence of
these is that the unfolding rule for circuits with feedback can be derived, illustrated in Fig. 3.

Theorem 12. Any closed sequential circuit F
n

is productive under C.

By applying productivity, a sequence of values can be obtained for any sequential circuit F
m n

given some inputs v .
This sequence is precisely the corresponding stream obtained using [−]I .

Full abstraction. In the closed case these equations suffice, but when faced with an open circuit we must devise another

equation. To do this, we view circuits as state transition machines: recall that a circuit F
m n

is in global delay form if

it is in the form F̂
s

x

z

m n

. We call the circuit F̂

x

m

x

n

z
a combinational core of F

m n
: this circuit produces its state

transition and its output. To equate circuits with the same behaviour we essentially construct a bisimulation between these
state machines.

Proposition 13. Let F
m n

and F
m n

be sequential circuits. Then, if their combinational cores produce the same outputs for

all accessible states, then F
m n

= F
m n

This equivalence may look obtuse at first glance, but many familiar equations can be derived using it: a selection is shown in
Figs. 4 and 5. With this equation, the final result can be shown.

Theorem 14 (Full abstraction). F
m n

=C+MM G
m n

if and only if
[

F
m n

]
I

=
[

G
m n

]
I

.

This allows us to reason purely equationally with digital circuits, instead of appealing to the potentially inefficient stream
semantics. Even so, this does not immediately yield an automatic rewriting framework, as computationally it is difficult to
handle the trace. A suitable strategy for tackling this problem was presented in [GJL17] using graph rewriting on framed
point graphs; a current thread of work is reworking this using recent work on rewriting with hypergraphs [Bon+16; Kay21].
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Figure 1: The lattice structure on V⋆ , and truth tables for the gates in Σ⋆ under I⋆ .
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Figure 2: Equations for reducing closed circuits.

F

x x

nm

= F

x x

nm

= F

F

x

x

n

n

x

m

x

m

=
F

F

x
x

n

n

x

m
x

m

Figure 3: Deriving the unfolding rule.
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Figure 4: The equations of a bialgebra, derivable using the ‘Mealy equation’
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Figure 5: A set of equations derivable using the ‘Mealy equation’, .
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