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Abstract

Past work shows that one can associate a notion of Shannon entropy to a

Dirichlet polynomial, regarded as an empirical distribution. Indeed, entropy

can be extracted from any 3 ∈ Dir by a two-step process, where the first step

is a rig homomorphism out of Dir, the set of Dirichlet polynomials, with rig

structure given by standard addition and multiplication. In this short note, we

show that this rig homomorphism can be upgraded to a rig functor, when we

replace the set of Dirichlet polynomials by the category of ordinary (Cartesian)

polynomials.

In the Cartesian case, the process has three steps. The first step is a rig

functor PolyCart → Poly sending a polynomial ? to ¤?y, where ¤? is the derivative
of ?. The second is a rig functor Poly → Set × Setop, sending a polynomial @

to the pair (@(1), Γ(@)), where Γ(@) = Poly(@, y) can be interpreted as the global

sections of @ viewed as a bundle, and @(1) as its base. To make this precise we

define what appears to be a new distributive monoidal structure on Set×Setop,
which can be understood geometrically in terms of rectangles. The last step, as

for Dirichlet polynomials, is simply to extract the entropy as a real number from

a pair of sets (�, �); it is given by log� − log
�
√
� and can be thought of as the

log aspect ratio of the rectangle.

1 Introduction

In practice, a probability distribution on a set of outcomes arises from considering

finite samples. A sample consists of a set of observations, or draws, each correspond-

ing to one of the outcomes. For example, the following is a sample with five (5)

outcomes and eight (8) draws:

draws

�

outcomes

(1)
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This corresponds to the probability distribution % = (1
2
, 1

8
, 1

8
, 1

8
, 1

8
). But the sample

itself can be encoded in the form of a polynomial, namely ? B y4 + 4y. Note that

?(1) = 5 is the number of outcomes and that ¤?(1) = 8 is the number of draws, where

¤? = 4y3 + 4 is the derivative of ?. The map � itself is somehow inherent in ?: one of

its summands has an exponent of 4, whereas its other four summands each have an

exponent of 1. Yet one may wonder: is this polynomial encoding really meaningful,

or is it just a bizarre packaging of the sample? Our goal in this paper is to show that

it is meaningful, at least when it comes to considering the Shannon entropy �(%).
The Shannon entropy of a distribution [Sha48] is a measure of how much in-

formation is transmitted when outcomes are selected according to the distribution.

For example, if one repeatedly chooses an element of the 8 draws in diagram (1)

uniformly at random but only reports the outcome, then the first outcome will show

up four-times more often than any other. As we will explain, Shannon’s information

theory says that this distribution has entropy �(%) = 2, i.e. it transmits the same

amount of information as if it were a uniform distribution on only 4 outcomes.

In this paper we will give a category-theoretic account of the Shannon entropy

of the probability distribution corresponding to a sample encoded as a polyno-

mial ?, or more precisely a polynomial functor ? ∈ Poly. Polynomial functors are

ubiquitous: they show up in type theory [ACH19; AN18], dynamical systems the-

ory [Spi20; SN22], database theory [SW15; Spi21], programming language theory

[BD96; AAG03], and higher category theory [TCM19; Sha21].

The category Poly of polynomial functors in one variable has an enormous

amount of structure. For example, it has at least eight distinct monoidal structures,

of which two will be relevant to us. One is the coproduct: given two polynomials

?, @, wemay add them to form ?+ @. In terms of samples, this operation simply takes

the disjoint union of two samples: both the sets of outcomes and the sets of draws.

The other is the Dirichlet product, denoted ⊗. We will give the precise formula for

? ⊗ @ in Section 2.3, but the idea is that it runs the two samples independently: an

outcome in ? ⊗ @ is a pair consisting of an outcome from ? and an outcome from @,

and a draw is also a pair consisting of a draw from ? and a draw from @.

These two operations make Poly a distributive monoidal category, because ⊗ dis-

tributes over +. The goal of this paper is to show that most of the process for taking

the Shannon entropy of a sample is fully category-theoretic. Indeed, we will factor

the process into three stages, the first two of which are completely categorical, and

the last of which extracts a real number that will be the entropy.

The first stage is to define a rig functor ) : PolyCart → Poly, which sends a

polynomial ? to )(?) B ¤?y, where ¤? is the derivative of ?. The second stage

is to define a rig functor ' : Poly → Set × Setop, which sends a polynomial @ to

'(@) B (@(1), Γ(@)), where Γ(?) = Poly(?, y) can be construed as the set of global

sections of ?, viewed as a bundle.

The fact that both ) and ' are rig functors means that each preserves both the

coproduct and the ⊗-product, a surprising amount of structure. But to say this,

we need to define what appears to be a novel symmetric monoidal product ⊗ on

2



Set × Setop. It is given by

(�1 , �1) ⊗ (�2 , �2) B
(
�1�2 , �

�2

1
�
�1

2

)
.

This monoidal product ⊗ distributes over the coproduct, which is given by

(�1 , �1) + (�2 , �2) B (�1 + �2 , �1 × �2) ,

hence making Set × Setop a distributive monoidal category, and in particular a rig
category. We will explain these two rig functors ) and ' in Section 3. We denote

their composite—the result of the first and second stages—by

h B (' ◦ )) : PolyCart → Set × Setop.

It contains the categorical aspect of the entropy in a given sample ? ∈ PolyCart
.

Before we discuss the third stage, we need a bit of intuition. Namely, we can

think of an object (�, �) ∈ Set × Setop as encoding a rectangle that has length � and

width
�
√
�. The coproduct of two rectangles is given by adding their lengths and

taking the geometric mean of their widths. The ⊗-product of two rectangles is given

by multiplying both their lengths and their widths. It is in these terms that we can

understand the third and final stage, which is simply to take the log aspect ratio (the
log of the quotient of length divided by width) of a given rectangle:

!(�, �) = log� − log

�
√
�.

That is, we will prove that for any polynomial ? with an associated probability

distribution %, the Shannon entropy �(%) can be computed by first applying the

rig-functorial operation to obtain h(?) ∈ Set × Setop, and then by extracting the log

aspect ratio:

�(%) = !(h(?)).

We will conclude by returning to our original example, after giving the full

composite: the function that takes a polynomial ? and returns the entropy of the

corresponding empirical distribution is given by

!(h(?)) B log ¤?(1) −
logΓ( ¤?y)
¤?(1)

Note that log
�
√
� =

log �

� .

So consider again the polynomial ? = y4 + 4y, depicted in (1). Then we calculate

¤?y = 4y4 + 4y, ¤?(1) = 8, Γ( ¤?y) = 4
4 ∗ 14 = 2

8 , and !(h(?)) = log 8−
log 2

8

8

= 2

which agrees with our former calculation: its entropy is �(%) = !(h(?)) = 2.

The remainder of this note is divided into two sections: Section 2 gives back-

ground on polynomial functors, including the definition of PolyCart ⊆ Poly as well

as the + and ⊗ structures. Section 3 gives the main results: explaining the seem-

ingly novel distributive monoidal structure on Set×Setop, providing a rig monoidal
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functor h : PolyCart → Set × Setop, showing how to extract the entropy via a par-

tial function ! : Ob(Set × Setop) → R, and finally proving the main theorem: that

�(%) = !(h(?)).
There have been other categorical approaches to entropy, most notably [BFL11],

[BF14], [Lei21], and [Par22]. Our presentation here has almost nothing in common

with those.

However, this work is closely aligned with [SH21]. There, the authors—myself

and Tim Hosgood—use Dirichlet polynomials rather than ordinary (Cartesian)1

polynomials. At the time, we seemed to have a choice of whether to use Dirichlet or

Cartesian polynomials, and the Dirichlet route seemed cleaner and more intuitive

for talking about the bundles. However, we were missing a few key ideas at the

time. Whereas there we only factored out from � a rig homomorphism (a function)

Dir → Rect to a somewhat ad hoc rig we called Rect, the presentation here factors

out from � a rig functor PolyCart → Set × Setop. Thus it is a significant categorical

upgrade.
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2 Background on polynomial functors

Readers familiar with the rig category (Poly, 0,+, y, ⊗) should skip to Section 3.1.

2.1 Basics

The main purpose of this section is to fix notation and provide a brief overview of

polynomial functors in one variable. More extensive background material can be

found in [SN22] and [GK12].

Definition 2.1 (Polynomial functor). Given a set (, we denote the corresponding

representable functor by

y( B Set((,−) : Set→ Set,

e.g. y((-) B -(
. In particular y = y1

is the identity and y0 = 1 is constant singleton.

A polynomial functor is a functor ? : Set → Set that is isomorphic to a sum of

representables, i.e. for which there exists a set ), a set ?[C] ∈ Set for each C ∈ ), and
an isomorphism of functors

? �
∑
C∈)

y?[C].

1
René Decartes at least invented the notation, e.g. y2 + 3y + 2, for polynomials; hence we refer to

them as Cartesian polynomialswhen we need to distinguish them from Dirichlet polynomials.
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We refer to ) as the set of ?-types, and for each type C ∈ ) we refer to ?[C] as the set
of ?-terms of type C.

A morphism ! : ? → ?′ of polynomial functors is simply a natural transformation

between them. It is called cartesian if for every map of sets 5 : (→ (′, the naturality

square

?(() ?(()

?′((′) ?′((′)

?( 5 )

!(() !((′)

?′( 5 )

y

is a pullback of sets. We denote the category of polynomial functors by Poly and the

wide subcategory of polynomials and cartesian maps by PolyCart ⊆ Poly. ♦

For any polynomial ? =
∑
C∈) y

?[C]
, we have a canonical isomorphism ?(1) � );

hence from now on we will denote ? by

? =
∑
�∈?(1)

y?[�] (2)

so that each ?-types is written with an upper-case letter, e.g. � ∈ ?(1), and its terms

are written with corresponding lower-case letters, e.g. 8 ∈ ?[�].

Remark 2.2. Using the Yoneda lemma, the fact that a morphism in Poly is just a nat-

ural transformation, and the fact that a polynomial is a coproduct of representables,

we derive

Poly(?, @) = Poly ©­«
∑
�∈?(1)

y?[�] ,
∑
�∈?(1)

y@[�]
ª®¬

�
∏
�∈?(1)

Poly ©­«y?[�] ,
∑
�∈?(1)

y@[�]
ª®¬

�
∏
�∈?(1)

∑
�∈@(1)

Set(@[�], ?[�]).

Thus we can understand a morphism ? → @ in Poly to consist of two parts (!1 , !♯)
as follows:

!1 : ?(1) → @(1) and !♯
�
: @[�] → ?[�], (3)

where � B !1(�). That is, !1 is a function from ?-types to @-types, and !♯
8
is a

function on terms that depends on a choice of position � ∈ ?(1). We refer to !1 as the

on-types function and to !♯
as the backwards on-terms function.

One can check that a map ! : ? → @ is cartesian iff the backwards-on-terms

function !♯
�
is a bĳection ?[�] � @[!1�] for each type � ∈ ?(1). ♦

Example 2.3 (Types and global sections, ?(1) and Γ(?)). For any polynomial ?, we

will be particularly interested in two sorts of maps: y → ? and ? → y. The former

is easy: a map y → ? is given on types by choosing a single type � ∈ ?(1) to be the

5



image of the unique type ! ∈ y(1) and given backward on terms using the unique

choice of function ?[�] → 1 = y[!]. Thus we have ?(1) � Poly(y, ?).
More interesting are the maps � : ? → y. This time � is trivial on types: each

type � ∈ ?(1) is sent to the unique type ! ∈ y(1). However on terms, we need a map

!♯
�
: 1→ ?[�] for each �, meaning a choice of term 8 ∈ ?[�] for each � ∈ ?(1). In other

words, writing Γ(?) B Poly(?, y), we have

Γ(?) �
∏
�∈?(1)

?[�]. (4)

We refer to Γ(?) as the set of global sections of ?, as is justified by the bundle termi-

nology the next section.

Note that −(1) : Poly → Set and Γ : Poly → Setop are functorial, as they are

represented and corepresented by y ∈ Poly. We will be very interested in the

functor

' : Poly→ Set × Setop (5)

given by '(?) B (?(1), Γ(?)). In fact, ' is a left adjoint, but we do not need that for

this paper. In Remark 3.6 we will explain that '(?) can be viewed as the rectangular
aspect of the polynomial ?, hence the name '. ♦

2.2 Derivatives and bundles

We can understand polynomial functors in terms of bundles, using the derivative.

For any polynomial ?, its derivative ¤? is defined as follows:

¤? B
∑
�∈?(1)

∑
8∈?[�]

y?[�]−{8} (6)

where ?[�] − {8} denotes the set-difference. Note that ¤?(1) � ∑
�∈?(1) ?[�] is the set of

all ?-terms, and it comes with a map ¤?(1) → ?(1) to the set of ?-types. Often in the

literature, this map of sets—which we call a bundle—is taken to be the polynomial

itself. A map of polynomials ! : ? → @ can be written in terms of these bundles:

¤?(1) ?(1) ×@(1) ¤@(1) ¤@(1)

?(1) ?(1) @(1)

!♯

!1

y

Just as in Remark 2.2, one provides a forwardmap on types!1 : ?(1) → @(1), atwhich

point one takes the pullback of that map with ¤@(1) → @(1), and then one provides a

backward map !♯
: ?(1) ×@(1) ¤@(1) → ¤?(1) on directions. Again, ! is cartesian iff !♯

is a bĳection.

We write ?@ = ? × @ for the usual product of two polynomials, e.g. ¤?y = ¤? × y.

Proposition 2.4. The assignment ? ↦→ ¤?y is a functor PolyCart → PolyCart.
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Proof. We can think of ¤?y as follows:

¤?y �
∑
�∈?(1)

∑
8∈?[�]

y?[�] (7)

Given a cartesian map ! : ? → @, the bĳection !♯
: @[!1(�)] � ?[�] lets us define a

map ¤?y→ ¤@y in an obvious way. �

Remark 2.5. In fact, the assignment (? ↦→ ¤?y) : PolyCart → PolyCart
extends to a

comonad on PolyCart
. The counit map &? : ¤?y→ ? is cartesian and is given on types

by (� , 8) ↦→ �. The comultiplication �? : ¤?y → ¥?y2 + ¤?y is given by the coproduct

inclusion.

A coalgebra for this comonad is a polynomial ? equipped with a map � : ? → ¤?y
such that &? ◦ � = id? ; it is not hard to check that the other condition holds for free.

Hence a coalgebra structure on ? can be identified with a choice a global section

? → y, i.e. an element � ∈ Γ(?). Of course the map ? → y is not cartesian in general,

so the only way it can be encoded in PolyCart
is via this coalgebra structure. A map

of coalgebras is a cartesian map ! : ? → ?′ that commutes with the global sections:

Γ(!)(�′) = �.

The above is intriguing in that Γ(?) is a major player in the story of this paper, but

we currently know of no further connection between entropy and this comonad. ♦

2.3 Rig monoidal structure on Poly

The category Poly has coproducts ?+@ and products ?×@ given by usual polynomial

arithmetic. We will be more interested in the former:2 coproducts constitute a

symmetric monoidal product with unit 0. A type in ? + @ is a type in ? or disjointly

a type in @, and a term of that type is as specified in ? or @, respectively.

We will also be interested in another monoidal product called Dirichlet product
and denoted − ⊗ −; the types and terms of ? ⊗ @ are given by the following formula:

©­«
∑
�∈?(1)

y?[�]
ª®¬ ⊗ ©­«

∑
�∈@(1)

y@[�]
ª®¬ B

∑
(� ,�)∈?(1)×@(1)

y?[�]×@[�]. (8)

This gives a symmetric monoidal structure (Poly, y, ⊗). A type in ? ⊗ @ is just a pair
of types (� , �) ∈ ?(1) × @(1) and a term of it is just a pair of terms (8 , 9) ∈ ?[�] × @[�].

In the language of bundles, ? + @ and ? ⊗ @ are respectively given by

¤?(1) + ¤@(1) ¤?(1) × ¤@(1)

?(1) + @(1) ?(1) × @(1)

i.e.
¤(? + @)(1) � ¤?(1) + ¤@(1) and ¤(? ⊗ @)(1) � ¤?(1) × ¤@(1).

2
The only reason we introduce × for Poly is to explain that the polynomial product ¤?y is in fact

the categorical product ¤?y � ¤? × y.
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The ⊗-structure distributes over the + structure:

? ⊗ (@1 + @2) � (? ⊗ @1) + (? ⊗ @2),

thus making (Poly, 0,+, y, ⊗) a distributive monoidal category, and in particular a

rig monoidal category.

Remark 2.6 (Leibniz and chain rules). Some readersmay be interested in the Leibniz

rule and chain rule, that

¤(? × @) � ¤? × @ + ? × ¤@
¤(? ⊳ @) � ( ¤? ⊳ @) × ¤@

where × is the categorical product and ⊳ is the composition product in Poly. These
hold, but we will not need them in this paper. ♦

3 Main results

Wedivide this section into two parts. Section 3.1 is the category theory part, inwhich

we provide what seems to be a novel symmetric monoidal structure on Set × Setop

and show that both ? ↦→ ¤?y and @ ↦→ (@(1), Γ(@)) are rig functors. At the end of this

section, we will have a rig functor h : PolyCart → Set×Setop that does the categorical
work of Shannon entropy.

Section 3.2 is the finishing step, providing a function Ob(Set × Setop) → R and

showing that when it is combined with the above, the map � : Ob(PolyCart) → R
sends an appropriately finite polynomial ? to the Shannon entropy of the empirical

distribution defined by ?.

3.1 Categorical entropy of a polynomial

Below we will often denote products of sets by juxtaposition, �� B � × �. Recall

the functor ? ↦→ ¤?y from Proposition 2.4.

Proposition 3.1. The functor ? ↦→ ¤?y is a rig functor PolyCart → PolyCart.

Proof. Clearly
¤
0 = 0 and

¤(? + @) � ¤? + ¤@, and by multiplying both sides by y we see

that the functor ? ↦→ ?y preserves the coproduct structure. There is an isomorphism

¤yy � y, and for any ?, @ ∈ PolyCart
there is also an isomorphism

¤(? ⊗ @)y � ( ¤?y)⊗(¤@y),
as follows from (7) and (8); thus ? ↦→ ¤?y preserves the ⊗-structure. All of these

isomorphisms are natural in ?, @ ∈ PolyCart
, completing the proof. �

The following corollary is straightforward, since PolyCart
inherits + and ⊗ from

the forgetful functor PolyCart → Poly.

Corollary 3.2. The functor )(?) B ¤?y is a rig functor ) : PolyCart → Poly.
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Remark 3.3 (Total polynomial). Note that for any ? we have ( ¤?y)(1) � ¤?(1). We

think of ¤?y as the total polynomial of ?, akin to the total space of a bundle, where ?

is playing the role of the base. To justify this intuition, note that ¤?y comes with a

“projection” map & : ¤?y→ ? and that a section ? → ¤?y of & can be identified with a

section � ∈ Γ(?) of ? as a bundle; see Remark 2.5 and Example 2.3. ♦

Example 3.4. For any polynomial ?, we have

Γ( ¤?y) �
∏
�∈?(1)

?[�]?[�].

This formula—which follows directly from Eqs. (4) and (7)—will be relevant when

connecting the category theory to Shannon entropy later on. ♦

Proposition 3.5. The category Set × Setop has a distributive monoidal structure:

(�1 , �1) + (�2 , �2) B (�1 + �2 , �1�2) (9)

(�1 , �1) ⊗ (�2 , �2) B (�1�2 , �
�2

1
�
�1

2
) (10)

The units are (0, 1) and (1, 1) respectively.

Proof. Coproducts in Setop are products in Set, justifying the first line; these clearly

form a symmetric monoidal structure. For the ⊗-monoidal structure, note that the

formula is functorial in � ∈ Set and � ∈ Setop. It is also symmetric as well as unital:

(1, 1) ⊗ (�2 , �2) � (�2 , �2). Associativity is justified as follows:

(�1 , �1) ⊗ ((�2 , �2) ⊗ (�3 , �3)) � (�1�2�3 , �
�2�3

1
�
�1�3

2
�
�1�2

3
)

� ((�1 , �1) ⊗ (�2 , �2)) ⊗ (�3 , �3).

There is an absorption map (0, 1) ⊗ (�, �) � (0, �) → (0, 1), and the distributivity of

⊗ over + is justified as follows:

(�, �) ⊗
(
(�1 , �1) + (�2 , �2)

)
�

(
�(�1 + �2), ��1+�2(�1�2)�

)
�

(
��1 + ��2 , �

�1��2��
1
��

2

)
�

(
(�, �) ⊗ (�1 , �1)) + ((�, �) ⊗ (�2 , �2)

)
.

We leave the remaining details to the interested reader. �

Remark 3.6 (Formal roots and rectangular aspect). One can think of an object (�, �) ∈
Set × Setop as formally representing the �th root of �, i.e. the number

�
√
� = �

1

� ,

keeping track of the base � as well. It is helpful to think of (�, �) as a rectangle with

length � and width
�
√
�. From this perspective, the sum from (9) adds the lengths

and takes the geometric mean of the widths, and the monoidal product from (10)

takes the product of both lengths and widths:

(�1�2)
1

�
1
+�

2 =

((
�

1

√
�1

)�1

×
(
�

2

√
�2

)�2

) 1

�
1
+�

2

and (��2

1
�
�1

2
)

1

�
1
�

2 =
�

1

√
�1

�
2

√
�2.
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For any polynomial ?, the functor '(?) B (?(1), Γ(?)) from (5) is consonant with

this interpretation. We may say that '(?) denotes the rectangular aspect of ? in

the sense that ?(1) represents the length and
?(1)
√
Γ(?), the geometric mean of the

fiber cardinalities, represents the width. For example, the polynomial ? = y4 + 4y,

depicted in Diagram (1), has length ?(1) = 5 and width
5

√
4 ≈ 1.3. ♦

Remark 3.7. The ⊗ operation (10) on Set × Setop in fact has a closure

[(�1 , �1), (�2 , �2)] B
(
�
�1

2
�
�2

1
, �1�2

)
.

We will not need this, but it is interesting. ♦

Proposition 3.8. The functor ' : Poly→ Set × Setop from (5) is a rig functor.

Proof. Recall from (5) that '(?) B (?(1), Γ(?)). Clearly 0(1) = 0 and (? + @)(1) �
?(1) + @(1). Also Γ(0) = 1 and Γ(? + @) � Γ(?) × Γ(@); hence ' preserves the (0,+)
monoidal structure. Moreover, we have y(1) = 1 and (? ⊗ @)(1) � ?(1) × @(1) and
Γ(y) = 1, so to show that ' preserves the (y, ⊗) monoidal structure, it remains only

to provide an isomorphism

Γ(? ⊗ @) � Γ(?)@(1) × Γ(@)?(1).

It is given as follows:

Γ(? ⊗ @) �
∏

(� ,�)∈?(1)×@(1)
?[�]@[�]

�
©­«

∏
(� ,�)∈?(1)×@(1)

?[�]ª®¬ × ©­«
∏

(� ,�)∈?(1)×@(1)
@[�]ª®¬

�
∏
�∈@(1)

∏
�∈?(1)

?[�] ×
∏
�∈?(1)

∏
�∈@(1)

@[�]

� Γ(?)@(1) × Γ(@)?(1)

�

We summarize the above section before we go on to the final one. Namely,

the functors ) : PolyCart → Poly and ' : Poly → Set × Setop from Corollary 3.2

and Proposition 3.8 compose to form a rig functor h B ' ◦ ) given by

PolyCart h−→ Set × Setop

? ↦→ ( ¤?(1), Γ( ¤?y)).
(11)

We refer to h(?) ∈ Set × Setop as the categorical entropy of the polynomial ?. This

pair of sets leaves behind any semblance of the probability distribution associated

with ?, but it retains the data necessary to compute ?’s entropy—as we’ll see in

Theorem 3.13—and it is rig-functorial in ?.
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3.2 Shannon entropy

Writing log to denote log
2
, we define a partial function ! : Ob(Set × Setop) → R by

(�, �) ↦→ log� −
log �

�
. (12)

Equivalently, !(�, �) = log� − log
�
√
�. When � = 0 and � = 1, we define this

function to be !(0, 1) B 0; for all cases where � = 0, or � = 0, or either � or � is

infinite, we leave !(�, �) undefined. We will be only interested in this map when

it is composed with the categorical entropy h from (11), and Lemma 3.9 below says

that we do not need to worry about the undefined cases.

Lemma 3.9. Let ? ∈ PolyCart with categorical entropy (�, �) B h(?), and suppose that
# ¤?(1) < ∞. Then we have that

i. � ≠ 0,
ii. if � = 0 then � = 1, and
iii. both � and � are finite.

Proof. By definition of h, we have that � B ¤?(1) and � B Γ( ¤?y).
i. One easily checks using (4) that for any @ ∈ Poly, the set Γ(@y) ≠ 0 is nonempty

since every (@y)-type has at least one term.

ii. If ¤?(1) = 0 then ? ∈ Set is constant, so ¤?y = 0 as well, and Γ(0) = 1 by (4).

iii. By assumption
#� = # ¤?(1) < ∞. For �, note that there are only a finite number

of � ∈ ?(1) forwhich ?[�] is nonempty, so by (4) and (6) the set Γ( ¤?y) is finite. �

Remark 3.10 (Log aspect ratio). With the interpretation of an object (�, �) ∈ Set ×
Setop as a rectangle with length � and width

�
√
�, as in Remark 3.6, we can think

of !(�, �) = log� − log
�
√
� as its log aspect ratio, the log of its length divided by its

width. This is a quantity that has come up in the study of vision [TGH11; Dic+17],

though we’re making no claim about whether this connection is meaningful. ♦

Definition 3.11 (Empirical distribution). Let ? ≠ 0 be a nonzero polynomial and

suppose that the cardinality of ¤?(1) ∈ Set is finite,
# ¤?(1) < ∞. We define the

empirical distribution defined by ? to be the following function % : ?(1) → [0, 1]:

%(�) B
#?[�]
# ¤?(1)

Note that 1 =
∑
�∈?(1) %(�), so % is indeed a probability distribution. ♦

Remark 3.12. One may ask how to view Poly’s monoidal structures, especially +
and ⊗, under the correspondence from Definition 3.11. Suppose given polynomials

?, @ ∈ Polywith associated probability distributions%? and%@ . ForDirichlet product

we have

%?⊗@ = %? ⊗ %@

11



where the left-hand side is the probability distribution associated to ? ⊗ @ and the

right-hand side is the usual tensor (independent) product of probability distribu-

tions. For sums we have

%?+@ =
¤?(1)

¤?(1) + ¤@(1)%? +
¤@(1)

¤?(1) + ¤@(1)%@

the convex combination of %? and &@ , weighted according to the relative number of

draws ¤?(1) and ¤@(1) in each. ♦

Recall that the Shannon entropy �(%) of a probability distribution % : - → [0, 1]
is given by

�(%) B −
∑
G∈-

%(G) log%(G).

The following theorem could be summarized as follows: “thinking of ? ∈ PolyCart

as a statistical sample, the entropy�(%) of the correspondingprobability distribution
% is equal to the log ratio of the rectangular aspect of ?’s total polynomial”; see

Remarks 3.3, 3.6, and 3.10.

Theorem 3.13. Let ? ≠ 0 be a nonzero polynomial with # ¤?(1) < ∞, and let % be the
empirical distribution defined by ?. Then the following equation holds

�(%) = !(h(?))

where � is the Shannon entropy and !, h are as defined in Eqs. (11) and (12).

Proof. We need to show that the following holds:

�(%) = log ¤?(1) −
logΓ( ¤?y)
¤?(1) .

With the fact Γ( ¤?y) � ∏
�∈?(1) ?[�]?[�] from Example 3.4 in hand, this is a routine

calculation:

�(%) B −
∑
�∈?(1)

#?[�]
# ¤?(1) log

#?[�]
# ¤?(1)

=
1

# ¤?(1)
∑
�∈?(1)

#?[�]
(
log

# ¤?(1) − log
#?[�]

)
=

1

# ¤?(1)
©­« # ¤?(1) log

# ¤?(1) − log

∏
�∈?(1)

#?[�] #?[�]ª®¬
= log

# ¤?(1) −
logΓ( ¤?y)
¤?(1)

�

Example 3.14 (Entropy of a uniform distribution). It is well-known and easy to

calculate that if % is a uniform distribution on � elements, then �(%) = log(�).
There are many samples that correspond to %; what differs are their sample sizes.

12



The sample in which ��-many observations are taken—each outcome occurring

�-many times—corresponds to the polynomial �y�.

Our formula for entropy needs to agree, and it does. The rectangular aspect of

the total polynomial is h(?) � (��, ���): length �� and width � =
��
√
���, so its log

aspect ratio is

!(h(?)) = log(��) −
log(���)
��

= log�. ♦
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