Characterization of Contextuality with Semi-Module Čech Cohomology

Sidiney B. Montanhano

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Campinas, São Paulo, Brazil sidineybmt@gmail.com

I present a generalized notion of obstruction in Čech cohomology on semi-modules, which allows one to characterize non-disturbing contextual behaviors when they have distributions in any semi-field, generalizing the usual Čech cohomology used in the sheaf approach to contextuality.

Sheaf approach The sheaf approach to contextuality [_2012_2012], a well-known kind of non-classicality, has as fundamental objects the measurements *X* and their contexts \mathscr{U} given by their compatibility, defining a site with the inclusion map. A measurement scenario is given by the sheaf of events $\mathscr{E} : \langle X, \mathscr{U} \rangle^{op} \to \mathbf{Set}$, attaching the sets of outcomes O^U for each context $U \in \mathscr{U}$. *R*-empirical models are defined with a semi-ring *R*, usually the probability \mathbb{R}^+ and the Boolean \mathbb{B} , by a functor $\mathscr{D}_R : \mathbf{Set} \to \mathbf{Set} :: O^U \mapsto \left\{ \mu_R^{O^U} \right\}$ on a measurement scenario, taking a set of local events to the set of *R*-measures defined on it $\mu_P^{O^U} : \mathbb{P}(O^U) \to R$ that satisfies $\mu_R^{O^U}(O^U) = \mathbf{1}_R$. The non-disturbance condition is usually imposed by saying that $\mu_R^{O^U}|_{kj} = \mu_R^{O^k}|_{kj}$ for all *k* and *j*. By imposing the independence of hidden variables λ on the context called λ -independence, one can write

$$\mu_R^{O^U}(A) = \sum_{\Lambda} p(\lambda) \prod_{x \in U} \mu_R^{O^x}(\rho'(U, x)(A)),$$
(1)

with $p(\Lambda) = 1_R$. An *R*-empirical model is said *R*-non-contextual if there is a *R*-measure *p* and a set of hidden variables Λ such that Equation 1 holds for all $U \in \mathcal{U}$. We get the Fine-Abramsky-Brandenburguer theorem by imposing $\prod_{x \in U} \mu_R^{O^x} \in \{0_R, 1_R\}$ (outcome-determinism), that identifies Λ with the set of global events. Therefore, contextuality is the failure to extend a local section to a global section of $\mathcal{D}_R \mathcal{E}$.

Čech cohomology We define the nerve $N(\mathscr{U})$ of maximal contexts, which defines an abstract simplicial complex, where the *q*-simplices form a collection $N(\mathscr{U})^q$, and with it the boundary map. Defining a functor $\mathscr{F} : N(\mathscr{U}) \to \mathbf{AbGrp}$ related to $\mathscr{D}_R \mathscr{E}$, typically $\mathscr{F} = F_S \mathscr{L}$ with \mathscr{L} at least a subsheaf of \mathscr{E} and $F_S : \mathbf{Set} \to \mathbf{AbGrp}$ that assigns to a set O the free Abelian group $F_S(O)$ generated by it related to a ring S, plus some properties, we get an augmented Čech cochain complex

$$\mathbf{0} \longrightarrow C^{0}(\mathscr{U},\mathscr{F}) \xrightarrow{d^{0}} C^{1}(\mathscr{U},\mathscr{F}) \xrightarrow{d^{1}} C^{2}(\mathscr{U},\mathscr{F}) \xrightarrow{d^{2}} \dots$$
(2)

and the coboundary maps as the group homomorphisms satisfying $d^{q+1}d^q = 0$, thus we can construct the Čech cohomology $\check{H}^q(\mathscr{U},\mathscr{F})$ of this cochain complex. With the identification of $\check{H}^0(\mathscr{U},\mathscr{F})$ and the set of compatible families, one can characterize cohomological contextuality by the construction of obstruction on an initial 0-cochain that codifies the local sections of \mathscr{F} on the covering \mathscr{U} . The key elements are the relative cohomology $\mathscr{F}_{\bar{U}}$ and the obstruction $\gamma(s_{i_0})$. One can prove:

Submitted to: ACT 2022 © S. B. Montanhano This work is licensed under the Creative Commons Attribution License. **Proposition 1.** Let \mathscr{U} be connected, $U_{j_0} \in \mathscr{U}$, and $s_{j_0} \in \mathscr{F}(U_{j_0})$. Then $\gamma(s_{j_0}) = 0$ if and only if there is a compatible family $\{r_{j_k} \in \mathscr{F}(U_{j_k})\}_{U_{j_k} \in \mathscr{U}}$ such that $r_{j_0} = s_{j_0}$.

If an obstruction is non-trivial, then the empirical model must be contextual. However, the representation via groups has a cost. The functor $F : \mathbf{Ring} \to \mathbf{Rig}$ to the category of semi-rings forgets property and structure, which allows the violation of the cohomological characterization of contextual behavior.

Čech cohomology on semi-modules The objective of Ref. [3] is to characterize contextual behavior by keeping the semi-module on the original semi-ring, but when doing so, a lot of the properties of usual cohomology fail, once it is impossible to define the coboundary operators. But one can define a cochain complex of *R*-semi-modules consisting of *R*-semi-modules C^q and *R*-homomorphisms d_+^q , d_-^q [2]:

$$C = \dots \xrightarrow{d_+^{q-2}} C^{q-2} \xrightarrow{d_+^{q-1}} C^q \xrightarrow{d_+^q} C^{q+1} \xrightarrow{d_+^q} \dots$$
(3)

satisfying some imposed properties that generalize usual conditions. The cohomology *R*-semi-module $H^q(C) = Z^q(C)/\rho^q$ will depend on a non-unique congruence relation ρ^q in $Z^q(C)$. The Čech cohomology on *R*-semi-modules is defined as usual, but one needs to work with the differentials separately and one substitutes the presheaf \mathscr{F} by a presheaf of *R*-semi-modules \mathscr{G} . The coboundary operators can be defined, and I choose \mathscr{G} as a free *R*-semi-module generated by the local events for each element of \mathscr{U} and intersections. We need a formalism that allows the construction of obstructions without subtraction. By allowing *R* to be a semi-field, we can use *R*-stochastic operators to codify the difference between the coboundaries. The difference operator is a function $[g_q] :: c \in C^q(\mathscr{U}, \mathscr{G}) \mapsto [g_q, c]$, defining for each cochain its unique class of difference cochains. Diagrammatically

$$0 \longrightarrow C^{0}(\mathscr{U},\mathscr{G}) \xrightarrow{d_{+}^{0}} C^{1}(\mathscr{U},\mathscr{G}) \xrightarrow{id} C^{1}(\mathscr{U},\mathscr{G}) \xrightarrow{id} C^{1}(\mathscr{U},\mathscr{G}) \xrightarrow{d_{+}^{0}} C^{2}(\mathscr{U},\mathscr{G}) \xrightarrow{id} C^$$

Theorem 2. Let \mathscr{U} be connected, $U_{j_0} \in \mathscr{U}$, and $c_{j_0} \in \mathscr{G}(U_{j_0})$. Then $\gamma(c_{j_0})$ is trivial if and only if there is a compatible family $\{r_{j_k} \in \mathscr{G}(U_{j_k})\}_{U_{j_k} \in \mathscr{U}}$ such that $c_{j_0} = r_{j_0}$.

Corollary 3. A model is *R*-contextual if and only if there is a local section s_i representing a local event by \mathscr{G} with non-trivial obstruction.

A similar result already exists in the level of effect algebras, which directly compares to a Boolean effect algebra via extendability. The two approaches search for the same thing: to verify if a structure can be understood as a Boolean structure, if it can be understood classically in deterministic ways.

References

- [1] Samson Abramsky, Shane Mansfield & Rui Soares Barbosa (2012): *The Cohomology of Non-Locality and Contextuality*. *Electronic Proceedings in Theoretical Computer Science* 95, pp. 1–14, doi:10.4204/eptcs.95.1.
- [2] Jaiung Jun (2017): Čech cohomology of semiring schemes. Journal of Algebra 483, pp. 306–328, doi:https://doi.org/10.1016/j.jalgebra.2017.04.001.
- [3] Sidiney B. Montanhano (2021): Characterization of Contextuality with Semi-Module Čech Cohomology and its Relation with Cohomology of Effect Algebras, doi:10.48550/ARXIV.2104.11411.