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The notion of a joint system, as captured by the monoidal (a.k.a. tensor) product, is fundamental to the
compositional, process-theoretic approach to physical theories. Promonoidal categories generalise
monoidal categories by replacing the functors normally used to form joint systems with profunctors.
Intuitively, this allows the formation of joint systems which may not always give a system again, but
instead a generalised system given by a presheaf. This extra freedom gives a new, richer notion of
joint systems that can be applied to categorical formulations of spacetime. Whereas previous for-
mulations have relied on partial monoidal structure that is only defined on pairs of independent (i.e.
spacelike separated) systems, here we give a concrete formulation of spacetime where the notion of a
joint system is defined for any pair of systems as a presheaf. The representable presheaves correspond
precisely to those actual systems that arise from combining spacelike systems, whereas more general
presheaves correspond to virtual systems which inherit some of the logical/compositional properties
of their “actual” counterparts. We show that there are two ways of doing this, corresponding roughly
to relativistic versions of conjunction and disjunction. The former endows the category of space-
time slices in a Lorentzian manifold with a promonoidal structure, whereas the latter augments this
structure with an (even more) generalised way to combine systems that fails the interchange law.

1 Introduction

Categorical approaches to the modelling of structures of spacetime have become increasingly rich topics
of study leading to both the development of new mathematics and a greater understanding of the under-
lying structures of our theories of physics. Nevertheless, the precise categorical structures that should be
present in a model of spacetime are far from settled. Monoidal structure is a common requirement, being
a key part of Categorical Quantum Mechanics [1] and of many approaches to Topological Quantum Field
Theory [2]. The key physical argument for the assumption of monoidal structure is simple: if one has
a pair of systems, then one should be able to put them together and consider the composite as a new
system.

While this assumption may be ideal in abstract process theories, say where one wishes to model
arbitrary qubits as in the ZX-calculus [9], when we turn our attention to decompositional approaches
to modelling physical systems [10], it becomes apparent that the universe does not behave in a fully
monoidal fashion. Rather than starting with a collection of existent systems and presupposing that it is
possible to join them together arbitrarily, we start with a global system - the whole of spacetime - and
carve out systems with the hope of recovering some fragment of compositional structure.

In such a framework, the tensor becomes problematic, for instance, if we pick a particular system,
say a specified qubit A, it is clearly not possible to form the product A⊗A in the usual sense, for what
would it mean to consider the composite of a system with itself? Indeed, the fundamental issue here
is trying to tensor two objects that are not independent and that can influence each other in non-trivial
ways; we would also have issues taking the tensor of timelike separated systems, or of mixed systems
whose environments are not causally disjoint.
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There are two main obstructions to hoping for a total tensor product on a category modelling space-
time regions. Firstly, one would like the objects of the category to have a physical interpretation as
systems existing in reality. It can often be the case though that no such physical system exists for the
composite of physically reasonable systems. For instance, if we take the objects of our category to rep-
resent slices of spacetime - closed spacelike subsets of a Lorentzian manifold - when we try to join two
slices together they will not form another slice unless the original slices were causally separated.

Secondly, functoriality can fail and one often finds that the interchange law does not hold:

(g⊗1)(1⊗ f ) 6= (1⊗ f )(g⊗1) (1)

while functoriality in each side of the tensor still holds (1⊗ f ′)(1⊗ f ) = (1⊗ f ′ f ) and (g′⊗1)(g⊗1) =
(g′g⊗ 1). This occurs because the systems involved in the tensor may not be independent - they might
causally influence each other or possess a shared environment. Thus the casual ordering of f and g is
vitally important.

One possible route forwards could be to define the tensor only partially. It was noted in [10] that
one can recover a partial monoidal structure where the tensor product is only defined on regions of
spacetime that are causally separated. A group theoretic approach was taken in [19] where the resulting
category has partial monoidal structure defined only on compatible systems, which requires both the
causal separation of systems and also their coupled environments. Another approach starting with a
poset modelling the causal relationships of spacetime events [20], resulted in partial monoidality, again
only defined on causally separated systems. Partial monoidality, due to similar causality obstructions has
appeared in a proposal for modelling the Wolfram model [21].

Outside of applications to physics, partially monoidal categories have made an appearance in [4, 5, 6]
where it was noted that the category of finite subsets of some given set N has a partially monoidal struc-
ture given by the union of disjoint sets. The authors develop a string diagrammatic language dubbed
nominal string diagrams, where wires are labelled with elements from the fixed set N. There are similar-
ities between this and the present work - our decompositional approach to physics also has a fixed global
set from which we label all systems (a manifold M ) and the partial monoidal structure of spacetime
slices developed here is also given by unions and intersections of sets. On the other hand, there is a
major point of difference between our approach and that of Balco et. al.. While they made the partial
monoidal structure total by working with categories internal to a monoidal category, we aim to totalise
the partial monoidal structure by working with the presheaves of our category.

We propose the usage of weakenings of monoidal categories in the form of promonoidal [13] and
premonoidal [29] categories to model causal curves in spacetime. Premonoidal categories are like
monoidal ones but dropping the interchange law (1). They were developed for modelling computational
semantics with side-effects and have been used previously to model spacetime particularly in relation to
Algebraic Quantum Field Theories [11, 8], where it was argued one could use them to model the Einstein
causality condition. Here, we reinforce their point and argue that the lack of bifunctoriality seems to be
fundamental in a decompositional approach to spacetime. Premonoidal categories have also appeared
elsewhere in applications to petri nets [3].

Promonoidal categories are loosely like monoidal categories into the presheaf category. To our
knowledge they have not been directly used in a model of spacetime before. Here, we use them to
extend the partial monoidality of spacetime to a total tensor by allowing us to assign useful mathematical
objects to otherwise physically problematic ones. For instance, the union of two slices of spacetime is
another region of the manifold but not necessarily a slice, thus lacking physical interpretation. We can
assign the union a presheaf, with these presheaves being representable whenever the union is another
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slice. The non-representable presheaves can be thought to act like “virtual systems,” they carry useful
information but are not physically meaningful.

In sections 2.1 and 2.2 we recap promonoidal and premonoidal categories respectively. In section 3
we introduce toy categories Slice and Space of causal curves in spacetime before showing in section 4
that Slice is a promonoidal category under the operation of taking intersections of sets of causal curves.
In section 5 we discuss the operation of taking unions of sets of causal curves and demonstrate that
this gives a premonoidal structure on Space while Slice combines the structures of promonoidal and
premonoidal categories. Under either of the tensor-like structures on Slice we prove that the presheaves
assigned to the tensors are representable if and only if the slices are jointly spacelike and in doing so
show that we recover a type of partial tensor product on causally separated regions. In the final section
6 we give the beginnings of a physical interpretation to the operations on Slice as capturing a kind of
logical conjunction and disjunction of predicates about particles in spacetime.

2 Preliminaries

2.1 Promonoidal Categories

Before we introduce the formal definition of a promonoidal category let us comment on the intuition we
hope to capture.

In a monoidal category C , the tensor product of two objects of C returns another object in C , that is,
it is a functor C ×C −→ C . Returning to the example of a category of spacetime slices, it is problematic
to assign an object of C to the tensor product whenever the regions of spacetime are timelike separated.
The best we could hope for would be a partial monoidal structure which is only defined when regions
are spacelike separated. Perhaps it might be possible though to assign the tensor of timelike separated
regions to be a different sort of object, one that lives outside the category C ? What is a sensible choice
of such “external” objects and how can we ensure that they work together compatibly such that we might
describe the overall structure as something like a tensor product?

We will investigate the usage of promonoidal categories to deal with the aforementioned issues.
Rather than assign an object of C to the tensor product, we assign it a presheaf : a functor C op −→
Set. Presheaves are nicely-behaved mathematical objects: they form a category [C op,Set] where the
morphisms are natural transformations between the presheaves, and the Yoneda lemma provides a way
of embedding of C fully and faithfully into its presheaves Y : C −→ [C op,Set]. The image of this functor
consists of the representable presheaves which are of the form YA ∼= C (−,A) for some object A of C .

By working with promonoidal categories we are able to assign the tensor a presheaf (A⊗B)(−) :
C op −→ Set, and in doing so, work with otherwise undefinable tensor products. Since C embeds into its
presheaves, we do not lose any ability to still assign some tensor products to essentially be objects of
C . Indeed, when the tensor product of objects of C is a representable presheaf, (A⊗B)(−) ∼= C (−,C)
we can identify A⊗B with C under the Yoneda embedding. In this way, promonoidal categories are
like partially monoidal ones - when the presheaf is representable we essentially have an object of C
again - but rather than the tensor being undefined elsewhere we can still assign otherwise “untensorable”
objects a non-representable presheaf. For a more detailed discussion of the connections between partially
monoidal and promonoidal categories see appendix A.

Now, let us start with some core definitions concerning profunctors and their composition. A more
comprehensive study can be found in e.g. [26].

Definition 1 (Profunctor). A profunctor P : C −7→D is a functor Dop×C −→ Set.
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Profunctors generalise functors in a similar way to how relations generalise functions between sets -
profunctors are like “relations between categories,” (note that a relation A∼ B is equivalently a function
out of the cartesian product of the sets A×B −→ {0,1}). We will often use a shorthand Einstein-style
notation for profunctors writing P(d,c) = Pd

c , with subscripts for covariant variables and superscripts for
contravariant ones.

Definition 2 (Cowedge, Coend). Given a profunctor P : C op×C −→ Set, a cowedge (d,w) for P is an
object d of Set together with arrows wc : P(c,c)−→ d making the following diagram commute for all f :

d P(c,c)

P(c′,c′) P(c′,c)

wc

wc′

P(c′, f )

P( f ,c)

The coend of P is a universal cowedge (
´ c P(c,c),copr): this is the cowedge such that all other cowedges

factorise uniquely through it:

d

´ c P(c,c) P(c,c)

P(c′,c′) P(c′,c)

coprc

wc

coprc′
wc′

P(c′, f )

P( f ,c)

Coends have a series of nice properties which help to justify the use of an integral symbol to represent
them. Firstly, they satisfy a Fubini-style law allowing us to commute coends:

ˆ cˆ d
P(c,c,d,d)∼=

ˆ (c,d)∈C×D

P(c,c,d,d)∼=
ˆ d ˆ c

P(c,c,d,d)

Secondly, the Yoneda lemma implies the following identities, sometimes known as the ninja Yoneda
lemma: ˆ c

C (−,c)×F(c)∼= F(−)
ˆ c

G(c)×C (c,−)∼= G(−) (2)

for any functors F : C op −→ Set and G : C −→ Set. So the hom-profunctor behaves “like a Dirac-delta
function”.

Definition 3 (Composition of Profunctors). Given profunctors P : C −7→D and Q : D −7→ E , their com-
posite is given by taking the coend

(Q◦P)(−,=) =

ˆ d
Q(−,d)×P(d,=) : C −7→ E

This coend can be characterised as the coequaliser:

⊔
f :d−→d′

Q(−,d)×P(d′,=)⇒
⊔
d

Q(−,d)×P(d,=)−→
ˆ d

Q(−,d)×P(d,=)
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where the coequalised pair “act by f on the left and right under the profunctor”. We can think of the
resulting quotient set (Q◦P)(e,c) as equivalence classes of pairs (q, p) where q∈Q(e,d) and p∈ P(d,c)
under the relations (Q(e, f )(q), p)∼ (q,P( f ,c)(p)). We will refer to these as the “sliding” relations since
it is as though we can slide f from one side to the other (up to changing Q and P).

The composition of profunctors will be written as (Q◦P)(e,c)=Qe
dPd

c in the Einstein notation, where
instead of the summation convention we have a “coend convention” - repeated indices, once covariant and
once contravariant, are to be coend-ed out. In this way, one also sees the similarity between profunctor
composition and matrix multiplication.

Categories, profunctors and natural transformations form a monoidal bicategory Prof where the
monoidal product acts as C ×D on 0-cells and as (P×Q)(c,d,e, f ) = P(c,d)×Q(e, f ) on 1-cells.
The hom-profunctors play a special role in Prof: they are the identity 1-cells by the ninja Yoneda lemma
(2).

We are now in a position to define promonoidal categories.

Definition 4 (Promonoidal Category [13, 12]). A category C is promonoidal if it is equipped with

• a tensor product profunctor ⊗ : C ×C −7→ C

• a unit profunctor I : 1−7→ C , i.e. a presheaf I : C op −→ Set

together with natural isomorphisms ⊗(⊗×1)
α∼=⊗(1×⊗) and ⊗(⊗× I)

ρ∼= 1
λ∼=⊗(I×⊗) subject to the

triangle and pentagon coherence conditions similar to a monoidal category. A promonoidal category is
strict when the coherence isomorphisms are identities. A promonoidal category is symmetric when there
is a natural isomorphism σABC :⊗A

BC −→⊗A
CB satisfying the hexagon equation.

Remark. A very concise definition of a promonoidal category C is as a pseudomonoid in Prof.
There are many similarities between the definitions of promonoidal and monoidal categories. One

can think of promonoidal categories as what we get when we “upgrade” the functors of a monoidal
category to profunctors. This really is an upgrade since every functor induces two profunctors by taking
its covariant or contravariant Yoneda embeddings. Furthermore, by the following result we can consider
promonoidal categories as strictly more general than monoidal ones.

Theorem 1 ([13, 12]). All monoidal categories (C ,�,J) are promonoidal categories where we define the
tensor profunctor as (A⊗B)(−) :=C (−,A�B) and the unit profunctor as I(−) :=C (−,J). Conversely,
a promonoidal category whose tensor and unit are everywhere representable is a monoidal category.

We will mostly think of the tensor product profunctor ⊗ : C op×C ×C −→ Set in its curried form as
a functor into presheaves, ⊗ : C ×C −→ [C op,Set] and in an abuse of notation we freely switch between
using⊗ for the tensor product in its three different forms (as a profunctor, a functor into Set and a functor
into presheaves) so long as it is clear which we mean.

2.2 Premonoidal Categories

Alongside promonoidal categories, the other monoidal-like structures in this article are premonoidal
categories. Premonoidal categories are a weakening of monoidal categories to allow for situations when
one can join objects together but each half of the tensor is only individually functorial, that is, while it is
the case that (g′⊗1)(g⊗1) = (g′g⊗1) and (1⊗ f ′)(1⊗ f ) = (1⊗ f ′ f ) we have the following inequality:

f

g f
g

6=
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These categories were originally introduced to model computational semantics with side-effects [29]
but we expect categories of causal curves to have similar structure. If f and g act on slices which are
timelike separated or have a non-trivial intersection, then their causal ordering can be vitally important;
f could change the state space in ways that later influence g or vice-versa. These “hidden” influences
between maps can be seen to be somewhat akin to the side-effects in the computational semantics for
which premonoidal categories were originally intended.

A premonoidal category has for each object X , a pair of functors X o− and −nX acting as the left
and right parts of the tensor product, together with compatibility between their actions on objects. More
precisely:

• for each pair of objects X and Y of C there is an assigned object X�Y of C ,

• for each object X of C , there is a functor X o− : C −→ C acting on objects as X oY = X�Y ,

• for each object Y of C , there is a functor −nY : C −→ C acting on objects as X nY = X�Y .

There is no compatibility condition between the left and right parts on morphisms, so in general it
will be the case that ( f nY ′)(X og) 6= (Y og)( f nX ′) for f : X −→Y , g : X ′ −→Y ′. Pairs of morphism for
which such equalities hold, we can think of as acting like the normal tensor and can safely denote f ⊗g.
In particular, there is a special name for those morphisms which commute with all others:

Definition 5 (Central Morphism [29]). A morphism f : X −→Y is central if and only if for all g : X ′ −→Y ′,
the following two diagrams commute:

X⊗X ′ X⊗Y ′

Y ⊗X ′ Y ⊗Y ′

Xog

fnX ′ fnY ′

Yog

X ′⊗X X ′⊗Y

Y ′⊗X Y ′⊗Y

X ′o f

gnX gnY

Y ′o f

In addition to the above data, a premonoidal category needs associativity and unit natural isomor-
phisms which are central:

Definition 6 (Premonoidal Category [29]). A category C is premonoidal if it is equipped with left and
right tensor functors Xo− and−nY for each X and Y , such that they are compatible on objects, together
with:

• a unit object I with central isomorphisms λX : X⊗ I −→ X and ρX : I⊗X −→ X for each X ,

• a central isomorphism αXY Z : (X⊗Y )⊗Z −→ X⊗ (Y ⊗Z) for each triple X ,Y and Z,

such that the triangle and pentagon equations hold and so that the naturality squares for α,λ and ρ hold.
A premonoidal category is strict when the coherence isomorphisms are identities.

It is possible to combine the left and right tensor functors X o− and −nY into a single functor
C � C −→ C from the funny tensor product [17]. A concise definition of the funny tensor is as follows,

Definition 7 (Funny tensor product [31]). The funny tensor product C � D is given by the following
pushout

C0×D0 C0×D

C ×D0 C �D

1×iD

iC×1
p

(3)

where C0 and D0 are the discrete categories of the objects of C and D respectively.
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Explicitly, the category C � D has as objects pairs (c,d) of an object c of C and d of D . The
morphisms are generated by freely composing ( f ;1) : (c,d)−→ (c′,d) where f : c−→ c′ in C and (1;g) :
(c,d) −→ (c,d′) where g : d −→ d′ in D with the rule that compositions exclusively in C or D may be
contracted: ( f ′;1)( f ;1) = ( f ′ f ;1) and (1;g′)(1;g) = (1;g′g) but ( f ;1)(1;g) 6= (1;g)( f ;1) and thus there
is no sensible notion of “( f ;g)”. There is a oplax monoidal functor C � D −→ C ×D induced by the
universal property of the pushout, which forces the interchange squares to commute.

3 A Category of Spacetime Slices

The aim of the remainder of this article is to develop a toy category of spacetime slices and causal curves
and then demonstrate that it exhibits both premonoidal and promonoidal structures.

3.1 Spacetimes and Causal Curves

From now on we fix a connected Lorentzian manifold M with metric g. A tangent vector X is said to be
spacelike, timelike or null if g(X ,X)> 0,g(X ,X)< 0 or g(X ,X) = 0, respectively. M is said to be time-
orientable if it has a non-vanishing timelike vector field and the timelike tangent vectors at each point
can be divided (in a continuous fashion) into two classes: a future-directed and a past-directed class. We
assume that M is time-orientable and fix a time-orientation. The assumptions we make of our spacetime
are fairly weak causality-wise, and are weaker than those of past- and future-distinguishability [28, 24]
(which was assumed by [20]) and certainly weaker than the existence of a Cauchy slice (equivalently
global hyperbolicity) [18]. As a result we have not ruled out the existence of closed timelike curves in
the spacetime.

A simple example of the kinds of manifolds we are interested in is Minkowski space Rn+1 equipped
the metric g(X ,X) = |x|2−t2 for X = (t,x). The timelike vectors are those (t,x) where t2 > |x|2, of which
there are two classes t > |x| and t < −|x| consisting of vectors which point forwards and backwards in
time, respectively; a timelike vector (t,x) is future-directed when t > 0 and past-directed when t < 0.
There is no issue with restricting oneself to Minkowski space for the remainder of the article, but we
note that the results hold in the fully general case.

A path in M is a continuous map µ : ι −→M where ι ⊆ R is a (possibly unbounded) real interval.
Such a path is smooth if it is infinitely differentiable and regular if its first derivative is non-vanishing.
A smooth regular path is causal when the tangent vector is timelike or null at all points in the path and a
causal path is future-directed when the tangent at every point is future-directed. For a point x ∈M , the
set of all points y ∈M with a future-directed path x to y is called the future light cone of x, whereas the
set of all points with a future-directed path from y to x is called the past light cone of x.

Often it is more convenient to work with equivalence classes of paths, up to reparametrisation, i.e.
µ ∼ µ ′ if and only if there exists a monotone map r : ι → ι ′ such that µ ′ ◦ r = µ . An equivalence class
of causal paths is called a causal curve. Since being future-directed is preserved by ∼, we can also say a
causal curve is future-directed without ambiguity.

A point x ∈M causally precedes another point y ∈M , written x≺ y, if there exists a future-directed
causal curve from x to y, or if x = y. The assumption of time-orientability of M is not enough to ensure
that ≺ gives a total order on points in a causal curve - for instance there could be closed timelike curves
in M containing points x 6= y, for which x≺ y and y≺ x.

A region is any arbitrary subset A⊆M of the manifold. Regions are too general to be useful for many
practical applications, they might contain points which causally precede each other or they might have
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insufficient topological properties to make them well-behaved. As a result we will be more interested in a
restricted class of regions, the spacelike regions, where for all x,y ∈ Σ, x 6= y, x does not causally precede
y and thus there are no future-directed causal curves connecting x with y, or y with x. For instance, in
Minkowski space the surfaces given by fixed times t = τ are examples of spacelike sets.

Definition 8 (Spacelike Slice). A spacelike slice (or simply a “slice”) is a closed spacelike set.

It is worth noting that slices may still be too weak for many applications, and it may be necessary
to demand further properties of them, by working with the Cauchy slices for instance. Whilst we do
not make these restrictions in this work, in principle, there is no obstacle to applying many of the same
methods to categories of more restrictive classes of slices.

We will be very interested in the causal relationship between slices X and Y , which motivates the
following definition.

Definition 9 (Jointly Spacelike Slices). Slices X and Y are jointly spacelike if their union X ∪Y is
spacelike.

Given regions A,B ⊆M , A 6= B, we say that a future-directed causal curve γ with representative
path µ : ι −→M , passes through A and then B if for all q ∈ ι with µ(q) ∈ B there exists p ≤ q ∈ ι such
that µ(p) ∈ A. We write C [A,B] for the set of future-directed causal curves passing through A and then
B. We write C [A] := C [A,A] for the set of future-directed causal curves which pass through A (with no
constraint on other regions through which they must pass). It is worth noting that a closed timelike curve
γ containing both the points a ∈ A and b ∈ B will be in the sets C [A,B] and C [B,A].

3.2 A Category of Causal Curves

With these definitions in place we can define the following categories of slices and regions of spacetime:

Definition 10 (Slice,Space). The category Slice has as objects slices X ⊂M (closed spacelike sets).
For two slices X ,Y ⊂M , the homset Slice(X ,Y ) := P(C [X ,Y ]) is the powerset of C [X ,Y ], that is, a
morphism X −→Y is a set of future-directed causal curves through X then Y . Given two subsets S : X −→Y
and T : Y −→ Z, their composition is given by intersection: T ◦ S := T ∩ S ⊂ C [X ,Z]. The identity
morphism 1X : X −→ X is given by the set C [X ,X ] of all curves through X .

The category Space has as objects arbitrary regions A⊆M . All other data is as Slice.

⊆
X

Y

X

Y
7→

S : X → Y

T : Y → Z

T ◦S : X → Z

Z

Y

X X

Z

Figure 1: Left: A morphism in the category Slice is a set of causal curves passing first through X then
through Y . Right: Composition of two morphisms in Slice via intersection. Note that in both pictures,
past as future light cones of slices are depicted as dotted lines, and sets of many causal curves are depicted
as filled-in regions.
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Proposition 1. Slice and Space are categories.

Proof. Composition is associative because intersection is. Given a set of causal curves S : X −→ Y , by
definition all curves in S pass through X , thus we see S ◦ 1X = S∩C [X ,X ] = S. Similarly for the left
composition with identity morphisms.

Now we examine a few basic categorical properties of Slice and Space.

Proposition 2. Slice and Space have equalisers and coequalisers, given by the complement of the sym-
metric difference.

Proof. Take f ,g : A−→ B. This pair of parallel arrows is equalised by ( f 4g)c : A−→ A and coequalised
by ( f 4g)c : B−→ B where ( f 4g)c = C [A,B]\( f 4g) = ( f ∪g)c∪ ( f ∩g). Any other arrow h making
the parallel pair f and g equal factorises uniquely via ( f 4 g)c because this morphism contains every
causal curve that is in both f and g, or neither. Thus h must be a subset of ( f 4g)c.

It is interesting that equalisers and coequalisers essentially coincide in Slice - in part this is down to
the fact that composition is, up to types, commutative - e.g. for endomorphisms f ◦g = g◦ f .

Proposition 3. Let X and Y be jointly spacelike slices with X ∩Y =∅. Then the product and coproduct
of X and Y exist in Slice and are given by the set theoretic union X×Y = X⊕Y = X ∪Y .

Proof. Proof given in appendix B.1.

While we do have products and coproducts of non-intersecting jointly spacelike slices in Slice, the
(co)products of other regions e.g. timelike separated regions and of intersecting slices do not exist. These
regions are the main issue preventing the set theoretic union from being a monoidal structure on Slice.

Proposition 4. Slice is not a monoidal category under a monoidal product given by taking the union of
regions and curves X⊗Y := X ∪Y and S⊗T := S∪T .

Proof. The union of slices is not always a slice so X ∪Y may not be an object of Slice. For the occasions
when it is, ⊗ cannot in general be bifunctorial. For arbitrary S : X −→ Y , S′ : Y −→ Z, T : X ′ −→ Y ′ and
T ′ :Y ′−→ Z′, we have (S′⊗T ′)◦(S⊗T )= (S′∪T ′)∩(S∪T )⊃ (S′∩S)∪(T ′∩T )= (S′◦S)⊗(T ′◦T ).

One might hope that by relaxing the sorts of objects we are considering and working instead with the
category Space, we could find a monoidal product given by union. Whilst this resolves the issue of the
non-existence of the object X ∪Y for arbitrary X and Y , we still find that the union cannot be bifunctorial
and thus Space is also not a monoidal category under union.

We also cannot hope that Slice or Space are monoidal categories under intersection because there
exist causally connected slices which have an empty intersection:

Proposition 5. Slice and Space are not monoidal categories under a monoidal product given by taking
the intersection of regions and curves X⊗Y := X ∩Y and S⊗T := S∩T .

Proof. Suppose X and Y are causally connected slices so C [X ,Y ] 6= ∅ but with X ∩Y = ∅. Then 1X ⊗
1Y = C [X ,X ]∩C [Y,Y ] 6= ∅ because there exists a causal curve passing through X and Y . On the other
hand we see that 1X∩Y = 1∅ =∅.

In the following sections we will show that while Slice and Space are not monoidal categories in
either of these ways, Slice is a promonoidal category under intersection. Under union, Space is pre-
monoidal while Slice combines both promonoidal and premonoidal structures.
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Figure 2: Left: An element S ∈ (X 7Y )(Z), as defined in Section 4. Right: An element T ∈ (X 6Y )(Z),
as defined in Section 5.

4 A Promonoidal Structure on Slice

We now aim to show that Slice is a promonoidal category under intersection, that is, it is equipped
with a tensor product functor Slice× Slice −→ [Sliceop,Set] and unit presheaf Sliceop −→ Set subject to
associativity and unit laws.

To each pair of objects X and Y we assign the presheaf (X 7Y )(−) : Sliceop −→ Set which sends a
slice Z to the powerset of causal curves which pass through Z and then both X and Y

(X 7Y )(Z) := P(C [Z,X ]∩C [Z,Y ])

On morphisms S : Z′ −→ Z this presheaf acts by intersection:

(X 7Y )(S) : (X 7Y )(Z)−→ (X 7Y )(Z′) :: C 7→C∩S

Lemma 1. (X 7Y )(−) is a presheaf.

Proof. (X 7Y )(1Z) :: C 7→ C ∩ 1Z = C because every curve in (X 7Y )(Z) passes through Z. Thus
(X 7Y )(1Z) = 1(X7Y )(Z). Now (X 7Y )(T )◦(X 7Y )(S) :: C 7→C∩S 7→ (C∩S)∩T while (X 7Y )(S◦T ) ::
C 7→C∩ (S∩T ) and these are equal by the associativity of intersection.

To each (S,T ) : (X ,Y ) −→ (X ′,Y ′) we are required to assign a natural transformation between the
presheaves S 7T : (X 7Y )(−) =⇒ (X ′7Y ′)(−).

For S : X −→ X ′ there is a natural transformation with components

(S 7Y )Z : (X 7Y )(Z)−→ (X ′7Y )(Z) :: C 7→C∩S

and for T : Y −→ Y ′ there is a natural transformation with components

(X 7T )Z : (X 7Y )(Z)−→ (X 7Y ′)(Z) :: C 7→C∩T

These natural transformations commute, (S 7Y ′)Z(X 7 T )Z = (X ′ 7 T )Z(S 7Y )Z and we can define
(S 7T ) to be given by their composition.

Lemma 2. (S7Y ) and (X 7T ) are natural transformations with (S7Y ′)Z(X 7T )Z =(X ′7T )Z(S7Y )Z .

Proof. Proof given in appendix B.2.

Lemma 3. The assignment (X ,Y ) 7→ (X 7Y )(−) and (S,T ) 7→ (S 7 T ) gives a functor Slice×Slice−→
[Sliceop,Set].
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Proof. Proof given in appendix B.3.

We are now in a position to prove the main result of this section:
Theorem 2. Slice is a symmetric promonoidal category where the tensor is given above and the unit
presheaf is given by I(−) := P(C [−,M ]).

Proof. Proof given in appendix B.4.

Now we know that Slice is promonoidal under intersection, we will study when the presheaves as-
signed by this tensor are representable. This allows us to ascertain where 7 acts like a standard monoidal
product on Slice and where it is possible for us to consider the tensor of slices to be another slice.
Theorem 3. When X and Y are jointly spacelike slices, the presheaf (X 7Y )(−) is representable.

Proof. Suppose X and Y are jointly spacelike. Note C [Z,X ]∩C [Z,Y ] ⊇ C [Z,X ∩Y ]. Suppose there
exists γ ∈ C [Z,X ]∩C [Z,Y ] with γ /∈ C [Z,X ∩Y ]. Then γ must pass through some x ∈ X\Y and some
y ∈ Y\X but this would imply that X and Y are not jointly spacelike. Thus γ cannot exist and it follows
that (X 7Y )(Z) = P(C [Z,X ∩Y ]) = Slice(Z,X ∩Y ) = YX∩Y (Z), noting that X ∩Y is a slice because
X ∩Y ⊆ X and thus is an object of Slice.

In particular, the previous theorem shows that on jointly spacelike slices 7 acts like intersection and
we can make the identification (X 7Y )(−) ' X ∩Y . On the other hand, when the slices are not jointly
spacelike there is no representative for (X 7Y )(−). To show this we need the following lemma:
Lemma 4. Let A⊆M be a closed subset of M . Then for any x ∈M , x /∈ A, there exists a causal curve
through x which does not intersect A.

Proof. The timelike vector field is non-vanishing on M and as a result there must be a causal curve
γ through x. In a sufficiently small neighbourhood U of x, γ must restrict to a causal curve which is
contained entirely within U . Since A is closed and M is Hausdorff, this neighbourhood can be made
sufficiently small such that U ∩A =∅.

Theorem 4. When X and Y are not jointly spacelike, the presheaf (X 7Y )(−) is not representable.

Proof. We make much use of Lemma 4. Suppose X and Y are not jointly spacelike and suppose for a
contradiction that (X 7Y )(−) = Slice(−,Z) for some slice Z.

Now suppose there exists a z∈ Z such that z /∈ X ∪Y . We can find a causal curve γ through z that does
not also pass through X ∪Y . It follows that γ ∈ Slice(Z,Z), but γ /∈ (X 7Y )(Z). So Z cannot represent
the presheaf and we conclude Z ⊆ X ∪Y .

Now take a x ∈ X\Y . There exists a causal curve γ passing through x but not Y . Suppose that x ∈ Z,
then γ ∈ Slice(Z,Z), but γ /∈ (X 7Y )(Z). So x /∈ Z.

A similar argument shows that any y ∈ Y\X cannot be in Z and thus Z ⊆ X ∩Y .
Since X and Y are not jointly spacelike, X ∪Y is not spacelike and there exists a causal curve γ from

X ∪Y to itself. In particular γ must pass through a point of X and a point of Y , and not, say, through two
points of X , since X and Y are slices. Then we would have γ ∈ (X 7Y )(X) but γ /∈ Slice(X ,Z) because
if γ ∈ Slice(X ,Z) it would pass through X and X ∩Y ⊆ X , a contradiction with X being a slice.

So we have shown that (X 7Y )(−) is representable if and only if X and Y are jointly spacelike. Note
that one cannot define a partially monoidal category by just working with 7 where it is representable
because the unit presheaf is not representable (the whole manifold is not a slice) and therefore there is
no unit object available in Slice.
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5 The Structure of Slice and Space under Union

Let us now consider the structure of Slice and Space under union of slices and sets of curves. The larger
category Space where the objects are arbitrary subsets of the manifold M and the homsets are powersets
of causal curves is a premonoidal category:

Proposition 6. Space is a strict premonoidal category under the operation of taking the union of regions
and curves.

Proof. For objects X and Y assign them the object X ⊗Y := X ∪Y . The assignment (T : Y −→ Y ′) 7→
(C [X ]∪T : X ∪Y −→ X ∪Y ′) gives a functor X o− : C −→ C because

X o1Y = C [X ]∪C [Y ] = C [X ∪Y ] = 1X∪Y

(X o f ′)(X o f ) = (C [X ]∪ f ′)∩ (C [X ]∪ f ) = C [X ]∪ ( f ′∩ f ) = X o f ′ f

Similarly the assignment (S : X −→ X ′) 7→ (S∪C [Y ]) extends to a functor−nY : C −→C . The unit object
is I :=∅ and the unit and associativity isomorphisms are identities, which it is straightforward to check
are central.

The above has a clear issue - X ∪Y is generally not another slice and thus not an object of Slice. This
means Slice cannot form a premonoidal category under union and we need to search for something that
combines both premonoidal and promonoidal structures together.

There is no obstacle to defining presheaves (X 6Y )(−) : Sliceop −→ Set which send a slice Z to the
powerset of causal curves through Z and either X or Y :

(X 6Y )(Z) := P(C [Z,X ]∪C [Z,Y ])

On morphisms S : Z′ −→ Z this presheaf acts by intersection:

(X 6Y )(S) : (X 6Y )(Z)−→ (X 6Y )(Z′) :: C 7→C∩S

Lemma 5. (X 6Y )(−) is a presheaf.

Similarly, there is no obstacle to defining natural transformations acting on either the left or right of
6. For S : X −→ X ′ there is a natural transformation with components

(S 6Y )Z : (X 6Y )(Z)−→ (X ′6Y )(Z) :: C 7→C∩ (S∪C [Y ])

and for T : Y −→ Y ′ there is a natural transformation with components

(X 6T )Z : (X 6Y )(Z)−→ (X 6Y ′)(Z) :: C 7→C∩ (C [X ]∪T )

Lemma 6. (S 6Y ) and (X 6T ) are natural transformations.

What fails in comparison to 7 is that, in general, the components of these natural transformations
do not obey the interchange law, so we cannot hope that these data give a functor Slice× Slice −→
[Sliceop,Set]. Nevertheless, the natural transformations are functorial on each side of the tensor and
it is easy to verify that the assignment does give a functor 6 : Slice � Slice −→ [Sliceop,Set] where � is
the funny tensor product of categories.

Lemma 7. The data of Lemmas 5 and 6 specify a functor Slice� Slice−→ [Sliceop,Set]
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Proof. Proof given in appendix B.5.

In this way Slice seems to combine both the structures of premonoidal and promonoidal categories.
We leave it as future work to make rigorous the associativity and unitality of this structure but we note
that the representable presheaf at the empty slice Y∅ is likely the unit of a suitably defined structure.

Similarly to the intersection case we can study when the presheaves (X 6Y )(−) are representable:

Theorem 5. When X and Y are jointly spacelike, the presheaf (X 6Y )(−) is representable.

Proof. Suppose X and Y are jointly spacelike. Then (X 6Y )(Z) =P(C [Z,X ]∪C [Z,Y ]) =P(C [Z,X ∪
Y ]) = YX∪Y (Z) where we have used the fact that X ∪Y is spacelike and thus an object of Slice.

Theorem 6. When X and Y are not jointly spacelike, the presheaf (X 6Y )(−) is not representable.

Proof. We make use of Lemma 4. Suppose X and Y are not jointly spacelike and suppose for a con-
tradiction that (X 6Y )(−) = Slice(−,Z) for some slice Z. By the same argument made in the proof of
Theorem 4 we must have Z ⊆ X ∪Y .

Since X and Y are not jointly spacelike, X ∪Y is not spacelike and thus there exists a causal curve γ

connecting two points of X ∪Y . It must be the case that one of these points is in X\Y and the other in
Y\X else X or Y could not be slices. Write x ∈ X\Y and y ∈ Y\X for these points that γ passes through
and note that they can be the only points of X ∪Y that γ intersects else X or Y could not be slices.

Now note that γ restricts to a causal curve γx which passes through x but not y and similarly a causal
curve γy which passes through y but not x.

Suppose that x /∈ Z, then γx ∈ (X 6Y )(X) but γx /∈ Slice(X ,Z), noting that Z ⊆ X ∪Y so that γx

intersects Z at only x. So we conclude that x ∈ Z.
Similarly, suppose that y /∈ Z, then γy ∈ (X 6Y )(Y ) but γy /∈ Slice(Y,Z). So we conclude that y ∈ Z.
We see that γ is a causal curve connecting two distinct points of Z and consequently Z cannot be a

slice.

So we have shown that the presheaf (X 6Y )(−) is representable if and only if X and Y are jointly
spacelike. By restricting 6 to these slices we can recover a partial premonoidal structure on Slice by
defining the tensor to be given by the representative. The unit of this partial premonoidal category is the
empty slice ∅.

Now that we have two tensor-like structures on Slice we would like to know how they interact. Given
that 6 behaves like union and 7 like intersection, it seems reasonable to expect some sort of distributivity
between them. To understand this at the level of the profunctors we require the following definition:

Definition 11 (Multiplicative Kernel [14]). Let (C ,P, I) and (D ,Q,J) be promonoidal categories. A
multiplicative kernel is a profunctor K : C −7→D such that

Q(K×K)∼= KP KI ∼= J

where concatenation is profunctor composition.

Remark. Viewing C and D as pseudomonoids in Prof, a multiplicative kernel is a homomorphism of
these monoids.

Each slice X determines an endoprofunctor (X 6−)(−) : Slice −7→ Slice and it is the case that each
of these is a multiplicative kernel for Slice equipped with 7.

Theorem 7. For every slice X, (X 6−)(−) is a multiplicative kernel for (Slice,7).

Proof. Proof given in appendix B.6.
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6 Interpreting the operations in Slice

We have shown that Slice admits two operations 6 and 7 taking a pair of spacelike slices to a “gener-
alised” slice, i.e. a presheaf over slices. Here, we give (the beginnings of) a physical interpretation for
these operations.

First, it is helpful to shift from thinking geometrically about slices to thinking logically about them.
That is, we can think of a slice X as a logical predicate, namely that a system satisfies a certain property
at a certain moment in time. The simplest non-trivial example is 1+1 dimensional Minkowski space,
where a particle in 1D space traces out a causal curve through R1+1.

As a simple case, we can consider slices of the form X := {t1}×P for a time t1 ∈ R and a closed
subset P⊆ R. We can now think of P as saying something about the position of a particle at time t1, e.g.
“the particle’s position is ≥ x1”. Similarly, another slice Y := {t2}×Q, expresses that a certain property
Q holds for a particle at time t2, e.g. “the particle’s position is ≤ x2”.

We can now think about whether it makes sense to take conjunctions or disjunctions of these kinds
of predicates. If t1 = t2, then everything works out exactly as one would expect. Namely, X 7Y =
{t1}× (P∩Q), which captures the statement that at time t1, “the particles position is ≥ x1 AND it is
≤ x2”. Similarly, X 6Y = {t1}× (P∪Q), capturing the OR if predicates P and Q at a fixed time t1.

If we look at arbitrary pairs of jointly spacelike slices X and Y , then much the same interpretation
holds, but rather than separating the time and space coordinates in a fixed reference frame, we can regard
X and Y as living on the same spacelike hypersurface.

The more interesting case is of course when X and Y are not jointly spacelike. While we can’t make
sense of X 7Y and X 6Y as spacelike slices themselves, we can make sense of them relative to a third,
“probe” slice Z. If we restrict to the simpler case where X = {t1}×P and Y = {t2}×Q, now with t1 6= t2
and possibly some causal curves between X and Y , then any S ∈ (X 7Y )(Z) is a set of causal curves that
first passes through Z then must satisfy P at t1 AND Q at t2. Hence, 7 captures conjunction, but with
predicates at different times. Similarly, 6 captures this generalised kind of disjunction.

We can apply this kind of interpretation to arbitrary pairs of slices X ,Y , not just those which take
a product form in a fixed reference frame, however the meaning is slightly less intuitive in some cases,
like when X and Y intersect and are furthermore not jointly spacelike. Nevertheless, we obtain a notion
of conjunction and disjunction which is defined everywhere, and thanks to Theorem 7, distributes as one
would expect. Hence, we have the beginnings of a logic for (generalised) spacetime slices. However
there is much still to explore. For example, there is no clear “universal” notion of negation here, but one
may be able to negate a slice relative to another one, e.g. some Cauchy surface containing the slice.

7 Conclusion and Future Work

We have shown that the category Slice of spacelike slices and causal curves admits two generalised
tensor-like structures, corresponding to conjunction and disjunction. We see several avenues of future
work. One is the complete characterisation of the structure 6 defined in Section 5, which combines
elements of both a premonoidal and promonoidal product. As promonoidal and strict premonoidal cat-
egories can be formalised as pseudomonoids in a suitable monoidal bicategory, one might hope to do
similar for the “pre-promonoidal” structure 6.

As hinted at the end of the previous section, there seems to be much more left to say about the logical
interpretation of connectives in Slice. For instance, one could try to obtain an analogue to full classical
logic by introducing a (suitably localised) negation. It also seems natural to study non-commutative
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connectives such as the “sequence” product / present in the logic BV [22], which was recently shown to
capture the one-way signalling processes in the Caus[−] construction [30].

Another direction is to investigate other places tensor-like structures appear, particularly within mod-
els that have some notion of “causality” which may be different from the usual relativistic one. For exam-
ple, by imposing restrictions on the Petri nets of [3], one may force the monoidal category FP developed
there to be only promonoidal. In such a case it seems that the fibres FPi are no longer premonoidal but
can be described by a pre-promonoidal category.

While the category Slice we defined here gives an interesting toy theory for exploring spacetime,
causal curves, and associated notions of logic and compositionality, it is by no means the “one true”
category of spacetime. It would be interesting to study variations on this structure, which may have dif-
ferent, possibly more natural notions of composition. For example, instead of intersecting sets of curves,
one could define a category Slice′ where composition is given by “gluing” curves together, somewhat
in the same spirit as [20]. Such a category seems more amenable to an alternative view of AQFT, as
functors Slice′ −→ Algk, or indeed with codomain taken to be any reasonable process theory.

Finally, one could compare our approach to other categorical models of causality and spacetime, such
as the formulation using idempotent subobjects [15, 16], the order-theoretic formulation of [20], and the
aforementioned Caus[−] construction [23, 30].
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A Partially Monoidal Categories as Promonoidal Categories

In this appendix we compare the partially monoidal categories of [10, 25, 19] to promonoidal categories.
We discuss a class of partially monoidal categories that can be equivalently described as promonoidal
categories which are representable wherever the presheaves are non-empty and discuss when it is possible
to derive a partially monoidal category from a promonoidal one.

Definition 12 (Partial Functor [19]). A partial functor C ⇀ D is a span of functors C
i←− S

F−→ D
where i is an opisofibration, embedding S as a subcategory of C (so i is full, faithful and S is a replete
subcategory of C ). Composition of partial functors is by pullback. A morphism of partial functors
(φ ,η) : (i,F)−→ ( j,G) is a pair of a functor φ : S −→S ′ between the apexes of the spans and a natural
transformation η : F =⇒ Gφ ,

S

S ′

C D

φ

i F

j G

η
(4)

Categories, partial functors and morphisms of partial functors form a monoidal bicategory PCat where
the tensor is given pointwise by taking the product of categories and the product of the underlying func-
tors in the spans. Note that full and faithful opisofibrations are closed under composition and stable under
pullback.

Definition 13 (Partially Monoidal Category [19]). A category C is partially monoidal if it is equipped
with:

• A partial tensor product functor � : C ×C ⇀ C

• A unit object I

together with associativity and unit natural isomorphisms such that the triangle and pentagon equations
hold.

Remark. A very concise definition of a partially monoidal category C is as a pseudomonoid in PCat

http://dx.doi.org/10.1017/9781108778657
http://dx.doi.org/10.1016/j.exmath.2019.02.004
http://dx.doi.org/10.1063/1.523436
http://dx.doi.org/10.1017/S0960129597002375
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It may not be immediately apparent that there are connections between partially monoidal and
promonoidal categories. It turns out though that there is a case where the two coincide on-the-nose.

There exists a special class of partial functors where the left leg is not only an opisofibration but
a proper discrete opfibration. This makes the left leg a cosieve which coincides with the definition of
partial functor given by [7]. Demanding that the left leg is a cosieve ensures that the subcategory on
which the tensor is defined is closed under post-composition with morphisms of C ×C . This captures
the following physical intuition: if X ⊗Y exists and there is a morphism X −→ X ′ then X ′⊗Y exists too.
Thus we maintain the intuition that if one applies a local map to X then the tensor product should still
exist afterwards. From a mathematical perspective, when the left leg of the tensor product partial functor
is a cosieve, the partially monoidal category is equivalent to a promonoidal one. Indeed, Bénabou notes
that there is an 1-1 correspondence (up to isomorphism) between partial functors with left leg a cosieve
and profunctors which factorise through the representable and empty presheaves [7]. In this light the
following proposition is not surprising but there is a little effort required in checking that everything
works out:

Proposition 7. A partially monoidal category (C ,�,J) whose left leg of the tensor product partial
functor is a cosieve is a promonoidal category with representable unit and a tensor ⊗(−,b,c) which is
either representable or empty for each (b,c) ∈ C ×C .

Proof. Proof given in appendix B.7.

There are many examples of partially monoidal categories which are not equivalent to promonoidal
ones and vice-versa. For instance, we require that the unit presheaf J(−) of a promonoidal category is
representable to have any hope that it is a partially monoidal category.

Conversely, one might hope (similarly to monoidal categories) that all partially monoidal categories
could be turned into promonoidal ones. In general this is not possible though as taking the representable
presheaves at the defined points of the partial tensor is not enough to define a profunctor C ×C −7→ C .
Indeed, a promonoidal category still has a total tensor, just into the presheaf category,

It is possible though to derive partially monoidal structures from a promonoidal one with repre-
sentable unit presheaf J(−), by pulling back the promonoidal tensor along the Yoneda embedding when-
ever it is representable. There is of course a canonical “maximal” such partially monoidal structure
induced by defining it everywhere it is possible to do so, i.e. everywhere the promonoidal tensor is
representable.

One may wonder if there are any further connections between partial functors and profunctors - is
there a category that unites them? This would allow us to place the two on equal footing and compare
arbitrary partially monoidal and promonoidal categories. The key to this unification is the following
result:

Theorem 8 ([7, 27]). There is an equivalence of categories between profunctors C −7→D and two-sided
discrete fibrations DFib(C ,D).

A two-sided discrete fibration is a span of functors C
F←− E

G−→D where:

• each F(e)−→ c′ in C has unique lift f : e−→ e′ in E such that G( f ) = 1G(e),

• each d −→ G(e) in D has unique lift g : e′ −→ e in E such that F(g) = 1F(e),

• for each f : e −→ e′ in E , the codomain of the lift of F f equals the domain of the lift of G f , and
their composite is f .
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The two-sided discrete fibration corresponding to a profunctor P : C −7→D is given by the projections
out of the category Sec(P) of sections of the collage of P. The objects of Sec(P) are the elements of the
sets P(d,c) for all c and d. A morphism x ∈ P(d,c)−→ x′ ∈ P(d′,c′) is given by a pair of arrows f and g
such that P(g,1)(x′) = P(1, f )(x).

Consequently, each profunctor has a canonical span and by working in the category of spans of
functors one can study the partial functors and profunctors side-by-side. For instance, suppose (C ,⊗,J)
is a promonoidal category with J(−) ∼= C (−, I). There is a partial monoidal structure (�, I) on C
given by pulling back ⊗ along the Yoneda embedding whenever it is representable - that is, whenever
⊗(−,b,c)∼=C (−,xbc) for some objects b and c, we define b�c := xbc. Write C ×C for the subcategory
of C ×C where the promonoidal tensor is representable. Then there is a 2-cell in Span(Cat) capturing
the extension of the partially monoidal structure on C to the promonoidal structure:

C ×C

Sec(⊗)

C ×C C

φ

i �

p1 p0

where φ sends (b,c) to 1b�c,b�c ∈ ⊗(b� c,b,c) and (g, f ) to (g� f ,g, f ).

B Proofs

B.1 Proof of Proposition 3

Proof. The projections are given by

π0 = C [X ] : X ∪Y −→ X

π1 = C [Y ] : X ∪Y −→ Y

while the coprojections are given by

i0 = C [X ] : X −→ X ∪Y

i1 = C [Y ] : Y −→ X ∪Y

Given f : Z −→ X and f ′ : Z −→Y , the universal arrow completing the product diagram is 〈 f , f ′〉= f ∪ f ′ :
Z −→ X ∪Y , and given g : X −→ Z and g′ : Y −→ Z, the universal arrow completing the coproduct diagram
is [g,g′] = g∪g′ : X ∪Y −→ Z. Indeed, it follows that the diagrams commute because X and Y are jointly
spacelike with X ∩Y =∅ and thus f ∩C [Y ] = f ′∩C [X ] = g∩C [Y ] = g′∩C [X ] =∅.

B.2 Proof of Lemma 2

Proof. Note that the following diagram commutes for any U : Z′ −→ Z

(X 7Y )(Z) (X 7Y )(Z′)

(X ′7Y )(Z) (X ′7Y )(Z′)

(X7Y )(U)

(S7Y )Z (S7Y )Z′

(X ′7Y )(U)
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because on the top path we see C 7→C∩U 7→ (C∩U)∩S while on the bottom path C 7→C∩S 7→ (C∩S)∩
U . Naturality of (X 7T ) follows similarly and checking the commutativity condition is straightforward.

B.3 Proof of Lemma 3

Proof. Firstly note that each component of 1X 7 1Y : (X 7Y )(−) =⇒ (X 7Y )(−) is just the identity.
Thus it is the identity natural transformation and we conclude 1X 71Y = 1(X7Y )(−).

Now take S : X −→ X ′ and S′ : X ′ −→ X ′′. The arrow (S′7Y )Z ◦ (S 7Y )Z acts as C 7→ (C∩ S)∩ S′

while the arrow ((S′ ◦S)7Y )Z acts as C 7→C∩ (S′∩S). Thus the components of the composite natural
transformation (S′7Y )◦ (S 7Y ) equal those of ((S′ ◦S)7Y ).

A similar argument holds for arrows T : Y −→ Y ′ and because (S 7Y ) and (X 7 T ) commute we are
done.

B.4 Proof of Theorem 2

Proof. Let us begin with associativity 7(7×1)∼= 7(1×7). Note that by Yoneda we have

7(7×1)(W,X ,Y,Z) =
ˆ A,B

7(W,A,B)×7(A,X ,Y )×Slice(B,Z)

∼=
ˆ A

7(W,A,Z)×7(A,X ,Y )

While

7(1×7)(W,X ,Y,Z)∼=
ˆ A

7(W,X ,A)×7(A,Y,Z)

Let us show there is a canonical identification 7(7× 1)(W,X ,Y,Z) ∼= P(C [W,X ] ∩ C [W,Y ] ∩
C [W,Z]) =: Λ. There are functions

7(W,A,Z)×7(A,X ,Y )−→ Λ :: (S,T ) 7→ S∩T

which form a cowedge with apex Λ. By the universal property of the coend this induces a unique function
g :
´ A 7(W,A,Z)×7(A,X ,Y )−→ Λ making the obvious cowedge diagrams commute.
We can also construct a function f by composing

Λ
f ′−→7(W,W,Z)×7(W,X ,Y )

coprW−−−→
ˆ A

7(W,A,Z)×7(A,X ,Y )

where f ′ acts as S 7→ (S,S).
The universal property of the coend implies that the composition f g = 1, or we can check explicitly:

(S,T ) 7→ S∩T 7→ (S∩T,S∩T )

upon which we simply need to note that we have (S,T ) = (S∩S,T ∩T )∼ (S∩T,S∩T ).
Similarly, it is straightforward to show that g f = 1: S 7→ (S,S) 7→ S∩S= S. Thus Λ∼=

´ A 7(W,A,Z)×
7(A,X ,Y ) as sets.
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Now note that this isomorphism is in fact natural in W,X ,Y and Z. Let w : W ′ −→W,x : X −→ X ′,y :
Y −→ Y ′,z : Z −→ Z′, then we have

(S,T ) (S∩w∩ z,T ∩ x∩ y)

S∩T S∩T ∩w∩ x∩ y∩ z

gWXY Z gW ′X ′Y ′Z′

Thus exhibiting the desired natural isomorphism.
A similar argument shows that 7(1×7)(W,X ,Y,Z)∼= Λ, and thus we have established the associa-

tivity natural isomorphism.
The pentagon equation is given by (writing i for the interchange and ignoring the associativity iso-

morphisms of profunctor composition):

7a
xe 7x

yd 7y
bc 7a

xe 7x
by 7y

cd

7a
yx 7x

de 7y
bc 7a

bx 7x
ye 7y

cd

7a
bx 7x

cy 7y
de

1◦α

α◦1 α◦1

(α◦1)i 1◦α

Clockwise we have the following mapping:

(S,T,V ) 7→ (S,T ∩V,T ∩V ) 7→ (S∩T ∩V,S∩T ∩V,T ∩V ) 7→ (S∩T ∩V,S∩T ∩V,S∩T ∩V )

while anticlockwise we have

(S,T,V ) 7→ (S∩T,S∩T,V ) 7→ (S∩T ∩V,S∩T,S∩T ∩V )

and it clear that (S∩T ∩V,S∩T,S∩T ∩V )∼ (S∩T ∩V,S∩T ∩V,S∩T ∩V ) under the coend equivalence
relation. Thus the pentagon commutes.

Now we show the existence of the unit isomorphisms 7(I×1)∼= 1∼= 7(1× I).
Much of the construction is similar to the previous argument, so we leave the reader to fill in some of

the details. There exist functions 7(−,=,B)×P(C [B,M ])−→ Slice(−,=) for each B given by sending
(S,T ) 7→ S∩ T . These functions form a cowedge and therefore induce a unique function

´ B 7(−,=
,B)×P(C [B,M ])−→ Slice(−,=).

The inverse of this function is given by the function S 7→ (S,S) which factorises via copr. It is
straightforward to check that these give the left unit natural isomorphism, and the construction of the
right unit is similar.

Writing Y for an application of the Yoneda lemma, the triangle equation is given by

7a
bc

7a
xc 7x

by Iy 7a
bxIy7x

ycα◦1

Yρ Yλ

and it is little work to check that this commutes.
The symmetry (X 7Y )(Z)−→ (Y 7X)(Z) is given by the identity map for all X ,Y and Z.
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B.5 Proof of Lemma 7

Proof. Take S : X −→ X ′ and S′ : X ′ −→ X ′′. Then (S′6Y )Z(S 6Y )Z acts as C 7→ C∩ (S∪C [Y ])∩ (S′ ∪
C [Y ]) = C∩ ((S∩ S′)∪C [Y ]) which is precisely the same as the action of (S′S 6Y )Z . We conclude
(S′6Y )Z(S 6Y )Z = (S′S 6Y )Z .

A similar argument shows that (X 6 T ′)Z(X 6 T )Z = (X 6 T ′T )Z and thus we have functoriality of
(−6=) in each component. This is enough to extend to functoriality from the funny tensor.

B.6 Proof of Theorem 7

Proof. (Sketch). The proof is similar and uses the same methods as Theorem 2 so we only sketch the
idea.

Fix a slice A. We will show that (A6−)(−) is a kernel.
Starting with the units we need to show that

´ X 6Z
AX JX ∼= JZ . There are functions 6Z

AX JX −→ JZ

sending (S,T ) 7→ S∩ (T ∪C [A]). These are dinatural in X and thus form a cowedge factorising uniquely
via the coend. As a result we have a function

´ X 6Z
AX JX −→ JZ . This function is an isomorphism with

inverse given by S 7→ (S,S) which factorises via copr. Indeed,

S 7→ (S,S) 7→ S∩ (S∪C [A]) = S

and

(S,T ) 7→ S∩ (T ∪C [A]) 7→ (S∩ (T ∪C [A]),S∩ (T ∪C [A]))

∼ (S∩ (S∪C [A]),T ∩T )

= (S,T )

As for the multiplications we want to show
´ Z 6W

AZ7Z
XY
∼=
´ ZZ′6Z

AX 6Z′
AY 7W

ZZ′ which it is easiest
to do by showing each is naturally isomorphic to Λ := P(C [W,A]∪ (C [W,X ]∩C [W,Y ])). For the
former, there is a cowedge with components (S,T ) 7→ S∩ (T ∪C [A]), with the inverse to the induced
map given by S 7→ (S,S), as in the case of the units. For the latter, there is a cowedge with components
(S,T,V ) 7→ S∩T ∩V , with the inverse to the induced map given by S 7→ (S,S,S).

To show that all the isomorphisms are natural is little work.

B.7 Proof of Proposition 7

Proof. In a slight abuse of notation write C ×C
i←− S

�−→ C for the underlying span of the partial
functor � : C ×C ⇀ C , and note that J : 1 ⇀ C is simply a normal functor J : 1 −→ C , in other words
an object J of C . Just like for monoidal categories we can define a promonoidal structure on C by
taking (X⊗Y )(Z) := C (Z,X�Y ) whenever (X ,Y ) ∈S and (X⊗Y )(Z) :=∅ otherwise. The unit is the
representable presheaf at J, YJ .

The associativity isomorphism of a partially monoidal category induces the following arrows:

(S ×C )×C×C S

(C ×S )×C×C S

C ×C ×C C

(i×1)π0 �π1

φ

(1×i)π0 �π1

α (5)
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where π0 and π1 are the canonical projections from the pullback and α is a natural isomorphism.
Given a cospan of functors C

F−→ E
G←− D , the pullback C ×E D is the category consisting of pairs

of objects (c,d) with Fc = Gd and pairs of morphisms ( f ,g) with F f = Gg. We can think of (S ×
C )×C×C S as the category with objects (((a,b),c),(a�b,c)) where (a,b) ∈S and c ∈ C with (a�
b,c) ∈ S , while (C ×S )×C×C S has objects ((a,(b,c)),(a,b� c)) where (b,c) ∈ S and a ∈ C
with (a,b� c) ∈S . The left triangle of (5) ensures that φ must act to send (((a,b),c),(a� b,c)) 7→
((a,(b,c)),(a,b� c)). The right triangle of (5) then implies that the components of α have type αa,b,c :
(a�b)� c−→ a� (b� c). This induces the necessary isomorphism ⊗a

xd⊗x
bc −→⊗a

bx⊗x
cd and checking the

pentagon coherence equation now follows the same standard proof as Theorem 1.
The right unit isomorphism induces the following arrows:

(C ×1)×C×C S

C ×1 C

C C

π0

�π1

ψ

∼
1 1

ρ

the components of ρ have type ρa : a�J −→ a as expected. A similar diagram is induced by λ and in turn
one sees that this has components λa : J�a−→ a. Checking the triangle coherence equation follows like
Theorem 1.

Now suppose we begin with a promonoidal category C where the unit is representable J(−) ∼=
C (−, I) and for each (b,c) ∈ C ×C , either ⊗(−,b,c) ∼= C (−,xbc) is representable, or ⊗(−,b,c) ∼=
∅(−) is empty. Define a full subcategory S of C ×C spanned by objects (b,c) where ⊗(−,b,c) is
representable. Suppose for a contradiction that (b,c) ∈ S and there exists a ( f ,g) : (b,c) −→ (b′,c′)
in C ×C but with (b′,c′) /∈ S . Then we would have a natural transformation C (−,xbc) −→ ∅(−), a
contradiction. Thus ( f ,g) cannot exist and as a result the canonical inclusion functor S ↪→ C ×C is a
discrete opfibration.


	Introduction
	Preliminaries
	Promonoidal Categories
	Premonoidal Categories

	A Category of Spacetime Slices
	Spacetimes and Causal Curves
	A Category of Causal Curves

	A Promonoidal Structure on Slice
	The Structure of Slice and Space under Union
	Interpreting the operations in Slice
	Conclusion and Future Work
	Partially Monoidal Categories as Promonoidal Categories
	Proofs
	Proof of Proposition 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Lemma 7
	Proof of Theorem 7
	Proof of Proposition 7


