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We implement a novel representation of model search spaces as diagrams over a category of models,
where we have restricted attention to a broad class of models whose structure is presented by C-
sets. (Co)limits in these diagram categories allow the creation of composite model spaces from more
primitive spaces. We present a novel implementation of the computer algebra of finitely presented
categories and diagram categories (including their limits and colimits), which formalizes a notion
of model space exploration. This is coupled with strategies to facilitate the selection of desired
models from these model spaces. We demonstrate our framework by generating a tool which fits
experimental data, searching an epidemiology-relevant subspace of mass-action kinetic models.

1 Introduction

Scientific progress is made through an iterative refinement of scientific theories and models. There is a
reciprocal relationship between models and data: models are essential to the explanation and interpre-
tation of data, while data is in turn essential to determining which model structure and parameters are
appropriate to use. In this paper, we are concerned with the general process of selecting a new model in
the face of data that has been collected and interpreted by one’s current theory and hypothesized model.
This process, while familiar to members across a wide range of scientific sub-disciplines, has received
little attention at this general level, outside of philosophical treatments.

Category theory can be applied to this process at a very general level, providing insight and compu-
tational tooling to assist scientists across diverse fields in selecting new models in light of their data. A
mathematical formalization of the model exploration process most immediately lends itself to building
tools to partially automate this process, but it is also a worthwhile goal for the sake of scientific commu-
nication: presently, there is little standardization of how to present the procedure by which one selected
a purported model, and scientists typically use informal descriptions or a program that performed the
search. Better communication via a more structured artifact representing the search procedure could be
important scientifically because, for example, statistical significance of results is contingent on the total
number of models that were considered. Thus one application is to help quantify the phenomenon of
procedural overfitting [21].

Tools to organize and facilitate model exploration are of special importance recently due to the urgent
need for reliable identification, analysis, and control of epidemic outbreaks. Epidemics can be shaped by
a variety of factors; disease dynamics such as infection and recovery rates play a key role in determining
whether a disease may become an epidemic. Concurrently, public policy adoptions such as quarantining,
vaccination, and treatment can help to reduce the severity of an epidemic. Mathematical models are
often utilized by epidemiologists to study epidemics and make policy suggestions. These interventions
can be mathematically modeled as either changes to a model’s parameters, or to a change in the model’s
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Figure 1: Petri as a category of combinatorial models described by a schema with four objects and
four arrows. With the SIR model as an example object of this category, we show how Petri nets can be
depicted as a type of graph and as a kind of database.

structure. Thus this serves as a motivated and representative case study for the general phenomena of
parameterized model exploration.

Structure of this paper We first review some technical preliminaries of Diag(X), the category of
diagrams in some category X, as well as Petri, a particular category of combinatorial models. We then
demonstrate motivating examples of constructions of composite model spaces, with emphasis on the
scenario of compartmental epidemiological models. Finally, we switch focus from model exploration to
model selection: we discuss how the categorical structure of these model spaces facilitates selection and
work through an extended epidemiological example. Note we represent composition of morphisms in
diagrammatic order, i.e. FG =G ◦F.

2 Model Spaces as Diagrams in Categories of Models

In order to avoid the philosophical issues of the ontology of models or the scope of the word ‘model’ [8],
we follow a tradition of thinking of models in terms of functors from syntax to semantics categories [3].
For example, based on the grey-boxing functor in Pollard and Baez [1], we will interpret a Petri net
as a dynamical system given by mass-action kinetics and parameterized by both the initial concen-
tration for each state variable, and rate coefficient for each transition. This construction is a functor
Params : Mono(Petri)→ S et because it sends Petri nets to sets of parameters and Petri net monomor-
phisms to the inclusion of parameters via a pushforward. To further restrict our working definition of a
model, we specifically consider copresheaves, or C-sets, which are a categorical approach to relational
databases [4]. C-Set is bicomplete, which allows us to combine models via limits and colimits. We can
view each C-set as itself a category via the category of elements construction. This makes the class of
scientific models, C-Set a category of categories, analogous to Halvorson and Tsementzis’ characteriza-
tion of the category of scientific theories [10]. Our paradigm example of a combinatorial structures is a
whole-grain Petri Net, as seen in Figure 1.

A diagram in a category X is a functor D : J→X where J is the indexing category. Thus a diagram
can be thought of as a J indexed family of objects in C. We sometimes implicitly regard an object of
X as a diagram in X with shape 1. Diagrams in a general category of models formalize a notion of
model spaces. This is motivated by some practical features of how model spaces are used in practice:
unlike a set of models, models are traversed with some notion of order. Furthermore, diagrams allow a
distinction between the structure of one’s model space from models themselves (e.g. we can talk about a
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grid-like structure of varying two hyperparameters without talking about the models themselves). Lastly,
diagrams in a general category of models, rather than a preorder of models, allow us to express richer
relationships between models than “is prior to.”

We now define the category of (small) diagrams in some category of models, X. Objects of Diag(X)
are diagrams in X, i.e. a tuple (I,X) where I is a small category in Cat, called the shape of the diagram
and X : I →X is a functor in Cat. Diag(X) is a lax version of the slice category Cat/X. A morphism
between objects (I, X) and (J, Y) is a pair (F, ϕ), where F : I → J is a functor called the shape map.
Cat/X demands X = FY , which is too strict for our purposes because it makes Diag(X) not bicomplete,
even when X is bicomplete. In order to have access to (co)limits, we instead work with Diag(X), which
only requires a natural transformation ϕ : X→ FY , called the diagram map.

I J

X

F

X Y

ϕ

We define model exploration as the process of building a space of possible models from simpler
spaces. We distinguish this from model selection, which is the process of picking a model from the
model space that addresses a practical problem [6]. We can decouple these two processes; however, we
recommend performing the exploration process with at least some considerations to facilitate selection.
Notably, we suggest that the underlying graph of the diagram shape be either a directed acyclic graph
(which can be topologically sorted) or a rooted graph, such that model selection has a designated starting
point.

3 Limits and colimits in diagram categories

We review (co)limits in the category of diagrams, as described by Peschke and Tholen [18], where it is
called Diag◦(X). We will present the constructions in more explicit detail and for arbitrary arities. Many
constructions will implicitly range over i ∈ I for some indexing set I. Some constructions are illustrated
in Figure 2.

The product in Diag(X), (P, Z) ≡
∏

(Ai, Xi), is defined as a diagram whose shape is the product in
Cat of the diagram shapes,

∏
Ai. The functor Z : P→Xmaps the object

∏
ai ∈Ob P to the product in X

given by
∏

Xi(ai). Where Z maps the morphism fi :
∏

ai→
∏

bi is determined by the universal property
of products in X of P(

∏
bi). The projection map (pi, πi) : (P, Z)→ (Ai, Xi) is precisely the ith projection

map of the shape-level product P and the X-level products from Z, respectively.
Equalizers in Diag(X) are likewise merely equalizers on the shape level and in X. For a family of

diagram morphisms (Fi, ϕi) : (A, X)→ (B, Y), the equalizer (E, ψ) : (Eq, Z) ↪→ (A, X) has E given by
the equalizer in Cat of Fi. ψ assigns to each object a an inclusion ιa : Eq(a)↪→A(a) in X by taking the
equalizers of morphisms ϕi(a) in X. Naturality of ψ forces Z to map an object a in Eq to the domain of
ιa, and Z determines where to send a morphism f : a→ a′ in Eq by applying the universal property of ιa′
to ιaA( f ).

Coproducts are also straightforward in Diag(X): (C, Z) ≡
∐

(Ai, Xi). C =
∐

Ai is the coproduct
at the shape level, and the shape maps Ii of the inclusion morphisms (Ii, ιi) : (Ai, Xi) ↪→ (C, Z), and
the diagram data is copied over: C(a) for some a ∈ Ai is equal to Xi(a) and a morphism from one of
the included categories likewise gets mapped to where the original diagram mapped it. The inclusion
diagram map for some a ∈ Ai is the identity morphism in X.
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Figure 2: Illustrations of products, equalizers, and coproducts in Diag(X), respectively in the left, center,
and right panels. The data of the functor into X for diagrams A and B are indicated by naming and color
rather than by explicitly drawn components. Legs of (co)limits are in gray. Functors have thicker arrows
and are dashed when explicit components are given. Morphisms derived from universal properties are
given by dotted lines. Not all objects or morphisms in a given category are visualized.

Coequalizers in Diag(X) require special attention. The detailed construction, found in [18], can also
be expressed as a commutative diagram in Diag(X), shown in Figure 3.

(A,X) (C, LanFHX)

(B,Y) (C, LanHY)

(C, Z)

(F, ϕi)

(H, κγ)

(H, κ)

(idC , γ)

(idC , αi)

(FH, λ)

Figure 3: Construction of a coequalizer (H, κγ) in Diag(X). Its shape map H determined by the coequal-
izer of Fi. After computing the two left Kan extensions, αi are determined by the universal property of
LanFHX in [A,X] applied to ϕiκ, and γ is their coequalizer in [C,X]. Note that the data of a left Kan
extension of a diagram in X is precisely a morphism in Diag(X) and that natural transformations in Cat
between functors into X can be represented as diagram morphisms with an identity shape map.

Novel implementation For applied category theory to be computed, its concepts must be translated
into a setting of finite presentations. To represent functors by a finite amount of data, their domains
must be finitely presented, thus for diagrams we require every shape category to be presented by a finite
reflexive graph, with vertices as object generators and edges as morphism generators, with morphisms
implicitly quotiented by a finite list of equations between finite paths. Although mathematicians can
quickly forget about the presentation as a mere aid to specifying a category, computational category
theory requires taking these presentations of categories as its objects of study. This work adds function-
ality to Catlab.jl [9], a computational category theory library that permits the manipulation of C-sets,
finitely-presented categories, and diagrams.
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Ideally the category of finitely presented categories, called CondGraph by Borceux in [2] as they are
graphs with sets of commutivity conditions, is closed under limits and colimits; this is almost true with
one exception that will be mentioned. The construction of colimits stems from Borceux who constructs a
left adjoint functor from CondGraph into Cat. Any colimits constructed in CondGraph yield colimits
in Cat due to left adjoints preserving colimits. Products can also be generally computed as finitely
presented categories, by a generalization of the process of computing finite presentations of product
groups [12] and monoids [11]. We restrict computing equalizers of finite functors Fi : A→ B to cases
where B is a free category, such that the equalizer is a presented by a subgraph of the graph presenting A
along with the relevant subset of A’s path equations.

Beyond limits of finitely-presented categories, the implementation of limits and colimits in Diag(X)
mostly follows as described above without special attention needed, as general limits and colimits of
C-sets are an existing Catlab feature. One exception is the computation of left Kan extensions, which
proceeds as follows and is visualized in pseudocode below: we start with a diagram X in C-Set with
shape J and a functor F : J→ I. The tensor-hom adjunction in Cat establishes an equivalence between
diagrams in Set and diagrams in C-Set, which is applied in line 2 to X to produce a corresponding X′.
Then, in line 3, the functor −×C is applied to F to produce a corresponding F′ compatible with X′.
This data is in a form amenable to the pushout-based chase algorithm of Spivak and Wisnesky [16],
which computes the left Kan extension of a diagram in Set, shown in line 4. We can lastly reapply the
tensor-hom equivalence to the resulting diagram in Set and diagram morphism in Set, in lines 5 and 6
respectively, to obtain the corresponding left Kan extension in C-Set.

1: function leftkan cset(X:: J→C→ Set, F:: J→ I)
2: X′:: J×C→ Set ←− TensorHom(X)
3: F′:: J×C→ I×C ←− F ×C
4: (LanF′X′:: I×C→ Set, α′:: X′→ LanF′X′) ←− LeftKan Set(X′, F′)
5: LanF X :: I→C→ Set ←− TensorHom−1(LanF′X′)
6: α :: X→ LanF X ←− TensorHom−1(α′)
7: return (LanF X, α)
8: end function

Examples We demonstrate the utility of diagram limits and colimits by showing epidemiologically-
motivated examples of pullbacks and pushouts in the category of diagrams in Petri. These specify
spaces of mass-action kinetics models and are motivated by examples from Libkind et al. [14]. One
can gain intuition for how pullbacks work by considering the pullback of two path-shaped sequences
of models, which performs model stratification. This a two-dimensional1 space of models, as shown in
Figure 4. Alternatively, this is the product of diagrams in Petri/X, where X is given in panel a. Pushouts
are more intricate, reflecting the increased complexity of their construction. To highlight the versatility
of this construction, we demonstrate a pushout at the ‘shape level’ and at the ‘Petri level’ in Figure 5a
and Figure 5b, respectively.

4 Model exploration

A paradigm case of model exploration in practice is model stratification. Stratification is characterized
by taking some form of dynamics and reproducing it as local dynamics within multiple strata, which can

1Because pullbacks can be defined for an arbitrary arity, we can produce n-dimensional model spaces via pullbacks of n
path-shaped model spaces.
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Figure 4: A discrete spatial stratification for a sequence of disease models, performed via pullback of
path-shaped diagrams in Petri. a.) The apex of the cospan in Diag(Petri). Colors of boxes in subsequent
panels indicate the data of the diagram maps into the apex of the cospan, i.e. homomorphisms into this
Petri net. b.) For ease of visualization, we implicitly elide the unary transitions corresponding to the
other dimension of a stratification. This says, for example, the SIR model has a reflexive transportation
transition for each state. This example is explicitly drawn out in this panel but remains implicit in the
last panel for models A, B, 1, 2, and 3. c.) A pullback of a geography dimension (one-, two, three-city
models) and a disease dimension (SIR, SIRS, etc.). We visualize resulting grid-like shape of the pullback
diagram and one of its underlying Petri nets.

interact in controlled ways. Epidemiological modelers in particular use this technique to examine effects
of demographics or geography on the dynamics of disease.

We build upon the work in Libkind et al. [14], where the stratification of compartmental models
in epidemiology is achieved via series of pullbacks in Petri. Equivalently, these are products in the
slice category Petri/X. Pullbacks in Diag(Petri) formalize the informal structure implicit in taking all
possible pairs of pullbacks from a set of disease dynamics models and a set of stratification models.
Our contribution is a level shift from pullbacks in Petri to pullbacks in Diag(Petri): limits in Petri are
combinations of models, while limits in Diag(Petri) are combinations of model spaces.
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Figure 5: Two pushouts of spans of path-shaped diagrams in Diag(Petri). a.) A diagram with a branching
shape and no changes to the underlying Petri nets is created by pushing out the following span: the apex
is the first element shared by both diagrams. b.) A death transition is added to the sequence of disease
models by computing the pushout of the a span with the single state I as its apex. The shape maps out
of this apex pick out A and 1, and the diagram maps pick out the I state in each of their underlying Petri
nets. In Figure 6 this operation is labeled as Glue.

Our example of one possible exploration of a space in Petri combines the three (co)limit examples
seen so far into one high-level operation, visualized in Figure 6a. This workflow performs a stratification
defined by a product in Diag(Petri/X). The example also embellishes the disease dynamics dimension
with an alternative that includes a death transition, i.e. the result of Figure 5b. However, that pushout
effectively replaces the original disease dynamics, whereas this example adds the embellished version as
an additional option via a coproduct in Diag(Petri/X). The resulting space is depicted in Figure 6b.

The three high-level operations of this example could be presented as basic recipes for a practicing
scientist to work with. However, these and other useful abstractions can also be built compositionally
from low level operations, such as primitive constructors for diagrams, diagram morphisms, and their
(co)limits, or from intermediate-level abstractions. This composition is formalized by the operad of di-
rected wiring diagrams [17]. By considering a slice category of directed wiring diagrams that encodes
the basic argument types and signatures of primitive functions, we obtain a basic notion of type checking
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in order to prevent some user errors 2. This formal diagrammatic syntax provides a visualizable and
hierarchical domain specific language for model exploration. In addition to the clarity that comes from
visualization, this syntax explicitly separates the workflow from the arguments it is applied to at runtime,
allowing the application of same workflows to varying initial model spaces. Furthermore, isolating this
wiring diagram syntax from the model space composition semantics allows us to decouple the model
space exploration from its implementation details, as another runtime decision could be whether to ea-
gerly evaluate the composite model space all at once or lazily unfold it, the latter of which is necessary
if one wanted to compute with infinite model spaces.

5 Model selection

Our paradigm case of model selection in Diag(Petri) is choosing a Petri net model which achieves a best-
fit parameterization for a given data set which contains time series data for some set of species. Petri nets
are given semantics of systems of ordinary differential equations by applying the law of mass action, as
described by Baez and Pollard [1]. Then, the loss for a given Petri net with states S and transitions T
(with a parameter vector p⃗ ∈ R|S |+|T |

>0 , representing the initial values for each state and the rates for each
transition) is given in Equation 1, where y represents data we wish to fit (a trajectory collected within the
SIR model paradigm) and ŷ represents the SIR trajectory as predicted by the Petri net, parameterized by
the current parameters and time.

Loss(y, ŷ, p⃗) =
∑
t∈T

∑
s∈{S ,I,R}

(ys(t)− ŷs( p̂, t))2
(1)

One key goal of formalizing model spaces as diagrams was to provide enough structure to determine
an order for possible models to be evaluated, which is crucial when it is infeasible or impossible to evalu-
ate every model in one’s model space. When the underlying graph of the diagram’s shape is acyclic or has
a designated root object, breadth-first search is a natural choice of ordering. Given a category of models
C and a model evaluation function P : Ob C → Rop

>0, where a low evaluation score is preferred such as
P assigning the minimum loss over all parameter assignments, we define these to be compatible when P
is a functor. This means our models monotonically improve with respect to our goal as we traverse the
model space along its morphisms. Notice that if a P ↪→ Q in Petri there is always a parameter choice
of Q that recovers the loss of the best parameterization of P by setting all of the concentrations/rates for
states/transitions in Q that are not in P to 0. Thus a monomorphism of Petri nets can only decrease the
optimal loss.

There are many more ways in which the diagram structure can be leveraged during model selection.
Firstly, beyond breadth-first search, there is great flexibility in dynamically selecting a traversal order
based on the evaluation of models seen so far. For example, a discretized gradient computation of a
product model space such as in Figure 4 provides a data-informed guess for which directions are most
promising to explore. We can also leverage the rich structure of diagrams constructed via limits and
colimits to propagate prior information from our simpler model spaces into composite model spaces.
For example, probability distributions on the states of the two-city model and the SIR model can be
combined to give a probability distribution on the states of their combined model (shown in Figure 4):
this formalizes the intuition that, if 90% of the population is initially susceptible (to the best of our
knowledge) and 33% of the population initially is in City X, a reasonable guess for the initial percentage

2Because this workflow type system does not involve full dependent types, an error such as taking the pushout of two
morphisms which do not share a common domain would be a runtime error.
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of susceptible people in City X is 90%× 33% = 30%. These informed initial guesses are essential to
the practical computation of best fit parameterizations. Furthermore, this limit and colimit information is
essential for our loss function in Equation 1, which requires a model to provide predictions commensurate
with an SIR data set, even if the model contains dozens of states, none of which correspond directly to S,
I, nor R. The projection map into the disease dimension allows us to ‘integrate’ the states of a composite
model along this axis.

This data fitting problem is compatible with the category of monomorphisms of Petri/X. Given a
best fit of some model A to a data set, we know that the best fit of some model B related by a morphism
A ↪→ B is at least as good. Moreover, the data of the homomorphism tells us how to choose parameters
for B such that equal performance to A is achieved, by setting newly introduced parameters to zero. This
is one virtue of considering diagrams in a general category of models in contrast to a preorder of models.
This approach can be used to produce an initial choice of parameters for optimization when we do not
have prior distributions.

Taking all these strategies together, we demonstrated the feasibility of our approach by performing
model selection for a best fit model on the search space described in Figure 6c. To generate sample data,
we simulated the (S IRD)2 model from the space with a reasonable choice of parameters for 50 time
steps. We then sampled the resultant trajectories at 50 evenly spaced points and added a small amount
of Gaussian noise. The DiffEqFlux.jl package [19] and the loss function in Equation 1 were used to
perform parameter fitting for the models in the search space. The results in Figure 7 show each of the
eight model’s performance against the sample data, crucially showing that the true model (S IRD)2 and
(S IRS D)2, achieved the lowest loss by a significant amount.

Because of the compatibility between the structure of our category of models and loss function, there
are two observations we can make about the evaluated models, visualized in Figure 7b. Firstly, because
there is a morphism (S IRD)2 ↪→ (S IRS D)2, it is reasonable that (S IRS D)2 is able to fit the experimental
data equally well (i.e., by setting the reinfection rate to be zero). However, (S IRD)2 can be identified as
the simplest model that accounts for the data, where this measure of simplicity comes from the structure
of the shape category. We also observe instances loss increasing along the morphisms into the S IRS two-
city model. Because the loss is guaranteed to decrease across morphisms, as it was formally defined, we
can conclude this increase is purely an artifact of the numerical challenges of multivariate nonlinear
optimization in a finite amount of time.

6 Generalizations and future work

Generalization 1: Keep model syntax fixed, change model semantics Mass-action kinetics is a
reasonable approximation in many chemical domains; however, biological processes are sometimes best
modeled by other functional forms. For example, in the exploration of models of cancer treatment,
cancer growth rate can be modeled as exponential (Ṅ = rN), logistic (Ṅ = rN(1− N

k )), von Bertalanffy
(Ṅ = αNλ −βNµ), or Gompertz (Ṅ = rNln k

N ) functional forms. Likewise, there are alternate models for
death rates due to chemotherapy, such as the log-kill hypothesis (Ṅ =−c(t)N), Norton-Simons hypothesis
(Ṅ = −c(t) f (N)), or the ϵ-max model (Ṅ = −c(t)N

N+δ ). Given the multiplicity of possible cancer models and
treatment options, a similar Petri net exploration to Figure 6 could be used to structure the problem
of finding an optimal treatment; however, depending on whether boxes are tagged as having a certain
functional form via slicing over a Petri net with multiple transition types, the semantics of these Petri
nets will be evaluated differently when comparing to experimental data.
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Generalization 2: Change model syntax and semantics Up until this point, we have only considered
Petri/X as a source of models with combinatorial structure. However, our framework is general to
diagrams in any bicomplete category, for example C-Set/X with any choice of finitely-presented C.
One combinatorial model exploration problem with a rich literature is neural architecture search, which
involves finding a neural network architecture that achieves desired accuracy on a given problem. Many
techniques model the search space as a directed graph with operations such as convolution and pooling
on edges and data such as tensors on nodes. For example, Liu et al. represent architectures as single
source/single sink directed acyclic graphs over a small set of primitive operations [15]. We represent this
by working in ReflexiveGraph/X, the category of reflexive graphs and graph homomorphisms sliced
over the graph in Figure 8a, which enforces the single source/single sink requirement. We can then
encode two linear diagrams over this category: one to represent an iterative deepening of the architecture
and another to represent an iterative widening. These two diagrams can be combined via a product in the
category of diagram to produce the search space in Figure 8b.

The evaluation criteria of finding an optimal parameterization relative to a data set is valuable in this
setting, much like the case of Petri nets. As the structure of this category of models is compatible with
this parameter estimation problem, this means morphisms between models can aid in the search process
and parameter initialization.

Alternative selection function: lowering the curve An example of a valid loss function that is incom-
patible with the structure of Petri is one where we seek to optimize parameters to minimize the maximum
infected population concentration over a fixed time interval, as formalized in Equation 2. Here the model
could also be judged by how low this value is, possibly in conjunction with other desiderata (for example,
some policies may not be as politically feasible). In this case, it will not be the case that a morphism
in Petri corresponds to an improvement in lowering the curve. One consequence of this fact is a lack
of regularity of the loss landscape. Although gradient-like heuristics can still be used, there is no longer
clear criteria for when to terminate the search in the case of infinite model spaces.

Loss′(ŷ, p⃗) = max
t∈T

ŷI( p̂, t) (2)

Future work Many elements of future work are required to develop our prototype into a full-fledged
software tool for scientists with no computer science or category theory background to use. A GUI using
the wiring diagram formalism for constructing workflows would improve accessibility. Another task is
to develop a high-level library on top of the primitive abstractions of limits and colimits of diagrams
to capture common design patterns used by scientists in practice. This could also involve introducing
new primitives for producing model spaces: for example, by defining a set of open rewrite rules, one
induces a diagram in the double category of structured cospan rewrites [5]. The development of a lazy
implementation of limits and colimits would allow computation with infinite model spaces. Another fu-
ture research direction involves models which are themselves hierarchical: multiple loss functions could
be used in parallel to guide the selection process, biasing search towards models where both individual
components perform well in addition to cohering with each other to achieve an overall task.

7 Conclusion

Considering diagrams in a category of models as model spaces allows us to formalize model explo-
ration and model selection, aspects of iterative scientific practice that are usually treated with an ad hoc
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paradigm or left informal. In particular, the notions of pullbacks and pushouts in this category of model
spaces captures the commonplace notions of multidimensional search (model space stratification) and
branching possibilities. Limits and colimits in Diag(X) are a precise and compositional language to
specify the hierarchical construction of interesting topologies of model spaces.

We presented one mechanism by which category theory can be applied to scientific computing to im-
prove the transparency of its methods as well as its flexibility and robustness to the fast-changing goals
of scientists. We built a very general tool for scientific modeling and applied it to solve small examples
of real problems. Implementing this required the first practical implementations of limits and colimits
for categories of diagrams in C-Set. C-Set is a well-behaved category with straightforwardly computable
(co)limits, and Diag(C-Set) inherits this behavior. We demonstrated building up model exploration work-
flows, with example applications to Petri nets and neural network architectures. We lastly showcased an
example model selection framework for finding parameterized epidemiological models that can deduce
the simplest model consistent with an experimentally observed trajectory as well as incorporate prior
knowledge about stratification dimensions.

Acknowledgements The authors would like to thank Evan Patterson, David Spivak, and Tim Hosgood
for their helpful conversations.
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Figure 6: a.) A model exploration workflow represented as a typed wiring diagram. Models are
combined by gluing, colimits, and limits. Diagrams in Petri/X are blue, and spans in Petri are red. b.)
Example three inputs fed into this workflow c.) Overall resulting composite model space.
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normalized to the (S IRD)2 model having a loss of 1.0. c.) SIRD trajectories (where S is the sum of all
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Figure 8: Neural network search space encoded as the product of two diagrams in ReflexiveGraph/X
(reflexive edges are suppressed for visualization). Vertices represent tensors, while edges represent layer
operations. Blue and red represent input and output nodes, respectively, while black represents hidden
nodes. a.) a depiction of X, the base point of the slice, which enforces the single source/single sink
requirement. b.) The composite search space. Moving along the vertical axis widens the network while
traversing the horizontal axis deepens it.
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