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We improve the framework of open games with agency [10, 4] by showing how the players’

counterfactual analysis giving rise to Nash equilibria can be described in the dynamics of the

game itself (hence diegetically), getting rid of devices such as equilibrium predicates. This new

approach overlaps almost completely with the way gradient-based learners [6] are specified and

trained. Indeed, we show feedback propagation in games can be seen as reverse-mode differen-

tiation, with a crucial difference explaining the distinctive character of the phenomenology of

non-cooperative games. We outline a functorial construction of arena of games, show players

form a subsystem over it, and prove that their ‘fixpoint behaviours’ are Nash equilibria.

1 Motivation

In narratology, diegetic is what exists or occurs within the world of a narrative [8] (such as dialog,

thoughts, etc.), as opposed to extra-diegetic elements which happens outside that world (such as

voiceovers, soundtrack, etc.). Open games represent the situations of classical game theory in a

compositional and purportedly ‘diegetic’ way, i.e. explicitly codifying the development of the game

actions and payoff distribution phases in their specification. Hedges proposed a framework in [13]

which evolved first by adopting the language of lenses, and then that of parametric lenses to describe

the bidirectional flow of information in games. In their last iteration [4, 3], open games with agency

are defined to be given by three functions (for concreteness, we assume to work in Set):

playG : Ω×X → Y, coplayG : Ω×X×R→ S×

Ω

, εG : (Ω→

Ω

)→ PΩ. (1.1)

The set Ω represent strategies, X and Y states of the game, while R and S utility and ‘coutility’,

respectively. Finally, εG is a selection function that encodes a player’s preferences: given a valuation

of strategies in

Ω

(called costrategies or intrinsic utility), εG returns the subset of strategies with
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satisfactory outcome. This data defines a parametric lens [4]:

G = (Ω,

Ω

, εG , playG , coplayG ) : (X ,S)� (Y,R). (1.2)

However, the dynamics of payoff distribution in open games sets the latter aside from other

examples of cybernetic systems1 described with parametric optics [3], chiefly learners [6] and partly

Bayesian reasoners [20, 2]. This is evident in the way the computation of Nash equilibria is defined

for open games, which relies on ‘packing up’ the arena2 of the game and then running the players’

characteristic counterfactual analysis extra-diegetically, thus outside the arena, not recognizing it as

part of the game itself.

(a) (b)
Figure 1

This issue grows into a serious conceptual flaw when we realize that according to the very

notion of ‘system with agency’ proposed by the author and his collaborators in [3], ‘open games

with agency’ have no agents! In fact, agents are supposed to be systems modelled as morphisms in

the vertical systems theory3 of a category of parametric optics, while in open games with agency

players’ preferences are embodied in the parameters, which are objects in the vertical systems

theory (Figure 1a). Contrast this with gradient-based learners (Figure 1b), where gradient descent

(which is truly the agent’s learning process) is explicitly represented in the system.

The lack of a principled payoff dynamics in open games shows in the way coutilities, costrategies

and utilities are all different in theory but very rarely in practice, and coplay is very often simply an

1Here we call ‘cybernetic’ those systems exhibiting agency and interactive feedbacks.
2Borrowing terminology from [4], the arena of an open game is the parametric lens left by taking away the equilibrium

predicate/selection function.
3Parametric optics representing systems with agency organize in bicategories, and by ‘vertical systems theory’ we

mean the 2-morphisms thereof. An example is the box GD in Figure 1b.
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identity or, even worse, a discard map, which makes it hard to motivate the existence of a backward

pass at all (see e.g. the translation process explained in [4]).

Contributions. In this work we correct the aforementioned problems by describing the entirety of

play, payoff distribution and players’ counterfactual analysis diegetically, that is, in the dynamics of

the game system itself, thereby making open games look much more like gradient-based learners or

Bayesian reasoners than they do now.

We achieve this by making two fundamental changes.

First, we observe that feedback propagating in a strategic game has to contain information about

the entirety of the payoff function of the game, hence we replace S and R in Figure 1a with PX and

PY , where P is a specified payoff object. This allows to define coplay functorially from play as

precomposition with a partially-evaluated play. This simple mechanism is enough to reproduce the

information on payoffs available at each stage of a sequential or concurrent game. Moreover, we

recognize the crucial role of the lax monoidal structure of this functor, which can be blamed for the

complexity of even small game-theoretic situations.

Secondly, we describe how players are embodied inside the game by their selection functions,

which are now expressed as parts of a ‘reparameterisation’ describing each player’s optimization

dynamic. This fully realizes what was already intued in [14] (‘agents are their selection function’)

and in the drawings in [3, §6], as well as, morally, the idea behind open games with agency

introduced in [4]. In fact we find out that the workhorse of open games with agency, the Nash

product of selection functions, is decomposed in three more elementary parts, the key one being

‘just’ tensor product of lenses.

We then show how this story shares many formal analogies with a refinement on the description

of gradient-based learners. There is a formal analogy between covectors and payoff vectors, reverse

derivatives and coplays, ‘raising indices’ and selection functions. Ultimately this suggests that

data describing how to functorially produce feedback-processing (dependent) lenses from their

forward parts is a fundamental constituent of the definition of a ‘theory of cybernetic systems’ which

experiences backpropagation-like feedback.
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2 Diegetic open games

We start by describing our proposed notion of diegetic open games. As anticipated, the key idea is to

recognize that in a strategic game, players have to observe the entirety of their payoff functions with

other players’ actions taken into account. This is done by fixing utility, coutility and intrinsic utility

types to be of the form PY , PX and PΩ, representing entire payoff functions. Then such functions are

propagated through the game in a way which is formally identical to backpropagation in learners,

and thus amenable to the same mathematical treatement. Thus coplayG is actually functorially

determined from playG , as a kind of reverse derivative.

2.1 Preliminaries

Fix a finitely complete category S . The category DLens(S ) of dependent lenses over S has

objects given by pairs of an object Y : S and a map p : R→ Y , and maps given by diagrams of the

form:

S R×Y X R

X X Y
f

pf ∗(p)

f ]

y (2.1)

In the internal language of S [19], these maps can be denoted as f : X → Y and f ]x : (x : X)×
R f (x)→ Sx. The full subcategory of DLens(S ) spanned by those p which are projections is

the category of simple lenses over S , Lens(S ). The f ] part of simple lenses has a simpler type,

namely X×R→ S.

Dependent lenses can be built from any indexed category F : S op→ Cat, in which case we

denote them by DLens(F). A detailed definition and intuition is given in [21].

The 2-category Para(S ) [3, §2] is the strictification of the bicategory whose objects are given

by objects of S , morphisms X to Y by a choice of parameter Ω : S and a map f : Ω×X → Y , and

2-morphisms (Ω, f )⇒ (Ξ,g) : X → Y by maps Ω→ Ξ making the obvious triangle commute (see

loc. cit., though we have reversed the direction of 2-cells here), which are called reparameterisations.

Composition of morphisms (Ω, f ) : X → Y and (Ξ,g) : Y → Z is given by

(Ξ×Ω,Ξ×Ω×X
Ξ× f−−→ Ξ×Y

g−→ Z) (2.2)

This makes it associative only up to coherent isomorphism, hence the strictification. Same applies

to the identites, which are given by (1,1×X πX→ X).
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Notice the construction of Para(S ) only used the cartesian monoidal structure of S . In fact

such a construction is functorial over cartesian monoidal categories. Given a lax monoidal functor

[15, Definition 1.2.14] F : S → T , with laxators `X ,Y : F(X)×F(Y )→ F(X ×Y ), we get a lax

2-functor [15, Definition 4.1.2] Para(F) : Para(S )→ Para(T ) defined on objects as F and on a

morphisms (Ω, f ) : X → Y as

Para(F)(Ω, f ) = (F(Ω),F(Ω)×F(X)
`Ω,X−−→ F(Ω×X)

F( f )−−→ Y ). (2.3)

Since `Ω,X is, in principle, not invertible, this means Para(F) preserves composition only up

to coherent non-invertible morphism. Explicitly, there is a reparameterisation Para(F)(Ω, f ) #

Para(F)(Ξ,g)⇒ Para(F)((Ω, f ) # (Ξ,g)), given by `Ξ,Ω. Likewise applies to preservation of

identities. The well-definedness of these reparameterisations follow from the axioms of lax monoidal

structure ` [15, Diagram 1.2.14].

2.2 Building arenas

Let us position ourselves in Set. We now describe the most simple form of games, deterministic,

complete information games, with our new machinery. We remark later on how we can abstract

away most of the assumptions we make here.

Fixing a payoff object P (often P = RN , with N the number of players), to a map f : X → Y

we can associate the map P f : PY → PX given by precomposition with f . This defines a functor

P(−) : Set→ Setop, which we can lift to a lax monoidal functor

P∗ : Set−→ Lens(Set) (2.4)

sending f : X → Y to ( f ,π2 #P f ) : (X ,PX)� (Y,PY ). Abusing notation, we’ll denote by P∗ f both

this lens and its backward part, and same with objects: P∗X := PX . Notice landing in lenses is

crucial to give P∗ a lax monoidal structure: while its unitor η : (1,1)� (1,P), given by (1, !P)

would be definable anyway; the laxator (1X ,Y ,nX ,Y ) : (X ,P∗X)⊗ (Y,P∗Y )� (X ×Y,P∗(X ×Y )),

which we call Nashator, is defined by partial evaluation at the residuals:

nX ,Y : X×Y ×P∗(X×Y )−→ P∗X×P∗Y

(x̄, ȳ,u) 7−→ 〈u(−, ȳ), u(x̄,−)〉
(2.5)
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Ideally, this functor promotes a play function into a lens obtained by canonically adding a coplay

function; but since open games are parametric lenses, we need to apply Para to P∗ to obtain the lax

2-functor

Para(P∗) : Para(Set)−→ Para(Lens(Set)) (2.6)

so that a play function (Ω,playG ) : X → Y is turned into a full-blown parametric lens:

Para(P∗)(Ω,playG ) = (Ω,P∗Ω, (1Ω,X ,nΩ,X) # (playG ,P
∗playG )) (2.7)

where the backward part of the right hand side boils down to

Para(P∗)(Ω,playG )
] : Ω×X×P∗Y −→ P∗Ω×P∗X

(ω̄, x̄,u) 7−→ 〈uΩ, uX〉 where uΩ = u(playG (x̄,−))

uX = u(playG (−, ω̄))

(2.8)

This definition is the workhorse of diegetic open games. Notice how uX encapsulates ω̄ as a fixed

parameter, so that an opponent receiving such function later has that strategy fixed. Dually, uΩ has x̄

fixed so the player playing at this stage can vary their own strategy but not the state the game is at,

something determined, in turn, by other players’ strategies.

Example 2.1 (Pure sequential game). Consider a very simple game in which two players make one

move each, in succession. The first player has strategy space Ω and play function (Ω,playG ) : X→Y ,

whereas the second player has strategies Ξ and play (Ξ,playH ) : Y → Z:

Figure 2

Figure 2 depicts the parametric lens Para(P∗)(Ω,playG ) # Para(P∗)(Ξ,playH ). This is what

we call the arena of the game.
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Suppose a x̄∈X and a u∈P∗Z are given, so as to close the open input horizontal wires in Figure 2.

These two pieces of data amount to a so-called context for the game, and mathematically correspond

to a further (trivially parameterised) lens (x̄, !P∗X) : (1,1)� (X ,P∗X) and (!Z,u) : (Z,P∗Z)� (1,1).

Then the remaining parametric lens has type (Ξ×Ω,P∗Ξ×P∗Ω,A ) : (1,1)� (1,1), which

one can easily prove being equivalent to a function Ξ×Ω→ P∗Ξ×P∗Ω. Following x̄ and u around

the arena, one can see what this function is given by

(ξ̄ , ω̄) 7→ 〈uΞ, uΩ〉 where uΞ = λξ .u(playH (ξ ,playG (x̄, ω̄))

uΩ = λω .u(playH (ξ̄ ,playG (x̄,ω))
(2.9)

These two functions are thus giving, to each player, all the information needed to compute their

optimal strategies given the other player’s strategy. Para(P∗) makes these payoff functions emerge

automatically from the information flow of lenses and from the careful use of Nashators.

Payoff costates. As we’ve seen in the latter example, an arena needs, eventually, to be closed

by a context. The data of an initial state is not particularly interesting, but we need to spend a

few words on the construction of payoff costates. Until now, open games shared the definition of

payoff function with traditional strategic games: a payoff costate (Z,P)� (1,1) encodes exactly

the information of a payoff function Z→ P. Now, however, payoff functions have been internalized

so that a costate needs not to emit the payoff corresponding to a given outcome of the game, but the

entire payoff function.

The most direct way to do so is to have a payoff function u : Z→ P being promoted to a costate

constu : (Z,P∗Z)� (1,1) in Lens(Set) by

constu = P∗u # (!P,const id) (2.10)

where const id : P→ PP is the constant map picking the identity of P. This costate effectively

ignores the outcome of the game, and returns u regardless. Alternatively, if P has the structure of a

group, we can keep the information about the outcome and define

∆u = P∗u # (!P,curr(−)) (2.11)

where curr(−) : P→ PP is the curried subtraction of P. This effectively composes to the costate

corresponding to the function

∆u : Z −→ P∗Z

z̄ 7−→ λ z.(u(z)−u(z̄)).
(2.12)
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which is a sort of ‘discrete differential’ of u. Eventually this would get to players as a continuation

describing their possible increment in payoff as a function of their deviation. In traditional game

theory ∆u is known as regret [16, §3.2]. We believe it to be more conceptually convicing than the

constant costate, especially as we compare games with other cybernetic systems in Section 3.

2.3 Adding players

Once an arena is built, we can add players in it. At this stage, we only deal with the ‘vertical’ part of

a game, i.e. we draw above the arena (which constitutes the ‘horizontal’ part of a game). Here’s

where we specify how players team up, what they observe about payoffs and, most importantly, how

players process this feedback to update their strategies.

The first thing to notice is that, since Para(P∗) is not strongly functorial, lifting the whole play

function to an arena in one go versus lifting it piece by piece makes a difference in how players end

up being implicitly separated.

In fact, if playG : X → Y and playH : Y → Z are parameterised by Ω and Ξ, respectively,

then Para(P∗)(playG #playH ) is parameterised by (Ξ×Ω,P∗(Ξ×Ω)) whereas Para(P∗)(playG ) #

Para(P∗)(playH ) is parameterised by (Ξ×Ω,P∗Ω×P∗Ξ). Effectively, Para(P∗)(playG #playH )

represents a game featuring a coalition of two players with strategy space Ξ × Ω, while

Para(P∗)(playG ) # Para(P∗)(playH ) represents a game with two competing players, with strat-

egy spaces, respectively, Ω and Ξ.

The difference lies in the way feedback is received by players, and in their possible deviations. In

the first case, the two players can evaluate joint deviations since their feedback has type Ξ×Ω→ P.

In the second case, the two players can only evaluate unilateral deviations, because they receive two

feedbacks Ω→ P and Ξ→ P obtained by fixing either player’s strategy. We turn the first to the latter

by reparameterising along the Nashator nΞ,Ω : (Ξ×Ω,P∗Ξ×P∗Ω)⇒ (Ξ×Ω,P∗(Ξ×Ω)). Thus,

when used as a reparameterisation, the Nashator breaks down coalitions of players.

Example 2.2 (Sequential game). Suppose we extend Example 2.1 with another move by the first

player (decided by the same staregy space Ω, hence the copy in Figure 3. Contrary to the previous

case, if we lifted the three play functions separately and then composed, we would have ended up

splitting player one into two players: the long-range correlation between the first and third stage of

the game forces us to lift the arena monolithically, as depicted in Figure 3.

We then reparameterise along ∆Ω to clone the strategies of the first player into the third stage,

and only then use nΩ,Ξ to make sure players are split into two different coalitions.
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Figure 3

Remark 2.3. Observe coalitions can always be broken canonically, but there’s no canonical way to

form them. This is actually good, since creating coalitions requires non-canonical agreements on

how to distribute payoffs among its members (so-called imputations [16, Chapter 8]).

Finally, the last bit of the game specification concerns the process each player uses to turn the

feedback they receive, which tells them how their strategic decisions gets rewarded in the arena,

into strategic deviations.

Usually, payoffs are numerical and players seek to maximize them. A bit more generally, players

have some preferences encoded by a selection function ε : P∗Ω→PΩ. We warn the reader that

P∗Ω = PΩ is the set of P-valued function to Ω, while PΩ is the powerset of Ω.

A selection function fits very well in the setting we devised so far, since it has (almost) the type

of the backward part of a lens sel : (Ω,PΩ)� (Ω,P∗Ω). We thus call such a lens a selection lens.

Remark 2.4. Notice the object (Ω,PΩ) can be considered the ‘state boundary’ for the player
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system, in the sense of [18], and betrays an implicit non-determinism in the game system. In fact,

we can generalize away from sets by replacing the powerset monad P : Set→ Set with other

(commutative) monads, like the Giry monad on measurable spaces (yielding stochastic games) or

the tangent space monad on smooth spaces (yielding differential games).

Remark 2.5. The backward part of a selection lens is actually of the form sel : Ω×P∗Ω→PΩ,

hence a parametric selection function. This suggests that Ω is even more than a set of strategies, it

represents the epistemic type of a player in the sense of Harsanyi [12], that is, an element ω ∈Ω

encodes not only the way a player plans to play but also their preferences (for instance, their aversion

to risk). Harsanyi’s games of incomplete information, at the moment codified in the framework of

open games in [1], can potentially benefit a lot from the new ideas we introduced here.

2.4 Games as systems

Let’s wrap up the construction we sketched so far. The first step to specify a game is to fix the

players involved (N) and their payoff type P. The arena is built canonically from a play function

playG : Ω×X → Y , where Ω = Ω1×·· ·×ΩN is the product of a strategy space per player, X is

a type of initial states and Y a type of possible final outcomes of the game. Given this, we apply

Para(P∗) to playG , and get back a parametric lens (Ω,P∗Ω,A ) : (X ,P∗X)� (Y,P∗Y ), the arena.

Remark 2.6. One might object that an initial state x̄∈ X and a utility function constu (or ∆u) deserve

to be part of the arena too, but experience tells this data is something to provide only when we

want to move on to the analysis of the game, since closing an arena prematurely hinders further

composition. The difference between a closed and an open arena is remindful of the subtle difference

between a normal (resp. extensive) form and a normal (resp. extensive) form game: the latter is the

data of the first plus a utility function.

Once the game arena has been built, we assemble the system of players over it. Usually,

such a lens will be of the form (
⊗N

i=1 seli) # nΩ1,...,ΩN , where seli : (Ωi,PΩi)� (Ωi,P∗Ωi) are N

selection lenses. Notice such a lens has domain (Ω,PΩ1× ·· ·×PΩN), so we precompose it

with ∏
N
i=1(−) : (Ω,PΩ)� (Ω,PΩ1×·· ·×PΩN), which is the identity on the forward part and

cartesian product4 in the backward part.

We denote the resulting lens (Ω,PΩ)� (Ω,P∗Ω) as G , and this constitutes a diegetic open

game over Set. Abstractly, we can consider this is a ‘system with boundary A ’, and any such

system can rightfully be called a game.
4Or better, the canonical lax monoidal structure of the powerset endofunctor.
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We stress this lens deserves to be called a system since its left (‘top’ in the drawings) boundary

has a canonical form: the deviations PΩ canonically associated to the given strategy profiles Ω

(what Myers calls changes in [18]).

Nash equilibria. So far, we never mentioned Nash equilibria. We have claimed that the way we

have woven together the various pieces of a game reproduces, diegetically and dynamically, the

counterfactual analysis players do in a non-cooperative strategic game.

To see why our claim holds, let’s analyze a game system constructed from a normal form (N,Ω),

following the above recipe. Since normal forms dispense completely with dynamical information,

the associated arena will be trivial: we set X = 1, Y = Ω and play(N,Ω) := πΩ : Ω×1→Ω.

What interests us is the system of players G over A(N,Ω) = Para(RN∗)(play(N,Ω)). In a tradi-

tional non-cooperative game, players simply maximize their payoffs, so that player i will adopt the

‘non-parametric’ selection seli = (1Ωi ,πP∗Ωi # argmax(− #πi)). Defining the rest of G as above, we

get the translation of (N,Ω) to the parametric lens (Ω,PΩ,G ∗A(N,Ω)) : (1,1)� (Ω,RN).

One can easily check that in this caseG turns out to reproduce the Nash product� of the involved

selection functions defined in [4].

G = ∏
N
i=1(−) #

(
N⊗

i=1

seli

)
#nΩ1,...,ΩN = (1Ω,πP∗Ωi #�

N
i=1πP∗Ωi # argmax(− #πi)). (2.13)

Of course this still works if instead of argmax we had chosen selection lenses seli that don’t use

their residual, and arguably we can extend the definition of � to encompass the remaining cases.

The point, however, is that this observation links the new framework with that of open games

with agency: the act of assigning a selection function to an arena has been turned into a bona fide

specification of a system over that arena, thereby fixing the conceptual picture.

We can now prove the following:

Theorem 2.7. Let (N,Ω = Ω1×·· ·×ΩN ,u : Ω→ RN) be an N-players, strategic game in normal

form [16, Definition 1.2.1]. Let G ∗(A(N,Ω) # constu) be its translation to a diegetic open game, as
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described above, where constu has been in defined in (2.10). Let G(Ω,u) : Ω→PΩ be the set-valued

function corresponding to such a closed parametric lens. Then a strategy profile ω ∈Ω is a Nash

equilibrium for (Ω,u) if and only if ω ∈ G(Ω,u)(ω).

Proof. Running ω through G(Ω,u) yields (�N
i=1 argmaxR(− # πi))(u), which in [4, Theorem 1] is

proven to coincide with the set of strategy profiles in Nash equilibrium.

In forthcoming work, we describe a principled, general framework to extract Nash equilibria as

‘behaviours’ of the system G over the arena A , in the style of [17, 18]. Specifically, we show that

Nash equilibria coincide, unsurprisingly, with non-deterministic fixpoints of such systems, i.e. simu-

lations of trivial game. Most importantly, from such a characterization we can automatically deduce

compositions formulae that reproduce the key strength of open games, that is compositionality

of the equilibria computation. The form of these new formulae seem interesting for the practical

implementation of such computations.

3 Diegetic feedback as backpropagation

The conceptual story behind the diegetic representation of feedback in games is not at all specific

to them. On the contrary, it opens a window on a broader conceptual story linking the categorical

description of cybernetic systems featuring a ‘backpropagation-like’ feedback dynamics (which

is most of them, notable exception being open servers [23]). Here we outline how gradient-based

learners [6] share the same abstract features, in a striking example of category theory enabling a

rigorous description of a previously only informal analogy.

In gradient-based learning, a smooth function X → Y is learned by optimizing a model

f : Ω×X → Y smoothly parameterised by the variable ω ∈Ω. Conceptually, this is only possible

because differential structure leaks information about the loss ` : Y ×Y → R ‘in a neighbourhood’

of (y, f (ω,x)), and this can be used to evaluate which changes in parameter the learner should

implement to improve. Hence it is paramount that ` is known ‘locally’, and not just pointwise. In

practice, the value of ` at (y, f (ω,x)) is not even used! Only the covector d f (ω,x)`(y,−) is needed.

This covector is then backpropagated across the various components of the learner until a

covector on Ω is obtained. As for games, this backpropagation mechanism is automatically enabled

by deploying the functor

T ∗ : Smooth−→ DLens(VecR) (3.1)
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sending each manifold X to its cotangent vector bundle T ∗X → X (the fiberwise dual of its tangent

bundle) and each map f : X → Y to its reverse derivative, i.e. pullback of covectors along f [22],

naturally expressed as a dependent lens ( f ,T ∗ f ) : (X ,T ∗X)� (Y,T ∗Y ).5

Remark 3.1. In [6], a functor very similar to T ∗ is obtained from the structure of reverse differential

category (RDC) on the base category, but Smooth is not such a category. Therefore, in ibid. the

authors confine themselves to its wide subcategory Euc of Euclidean spaces. In light of our findings

for games, it seems that considering functors S → DLens(S ) splitting the view fibration to be

more fundamental than reverse differential structure in the sense of [5]. Already in [5, §4] and [6,

Proposition 2.12], it is shown how reverse differential structures can be encoded as sections of the

view fibration of lenses, with extra conditions account for the ‘additivity’ necessary in the framework

of RDCs. It seems reasonable, therefore, to reformulate RDCs as particularly nice instances of

section of feedbacks, dualizing that of section of changes defined by Myers in [17, 18].

Remark 3.2. The functor T ∗ is strong monoidal and thus is associated to a pseudofunctor Para(T ∗)
that promotes a smooth parametric function straight into a backpropagating model. Compare this

with the functor Para(P∗), whose laxity is, ultimately, the source of the many interesting phenomena

in non-cooperative strategic games. The fact T ∗ is not lax is attributable to the additive structure

involved in each fiber of a cotangent bundle, whereby T ∗(X×Y )∼= T ∗(X +Y ).

Once an arena L := Para(T ∗)(Ω, f ) has been defined, the dynamic of an agent (which is what

really deserves the name of ‘learner’) actually doing the learning is given by a gradient flow lens

GF : (Ω,T Ω)� (Ω,T ∗Ω) which defines a system over L , by reparameterisation (as in Figure 1b).

The backward part of such a lens is determined by the data of a fiberwise linear morphism (−)] :

T ∗Ω → T Ω. The most common way such a morphism arises is when Ω is endowed with a

Riemannian metric g, in which case (−)] (known as ‘raising indices’ [22]) selects the direction of

steepest ascent associated to a covector, so that u] is argmaxv∈Tω Ω u(v)/‖v‖g for a given u ∈ T ∗ω Ω.

As highlighted in Table 1, (−)] is formally analogous to a selection function sel : Ω×P∗Ω→
PΩ, which indeed has the same role for games. This is corroborated by the type signatures of GF

and sel, both going from an object of ‘states and feedbacks’ to an object of ‘states and changes’.

What might look odd is the asymmetry between PΩ and Ω in the signature of sel, something

not present in (−)]. Indeed, if Ω is the set of ‘states’ of a player, then there is a dissimilarity

5Specifically, the codomain of T ∗ is the category of dependent lenses [21] obtained from the indexed category of

smooth R-vector bundles VecR : Smoothop→ Cat.
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games gradient-based learners

strategies
Ω

parameters
Ω

deviations
PΩ

vectors
T Ω

payoff functions
P∗Ω := PΩ

covectors
T ∗Ω

precomposition
P∗ f : X×P∗Y → P∗X

reverse derivative
T ∗ f : f ∗(T ∗Y )→ T ∗X

selection function
sel : Ω×P∗Ω→PΩ

sharp (iso)morphism
(−)] : T ∗Ω→ T Ω (of vector bundles over Ω)

Table 1

between T ∗Ω being the set of R-valuations of T Ω and P∗Ω being the set of valuations on PΩ. This

discrepancy requires a bit more scaffolding to be explained, but intuitively it amounts to observing

T ∗Ω is the set of linear valuations on T Ω, an likewise, when we consider only maps f : PΩ→ P

that satisfy f (A) = ∑a∈A f ({a}), these are determined by maps Ω→ P.

Table 1 could be expanded with a third column for Bayesian reasoners, though it’s still not

completely clear how that would exactly work. In his forthcoming work [2], Braithwaite puts

forward an approach to Bayesian lenses for general Markov categories, which gives one way to

fill the missing column. On the other hand, at least for classical probability spaces, information

geometry seems to suggest Bayesian reasoners are gradient-based learners living on (possibly

singular) manifolds of probability measures, moving by pure gradient flow [11].

4 Conclusions

In this work we described a new approach to the specification of compositional games in the style of

open games [10, 4]. It corrects some of the conceptual shortcomings of open games with agency,

and uncovers deeper analogies with gradient-based learners and, speculatively, a wider range of

cybernetic systems.

The new approach provides a way to specify a game using machinery analogous to reverse-mode
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automatic differentiation, abstractly given by a functor P∗ : Set→ DLens(Set). We observed how

the lax monoidal structure of such functor plays a profound role in determining the dynamics of

non-cooperative games, by hiding ‘cooperative’ information.

We have shown how classical strategic games can be naturally represented as non-deterministic

systems over their arenas, systems given by the dynamics of players observing their payoffs and

pondering if and how to deviate from their current strategy. The resulting parametric lens is hence a

full realization of the ideas in [14, 4, 3], and brings the framework of categorical cybernetics (born

with [3]) closer to that of categorical systems theory (detailed in [17, 18]).

Future directions. The new ideas brought about in this paper are not fully formed yet. In preparing

this work, three more follow-up works naturally spawned.

The first, which has already been anticipated at the end of Section 2, concerns laying down a

proper general theory of specification and simulation of cybernetic systems, in the wake of Myers’

work on dynamical systems [17, 18]. In the first place, this would allow to extract Nash equilibria

from diegetic open games in a principled and compositional way, with practical implications in

the way these are computed. Secondly, using analogous tools we would then be able to talk about

simulations of games and more generally of non-equilibrium trajectories of game dynamics.

The second work concerns the pure game-theoretic aspects of this new definition. Can we

improve the toolset of compositional game theory by leveraging a more accurate reproduction of

the dynamics involved? We believe the answer to be yes, with exciting connections to the topic of

Bayesian games [12], learning theory for games [9], coarsening and ossification, etc.

The third work will be an exploration of the ideas roughly outlined in Section 3, with the

aim of clarifying the analogy uniting learners, games, Bayesian reasoners and other examples of

‘backpropagating cybernetic systems’. This would formalize the intuitive picture whereby such

systems come with a notion of ‘state space’, ‘bundle of changes’, ‘bundle of scalars’ and a ‘bundle

of feedbacks’ obtained as valuations of the first in the latter. A tantalizing consequence is to get past

the conceptually awkward act of fixing the payoff object P, which doesn’t allow for the number of

players to be dynamically determined, by attaching payoff types to states like ‘structure sheaves’.

This recovers traditional open games [10] as the description of payoffs types and their transformation

across the game, while a functor analogous to T ∗ turns that static picture into a dynamical one.
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