
Preliminary Report. Final version to appear in:
ACT 2022

© Elena Di Lavore and Paweł Sobociński
This work is licensed under the
Creative Commons Attribution License.

Monoidal Width: Capturing Rank Width

Elena Di Lavore
Tallinn University of Technology

Paweł Sobociński
Tallinn University of Technology

Monoidal width was recently introduced by the authors as a measure of the complexity of decom-
posing morphisms in monoidal categories. We have shown that in a monoidal category of cospans
of graphs, monoidal width and its variants can be used to capture tree width, path width and branch
width. In this paper we study monoidal width in a category of matrices, and in an extension to a dif-
ferent monoidal category of open graphs, where the connectivity information is handled with matrix
algebra and graphs are composed along edges instead of vertices. We show that here monoidal width
captures rank width: a measure of graph complexity that has received much attention in recent years.

1 Introduction

Many applications of category theory rely on monoidal categories as algebras of processes [26, 15, 28,
18, 10, 25, 11, 17, 23, 27]. Morphisms are compound processes, defined as parallel and sequential
compositions of simpler process components. The compositional nature of this modelling allows a com-
positional computation of the underlying semantics. But how efficient is this computation? Given two
processes f and g, we can compute their semantics separately. However, computing the semantics of
their sequential composition f ;g often requires an additional cost [36]. Indeed, the semantics of sequen-
tial composition often means resource sharing or synchronisation along the common boundary. This in
turn carries a computational burden, dependent on the size of the boundary. On the other hand, com-
puting the semantics of a parallel composition f ⊗ f ′ typically does not involve any resource sharing,
as indicated by the wiring of the string diagrams, and thus typically does not require significant addi-
tional computational resources. Taking this into account, the choice of the recipe for a morphism in
terms of parallel and sequential compositions influences the cost of computing its semantics. As shown
in Figure 1, where vertical cuts represent sequential compositions and horizontal cuts represent parallel
compositions, the same morphism can be defined in different ways with possibly different computational
costs. Given a morphism, it is thefore desirable to find the least costly recipe of decomposing it in terms

f g

f ′ g′
=

f g

f ′ g′

Figure 1: Two monoidal decompositions of the same morphism, the right one being the cheapest.

of more primitive components. We can rephrase the original question: what is the most efficient way to
decompose a morphism in a monoidal category?

The authors recently proposed monoidal width [22] as a way of assigning a natural number to a
morphism of a monoidal category, representing – roughly speaking – the cost of its most efficient de-
composition. In turn, this is related to the cost of computing the semantics of this morphism.

Computing efficient decompositions is not a new problem. The graph theory literature abounds [6,
29, 38, 37, 39, 33, 20, 2, 3, 16] with notions of complexity of graphs that ultimately measure the difficulty

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Monoidal Width: Capturing Rank Width

of decomposing a graph into smaller components by cutting along the vertices or the edges of the graph.
Measures such as tree width [6, 29, 38], path width [37], branch width [39], clique width [20] and rank
width [33] are motivated by algorithmic considerations. Probably the best known among several results
that etablish links with algorithms [8, 9, 19], the following shows the importance of tree width.

Theorem (Courcelle [19]). Every property expressible in the monadic second order logic of graphs can
be tested in linear time on graphs with bounded tree width.

The different notions of complexity for graphs vastly differ in low-level “implementation details” but
they all share a similar underlying idea: that of defining decompositions and suitably measuring their
efficiency. One of our contributions is to exhibit monoidal width as a unifying framework for graph
measures based on a notion of decomposition. In fact, by choosing a suitable algebra of composition
for graphs — i.e. choosing the right monoidal cateory — we recover some of these known measures as
particular instances of monoidal width. We have previously captured [22] tree width, path width and
branch width by instantiating monoidal width and two variants in a category of cospans of graphs.

In this paper we focus on rank width [33] – a relatively recent development that has attracted signifi-
cant attention in the graph theory community. A rank decomposition is a recipe for decomposing a graph
into its single-vertex subgraphs by cutting along its edges. The cost of a cut is the rank of the adjacency
matrix that represents it, as shown in Figure 2. A useful intuition for rank width is that it is a kind of
“Kolmogorov complexity” for graphs. For example, although the family of cliques has unbounded tree
width, the connectivity of cliques is quite simple to describe: and, in fact, all cliques have rank width 1.

rank

(
1 1
1 1

)
= 1

Figure 2: A cut and its matrix in a rank decomposition.

To capture rank width as an instance of monoidal width, rather than taking cospans, we work in a
different monoidal category of graphs. First introduced in [14], it was recently used [21] as a syntax
for network games. This approach to computing with “open graphs” is more linear algebraic, building
modularly on the theory of bialgebra, well known to be closely related to matrix algebra [41]. Indeed,
the connectivity of graphs is handled with adjacency matrices, and boundary connections are matrices.

Related work. This manuscript, although self-contained, complements our previous work [22], where
we considered tree width, path width and branch width as instances of monoidal width.

Previous syntactical approaches to graph widths are the work of Pudlák, Rödl and Savickỳ [35] and
the work of Bauderon and Courcelle [5]. Their works consider different notions of graph decompositions,
which lead to different notions of graph complexity. In particular, in [5], the cost of a decomposition is
measured by counting shared names, which is clearly closely related to penalising sequential composi-
tion as in monoidal width. Nevertheless, these approaches are specific to particular, concrete notions of
graphs, whereas our work concerns the more general algebraic framework of monoidal categories.

Recent abstract approaches focus on other graph widths. The work of Blume et. al. [7], characterises
tree and path decompositions in terms of colimits. Abramsky et. al. [24] give a coalgebraic character-
ization of tree width of relational structures (and graphs in particular). Bumpus and Kocsis [13] also
generalise tree width to the categorical setting, although their approach is far removed from ours.

Elena Di Lavore and Paweł Sobociński 3

Synopsis. Monoidal width is recalled in Section 2. In Section 3, we study the monoidal width of
matrices. Section 4 recalls rank width and gives an equivalent recursive definition of it that will be useful
as an intermediate step towards our main result, which is presented in Section 5.

Preliminaries. We use string diagrams [30, 40]: sequential and parallel compositions of f and g are
drawn as in Figure 3, left and middle, respectively. Much of the bureaucracy, e.g. the interchange law
(f ;g)⊗(f ′ ;g′)= (f⊗ f ′) ;(g⊗g′), disappears (Figure 3, right). Props [32, 31] are important examples of

f g
f
g

f g

f ′ g′

Figure 3: String diagrammatic notation.

monoidal categories. They are symmetric strict monoidal, with natural numbers as objects, and addition
as monoidal product on objects. Roughly speaking, morphisms can be thought of as processes, and the
objects (natural numbers) keep track of the number of inputs or outputs of a process.

2 Monoidal width

This section recalls the concept of monoidal width from [22]. Monoidal width records the cost of the
most efficient way one can decompose a morphism into its atomic components, thus capturing—roughly
speaking—its intrinsic structural complexity. A decomposition is a binary tree whose internal nodes are
labelled with compositions or monoidal products, and whose leaves are labelled with atomic morphisms.

Definition 2.1 (Monoidal decomposition [22]). Let C be a monoidal category and A be a subset of its
morphisms referred to as atomic. The set D f of monoidal decompositions of f : A→ B in C is defined:

D f ::= (f) if f ∈A

| (d1,⊗, d2) if d1 ∈ D f1 , d2 ∈ D f2 and f = f1⊗ f2

| (d1, ;X , d2) if d1 ∈ D f1 : A→X , d2 ∈ D f2 : X→B and f = f1 ; f2

The cost of a decomposition depends on the operations and atoms present: each operation and each
atomic morphism is associated with a cost, which we call weight. Roughly speaking, sequential compo-
sition is priced according to the size of the object the composition occurs over, while monoidal products
are free. Finally, the weight of an atom is the application-specific cost of computing its semantics.

Definition 2.2 (Weight function [22]). Let C be a monoidal category and let A be a set of atoms for C.
A weight function for (C,A) is a function w : A ∪{⊗}∪Obj(C)→ N such that

• w(X⊗Y) = w(X)+w(Y),

• w(⊗) = 0.

Example 2.3. Let 1 : 1→ 2 and 1 : 2→ 1 be the diagonal and codiagonal morphisms in a carte-
sian and cocartesian prop1 s.t. w(1) = w(1) = 2. The following figure represents the monoidal
decomposition of ; (⊗) ; (⊗) ; given by (, ;2, (((, ;2,),⊗,), ;2,)).

1In a cartesian prop the ⊗ satisfies the universal property of products. Dually, in a cocartesian prop, the ⊗ satisfies the
universal property of the coproduct.

4 Monoidal Width: Capturing Rank Width

The width of a decomposition is the cost of the most expensive node in the decomposition tree.

Definition 2.4 (Width of a monoidal decomposition [22]). Let w be a weight function for (C,A). Let f
be in C and d ∈ D f . The width of d is defined recursively as follows:

wd(d) := w(f) if d = (f)

max{wd(d1),wd(d2)} if d = (d1,⊗, d2)

max{wd(d1), w(X), wd(d2)} if d = (d1, ;X , d2)

As sketched in Example 2.3, decompositions can be seen as labelled trees (S,µ) where S is a tree
and µ : vertices(S)→A ∪{⊗}∪Obj(C) is a labelling function. With this we can restate the width as:

wd(d) = wd(S,µ) := max
v∈vertices(S)

w(µ(v))

which may be familiar to those aquainted with graph widths.
Monoidal width is simply the width of the cheapest decomposition.

Definition 2.5 (Monoidal width [22]). Let w be a weight function for (C,A) and f be in C. Then the
monoidal width of f is mwd(f) := mind∈D f wd(d).

Example 2.6. With the data of Example 2.3, define a family of morphisms n : 1→ 1 inductively:
• 1 := 1;

• 2 := ;2 ;

• n+1 := ;2 (n⊗1) ;2 for n≥ 2.

. . .

Each n has a monoidal decomposition of width n: the root node is the composition along the n wires in
the middle. However, mwd(n) = 2 for any n, with an optimal decomposition shown above.

2.1 The width of copying

Before we begin with the original technical contributions of this paper in Section 3, we need to recall
a technical result from [22] about decomposing copy morphisms. We consider symmetric monoidal
categories equipped with such morphisms and show that copying n wires costs at most n+1.

Definition 2.7 (Copying). Let X be a symmetric monoidal category with symmetries given by X ,Y .
We say that X has coherent copying if there is a class of objects CX ⊆ Obj(X), satifying X ,Y ∈ CX

iff X ⊗Y ∈ CX , such that every X in CX is endowed with a morphism X : X → X ⊗X . Moreover,
X⊗Y = (X ⊗ Y) ; (X ⊗ X ,Y ⊗ Y) for every X ,Y ∈ CX.

An example is any cartesian prop with n : n→ n+ n given by the cartesian structure. We take
X , the symmetries X ,Y and the identities X as atomic for all objects X ,Y , i.e. the set of atomic

morphisms is A = { X , X ,Y , X : X ,Y ∈ CX}. The weight function is w(X) := 2 ·w(X),
w(X ,Y) := w(X)+w(Y) and w(X) := w(X). In a prop, we take w(n) := n. Note that w(X⊗Y) =
2 ·w(X⊗Y) = 2 · (w(X)+w(Y)), but utilising coherence we can do better, as illustrated below.

Example 2.8. Let C be a prop with coherent copying and consider n : n→ 2n. Let γn,m := (n⊗
m) ; (n⊗ n,m) : n+m→ n+m+n. We can decompose γn,m in terms of γn−1,m+1 (in the dashed

box), 1 and 1,1 by cutting along at most n+1+m wires:

Elena Di Lavore and Paweł Sobociński 5

γn,m =
n

m

n

m

n

=

n−1

1

m

n−1

1
m

n−1

1
This allows us to decompose n = γn,0 cutting along at most n+1 wires. In particular, mwd(n) ≤
n+1.

The following result is a technical generalisation of the argument presented in Example 2.8.

Lemma 2.9 ([22]). Let X be a symmetric monoidal category with coherent copying. Suppose that A
contains X for X ∈CX, and X ,Y and X for X ∈Obj(X). Let X :=X1⊗·· ·⊗Xn, f : Y⊗X⊗Z→W
and let d ∈ D f . Let γ(f) := (Y ⊗ X ⊗ Z) ; (Y⊗X ⊗ X ,Z) ; (f ⊗ X).

γ(f) := f

Y

X

Z

W

X
There is a decomposition C (d) of γ(f) s.t. wd(C (d))≤max{wd(d),w(Y)+w(Z)+(n+1)·maxi=1,...,nw(Xi)}.

3 Monoidal width in matrices

= = =

= = =

= = = =

Figure 4: Bialgebra axioms

Given the ubiquity of matrix algebra, matrices are an obvious case study. Theorem 3.12 shows that
the monoidal width of a matrix is, up to 1, the maximum of the ranks of its blocks.

Consider the monoidal category MatN of matrices with entries in the natural numbers. The objects
are natural numbers and morphisms from n to m are m by n matrices. Composition is the usual product
of matrices and the monoidal product is the biproduct: A⊗B := (A 0

0 B). Let us examine matrix decom-
positions enabled by this algebra. A matrix A can be written as a monoidal product A = A1⊗A2 iff the
matrix has blocks A1 and A2, i.e. A =

(
A1 0
0 A2

)
. On the other hand, a composition is related to the rank.

6 Monoidal Width: Capturing Rank Width

Lemma 3.1 ([34]). Let A : n→ m in MatN. Then min{k ∈ N : A = B ;k C}= rank(A).

We first introduce a convenient syntax for matrices.

Proposition 3.2 ([41]). The category MatN is isomorphic to the prop Bialg, generated by : 1→ 2,
: 1→ 0, : 2→ 1 and : 0→ 1 and quotiented by bialgebra axioms (Figure 4).

For the uninitiated reader, let us briefly explain this correspondence. Every morphism f : n→ m
in Bialg corresponds to a matrix A = Mat(f) ∈ MatN(m,n): we can read the (i, j)-entry of A off the
diagram of f by counting the number of paths from the jth input to the ith output.

Example 3.3. The matrix
(

1 0
1 2
0 0

)
∈MatN(3,2) corresponds to

Definition 3.4. The atomic morphisms A are the generators of Bialg, with the symmetry and identity on
1: A = { , , , , , 1}. The weight w : A ∪{⊗}∪Obj(Bialg)→ N has w(n) := n, for any
n ∈ N, and w(g) := max{m,n}, for g : n→ m ∈A .

3.1 Monoidal width in Bialg

The characterisation of the rank of a matrix in Lemma 3.1 hints at some relationship between the
monoidal width of a matrix and its rank. In fact, we have Proposition 3.7, which bounds the monoidal
width of a matrix with its rank. In order to prove this result, we first need to bound the monoidal width
of a matrix with its domain and codomain, which is done in Proposition 3.5.

Proposition 3.5. Let P be a cartesian and cocartesian prop. Suppose that 1, 1, 1, 1, 1 ∈A
and w(1)≤ 1, w(1)≤ 2, w(1)≤ 2, w(1)≤ 1 and w(1)≤ 1. Suppose that, for every g : 1→
1, mwd(g)≤ 2. Let f : n→ m be a morphism in P. Then mwd(f)≤min{m,n}+1.

Proof sketch. The proof proceeds by induction on max{m,n}. The base cases are easily checked. The
inductive step relies on the fact that, applying Lemma 2.9, if n < m, we can decompose f as shown below
by cutting at most n+1 wires or, if m < n, in the symmetric way by cutting at most m+1 wires.

fn m = fn
m−1

1
=

f

f
n

m−1

1

The details can be found in Appendix A.

We can apply the former result to Bialg and obtain Proposition 3.7 because the width of 1×1 matri-
ces, which are numbers, is at most 2. This follows from the reasoning in Example 2.6 as we can write
every natural number k : 1→ 1 as the following composition:

. . .

Lemma 3.6. Let k : 1→ 1 in Bialg. Then, mwd(k)≤ 2.

Elena Di Lavore and Paweł Sobociński 7

Proposition 3.7. Let f : n→ m in Bialg. Then, mwd f ≤ rank(Mat f) + 1. Moreover, if f is not ⊗-
decomposable, i.e. there are no f1, f2 both distinct from f s.t. f = f1⊗ f2, then rank(Mat f)≤mwd f .

Proof sketch. This result follows from Lemma 3.1 and Proposition 3.5, which we can apply thanks to
Lemma 3.6. The details are in Appendix A.

The bounds given by Proposition 3.7 can be improven when we have a⊗-decomposition of a matrix,
i.e. we can write f = f1⊗ . . .⊗ fk, to obtain Proposition 3.9. The latter relies on Lemma 3.8, which
shows that discarding inputs or outputs cannot increase the monoidal width of a morphism in Bialg.

Lemma 3.8. Let f : n→m in Bialg and d ∈D f . Let fD := f ;(m−k⊗ k) and fZ := (n−k′⊗ k′) ; f ,
where k : k→ 0 is the discard morphism with k ≤ m and k′ : 0→ k is the zero morphism with k′ ≤ n.

fD := fn m− k , fZ := fn− k m .

Then there are D(d) ∈ D fD and Z (d) ∈ D fZ such that wd(D(d))≤ wd(d) and wd(Z (d))≤ wd(d).

Proof sketch. By induction. The base cases are easy. If f = f1 ; f2, use the inductive hypothesis on f2.

fn m− k = f1 f2n m− k

The f = f1⊗ f2 case is similar. The details are in Appendix A.

Proposition 3.9. Let f : n→ m in Bialg and d′ = (d′1, ;k, d′2) ∈ D f . Suppose there are f1 and f2 such
that f = f1⊗ f2. Then, there is d = (d1,⊗, d2) ∈ D f such that wd(d)≤ wd(d′).

Proof sketch. By Lemma 3.1, rank(Mat f1)+ rank(Mat f2) = rank(Mat(f1⊗ f2)) ≤ k and, by Propo-
sition 3.7, there is a monoidal decomposition di of fi such that wd(di) ≤ rank(Mat fi) + 1. Then,
wd(d) :=wd((d1,⊗, d2))≤max{rank(Mat f1), rank(Mat f2)}+1≤ rank(Mat f1)+ rank(Mat f2) when-
ever rank(Mat f1), rank(Mat f2)> 0. We apply Lemma 3.8 to obtain the same result if rank(Mat f1) = 0
or rank(Mat f2) = 0. The details are in Appendix A.

We summarise Proposition 3.9 and Proposition 3.7 in Corollary 3.10.

Corollary 3.10. Let f = f1⊗ . . .⊗ fk in Bialg. Then, mwd(f)≤maxi=1,...,k rank(Mat(fi))+1. Moreover,
if fi are not ⊗-decomposable, then maxi=1,...,k rank(Mat(fi))≤mwd f .

Proof. By Proposition 3.9 there is a decomposition of f of the form d = (d1,⊗, · · ·(dk−1,⊗, dk)), where
we can choose di to be a minimal decomposition of fi. Then, mwd(f) ≤ wd(d) = maxi=1,...,kwd(di).
By Proposition 3.7, wd(di) ≤ ri + 1. Then, mwd(f) ≤ max{r1, . . . ,rk}+ 1. Moreover, if fi are not
⊗-decomposable, Proposition 3.7 gives also a lower bound on their monoidal width: rank(Mat(fi)) ≤
mwd fi; and we obtain that maxi=1,...,k rank(Mat(fi))≤mwd f .

The results so far show a way to construct efficient decompositions given a ⊗-decomposition of the
matrix. However, we do not know whether ⊗-decompositions are unique. Proposition 3.11 shows that
every morphism in Bialg has a unique ⊗-decomposition.

Proposition 3.11. Let C be a monoidal category whose monoidal unit 0 is both initial and terminal,
and whose objects are a unique factorization monoid. Let f be a morphism in C. Then f has a unique
⊗-decomposition.

8 Monoidal Width: Capturing Rank Width

Proof. See Appendix A for a proof sketch and the proof.

Our main result in this section follows from Corollary 3.10 and Proposition 3.11, which can be
applied to Bialg because 0 is both terminal and initial, and the objects, being a free monoid, are a unique
factorization monoid.

Theorem 3.12. Let f = f1⊗ . . .⊗ fk be a morphism in Bialg and its unique ⊗-decomposition given by
Proposition 3.11, with ri = rank(Mat(fi)). Then max{r1, . . . ,rk} ≤mwd(f)≤max{r1, . . . ,rk}+1.

Proof. This result is obtained by applying Corollary 3.10 to the ⊗-decomposition given by Proposi-
tion 3.11, which can be applied because, in Bialg, 0 is both terminal and initial, and the objects, being a
free monoid, are a unique factorization monoid.

Note that the identity matrix has monoidal width 1 and twice the identity matrix has monoidal width
2, attaining both the upper and lower bounds for the monoidal width of a matrix.

4 Graphs and rank width

Here we recall rank width [33] for undirected graphs.

Definition 4.1. An undirected graph G = (V,E,ends) is given by a set of edges E, a set of vertices V
and a function ends : E →℘≤2(V) that gives the endpoints of each edge. We consider graphs up to
isomorphism, or abstract graphs, thus the set of vertices can be fully characterised by its cardinality. An
abstract graph can be equivalently given by an adjacency matrix [G], where G ∈MatN(n,n) and n is the
number of vertices. The equivalence class of adjacency matrices is defined by the equivalence relation

G∼ H iff G+G> = H +H>.

We will refer to abstract undirected graphs as simply graphs.

Definition 4.2. A path in a graph G is a sequence of edges (e1, . . . ,ek) together with a sequence of
distinct vertices (v1, . . . ,vk+1) of G such that, for every i = 1, . . . ,k, ends(ei) = {vi,vi+1}. A tree is a
graph such that there is a unique path between any two of its vertices. Two vertices v and w in a graph G
are neighbours if G has an edge between them. The leaves of a tree are those vertices with at most one
neighbour. A subcubic tree is a tree where each vertex has between one and three neighbours.

A rank decomposition for a graph G is a tree whose leaves are labelled with the vertices of G.

Definition 4.3 ([33]). A rank decomposition (Y,r) of a graph G is given by a subcubic tree Y together
with a bijection r : leaves(Y)→ vertices(G).

Each edge b in the tree Y determines a splitting of the graph: it determines a two partition of the
leaves of Y , which, through r, determines a two partition {Ab,Bb} of the vertices of G. This corresponds
to a splitting of the graph G into two subgraphs G1 and G2. Intuitively, the order of an edge b is the
amount of information required to recover G by joining G1 and G2. Given the partition {Ab,Bb} of the
vertices of G, we can record the edges in G beween Ab and Bb in a matrix Xb. This means that, if vi ∈ Ab
and v j ∈ Bb, the entry (i, j) of the matrix Xb is the number of edges between vi and v j.

Definition 4.4 (Order of an edge). Let (Y,r) be a rank decomposition of a graph G. Let b be an edge of
Y . The order of b is the rank of the matrix associated to it: ord(b) := rank(Xb).

Elena Di Lavore and Paweł Sobociński 9

Note that the order of the two sets in the partition does not matter as the rank is invariant to transpo-
sition. The width of a rank decomposition is the maximum order of the edges of the tree and the rank
width of a graph is the width of its cheapest decomposition.

Definition 4.5 (Rank width). Given a rank decomposition (Y,r) of a graph G, define its width as
wd(Y,r) := maxb∈edges(Y) ord(b). The rank width of G is given by the min-max formula:

rwd(G) := min
(Y,r)

wd(Y,r).

4.1 Graphs with dangling edges

As intermediate step between rank decompositions and monoidal decompositions, we introduce recursive
rank decompositions of graphs with dangling edges and we prove that they give a notion of width that
is equivalent to rank width. Similar recursive characterisations were done for tree decompositions in [4]
and for path and branch decompositions in [22]. We first need a notion of graph that is equipped with
some “open” edges along which it can be glued with other graphs.

Definition 4.6. A graph with dangling edges Γ=([G] ,B) is given by an adjacency matrix G∈MatN(k,k)
that records the connectivity of the graph and a matrix B ∈MatN(k,n) that records the “dangling edges”
connected to n boundary ports. We will sometimes write G ∈ adjacency(Γ) and B = boundary(Γ).

Example 4.7. Two graphs with the same ports, as illustrated below, can be “glued” together:

glued with gives

Decompositions are elements of a tree data type, with nodes carrying subgraphs Γ′ of the ambient
graph Γ. In the following Γ′ ranges over the non-empty subgraphs of Γ: TΓ ::= (Γ′) | (TΓ, Γ′, TΓ).
Given T ∈ TΓ, the label function λ takes a decomposition and returns the graph with dangling edges at
the root: λ (T1, Γ, T2) := Γ and λ (Γ) := Γ.

Definition 4.8 (Recursive rank decomposition). Let Γ = ([G] ,B) be a graph with dangling edges, where
G ∈MatN(k,k) and B ∈MatN(k,n). A recursive rank decomposition of Γ is T ∈ TΓ where either: Γ has
at most one vertex and T = (Γ); or T = (T1, Γ, T2) and Ti ∈ TΓi are recursive rank decompositions of
subgraphs Γi = ([Gi] ,Bi) of Γ such that:

• The vertices are partitioned in two, [G] =
[(

G1 C
0 G2

)]
;

• The dangling edges are those to the original boundary and to the other subgraph, B1 = (A1 |C) and
B2 = (A2 |C>), where B =

(
A1
A2

)
.

As with before, the recursive rank width of a graph is the width of its cheapest decomposition.

Definition 4.9. Let T be a recursive rank decomposition of Γ = ([G] ,B). Define the width of T recur-
sively: if T = (Γ), wd(T) := rank(B), and, if T = (T1, Γ, T2), wd(T) := max{wd(T1),wd(T2), rank(B)}
Expanding this expression, we obtain wd(T) = maxT ′ subtree of T rank(boundary(λ (T ′))). The recursive
rank width of Γ is defined by the min-max formula rrwd(Γ) := minT wd(T).

We show that recursive rank width is the same as rank width, up to the rank of the boundary of the
graph.

Proposition 4.10. Let Γ = ([G] ,B) be a graph with dangling edges and (Y,r) be a rank decomposition
of G. Then, there is a recursive rank decomposition I (Y,r) of Γ s.t. wd(I (Y,r))≤ wd(Y,r)+ rank(B).

10 Monoidal Width: Capturing Rank Width

Proof. See Appendix B.

Before proving the lower bound for recursive rank width, we need a technical lemma that relates the
width of a graph with that of its subgraphs.

Lemma 4.11. Let T be a recursive rank decomposition of Γ = ([G] ,B). Let T ′ be a subtree of T and

Γ′ := λ (T ′) with Γ′ = ([G′] ,B′). The adjacency matrix of Γ can be written as [G] =

[(
GL CL C
0 G′ CR
0 0 GR

)]
and

its boundary as B =

(
AL
A′
AR

)
. Then, rank(B′) = rank(A′ |C>L |CR).

Proof. See Appendix B.

Proposition 4.12. Let T be a recursive rank decomposition of Γ = ([G] ,B) with G ∈ MatN(k,k) and
B ∈MatN(k,n). Then, there is a rank decomposition I †(T) of G such that wd(I †(T))≤ wd(T).

Proof. See Appendix B.

From Proposition 4.12 and Proposition 4.10 we conclude the following result.

Theorem 4.13. Let Γ = ([G] ,B). Then, rwd(G)≤ rrwd(Γ)≤ rwd(G)+ rank(B).

5 Monoidal width and rank width

This section contains our main results. We prove that monoidal width in the prop of graphs Grph [14]
corresponds to rank width, up to a constant multiplicative factor of 2.

We start by introducing the algebra of graphs with boundaries and its diagrammatic syntax [21]. A
graph with boundaries is a graph together with two matrices L and R that record the connectivity of the
vertices with the left and right boundary, a matrix P that records the passing wires from the left boundary
to the right one and a matrix F that records the wires from the right boundary to itself.

Definition 5.1 ([21]). A graph with boundaries g : n→m is defined as g= ([G] ,L,R,P, [F]), where [G] is
the adjacency matrix of a graph on k vertices, with G∈MatN(k,k); L∈MatN(k,n), R∈MatN(k,m), P∈
MatN(m,n) and F ∈MatN(m,m) recording connectivity information as explained above. Graphs with
boundaries are taken up to an equivalence making the order of the vertices immaterial. Let g,g′ : n→ m
on k vertices, with g = ([G] ,L,R,P, [F]) and g′ = ([G′] ,L′,R′,P, [F]). The graphs g and g′ are considered
equal iff there is a permutation matrix σ ∈MatN(k,k) such that g′ = (

[
σGσ>

]
,σL,σR,P, [F]).

Graphs with boundaries can be composed sequentially and in parallel [21], forming a symmetric
monoidal category BGraph. The prop Grph provides a convenient syntax for graphs with boundaries. It
is obtained by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 4).

Definition 5.2 ([14]). The prop of graphs Grph is obtained by adding to Bialg the generators ∪ : 0→ 2
and v : 1→ 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 5, left) and that we can
express the equivalence relation of adjacency matrices: G∼ H iff G+G> = H +H> (Figure 5, right).

Elena Di Lavore and Paweł Sobociński 11

C
=

C>
G∼ H iff

G
=

H

Figure 5: Adding the cup.

Proposition 5.3 ([21], Theorem 23). The prop of graphs Grph is isomorphic to the prop BGraph.
Proposition 5.3 means that the morphisms in Grph can be written in the following normal form

k

G

L

R

P

F
n

m

.

The prop Grph is more expressive than graphs with dangling edges (Definition 4.6): its morphisms
can have edges between the boundaries as well. In fact, graphs with dangling edges can be seen as
morphisms n→ 0 in Grph.
Example 5.4. A graph with dangling edges Γ = ([G] ,B) can be represented as a morphism in Grph

g = ([G] ,B,¡,!, [()]) =
k

G

Bn
.

We can now formalise the intuition of glueing graphs with dangling edges as explained in Example 4.7.
The two graphs there correspond to g1 and g2 below left and middle. Their glueing is obtained by
precomposing their monoidal product with a cup, i.e. ∪2 ; (g1⊗g2), as shown below right.

g1 = g2 = ∪2 ; (g1⊗g2) =

5.1 Rank width in open graphs

The technical content of our main result (Theorem 5.12) is split in two: an upper and a lower bound.
As in the prop of matrices Bialg, the cost of composing along n wires is n. All morphisms in Grph are

chosen as atomic. One could restrict this to those with at most one vertex without affecting the results.
Definition 5.5. Let the set of atomic morphisms A be the set of all the morphisms of Grph. The weight
function w : A ∪{⊗}∪Obj(Grph)→N is defined, on objects n, as w(n) := n; and, on morphisms g∈A ,
as w(g) := k, where k is the number of vertices of g.

12 Monoidal Width: Capturing Rank Width

Note that the monoidal width of g is bounded by the number of its vertices.
The upper bound (Proposition 5.8) is established by associating to each recursive rank decomposi-

tion a suitable monoidal decomposition. This mapping is defined inductively, given the inductive nature
of both these structures. Given a recursive rank decomposition of a graph Γ, we can construct a de-
composition of its corresponding morphism g as shown by the first equality in Figure 6. However, this

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2

Figure 6: First step of a monoidal decomposition given by a recursive rank decomposition

decomposition is not optimal as it cuts along the number of vertices k1 +k2. But we can do better thanks
to Lemma 5.6, which shows that we can cut along the ranks, r1 = rank(A1 |C) and r2 = rank(A2 |C>),
of the boundaries of the induced subgraphs to obtain the second equality in Figure 6.

A1

A2

C

n

n

k1

k2

=

N1

N2

S
L1

L2

n

n

k1

k2

r1

r2

Lemma 5.6. Let Ai ∈MatN(ki,n), for i = 1,2, and C ∈MatN(k1,k2). Then, there are rank decomposi-
tions of (A1 |C) and (A2 |C>) of the form (A1 |C) = L1 · (N1 | S ·L>2), and (A2 |C>) = L2 · (N2 | S> ·L>1).

Proof. See Appendix C.

Once we have performed the cuts in Figure 6 on the right, we have changed the boundaries of the
induced subgraphs. This means that we cannot apply the inductive hypothesis right away, but we need
to transform first the recursive rank decompositions of the old subgraphs into decompositions of the
new ones, as shown in Lemma 5.7. More explicitly, when M has full rank, if we have a recursive
rank decomposition of Γ = ([G] ,B′ ·M), which corresponds to g below left, we can obtain one of Γ′ =
([G] ,B′), which corresponds to g′ below right, of the same width.

g =
G

B′M

 g′ =
G

B′

Lemma 5.7. Let T be a recursive rank decomposition of Γ = ([G] ,B) and B = B′ ·M, with M that has
full rank. Then, there is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T) = wd(T ′)
and such that T and T ′ have the same underlying tree structure.

Elena Di Lavore and Paweł Sobociński 13

Proof. See Appendix C.

With the above ingredients, we can show that rank width bounds monoidal width from above.

Proposition 5.8. Let Γ = ([G] ,B) be a graph with dangling edges and g : n→ 0 be the morphism in
Grph corresponding to Γ. Let T be a recursive rank decomposition of Γ. Then, there is a monoidal
decomposition R†(T) of g such that wd(R†(T))≤ 2 ·wd(T).

Proof sketch. The proof proceeds by induction on T . The base cases are easily checked and the inductive
step relies on the decomposition of g in Figure 6, which we can write thanks to Lemma 5.6. Applying
the inductive hypothesis and Lemma 5.7, the width of this decomposition can be bounded by max{r1 +
r2,2 ·wd(T1),2 ·wd(T2)} ≤ 2 ·wd(T), where T = (T1, Γ, T2). The details are in Appendix C.

Proving the lower bound is similarly involved and follows a similar proof structure. From a monoidal
decomposition we construct inductively a recursive rank decomposition of bounded width. The inductive
step relative to composition nodes is the most involved and needs two additional lemmas, which allow
us to transform recursive rank decompositions of the induced subgraphs into ones of two subgraphs that
satisfy the conditions of Definition 4.8.

Applying the inductive hypothesis gives us a recursive rank decomposition of Γ = ([G] ,(L | R)),
which is associated to g below left, and we need to construct one of Γ′ := (

[
G+L ·F ·L>

]
,(L | R+L ·

(F +F>) ·P>)), which is associated to f ; g below right, of at most the same width.

g =
k

G

L

R

P

j m
 f ; g =

k

G

L

R

P

F
j m

Lemma 5.9. Let T be a recursive rank decomposition of Γ = ([G] ,(L | R)), with G ∈MatN(k,k), L ∈
MatN(k, j) and R∈MatN(k,m). Let F ∈MatN(j, j), P∈MatN(m, j) and define Γ′ :=(

[
G+L ·F ·L>

]
,(L |

R+L ·(F+F>) ·P>)). Then, there is a recursive rank decomposition T ′ of Γ′ such that wd(T ′)≤wd(T).

Proof. See Appendix C.

In order to obtain the subgraphs of the desired shape we need to add some extra connections to the
boundaries. We have a recursive rank decomposition of Γ = ([G] ,B), which corresponds to g below left,
and we need one of Γ′ = ([G] ,B ·M), which corresponds to g′ below right, of at most the same width.

g =
G

B

 g′ =
G

BM

The following result and its proof are very similar to Lemma 5.7.

Lemma 5.10. Let T be a recursive rank decomposition of Γ = ([G] ,B) and let B′ = B ·M. Then, there
is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T ′)≤ wd(T) and such that T and T ′

have the same underlying tree structure. Moreover, if M has full rank, then wd(T ′) = wd(T).

Proof. See Appendix C.

14 Monoidal Width: Capturing Rank Width

Proposition 5.11. Let g = ([G] ,L,R,P, [F]) in Grph and d ∈ Dg. Let Γ = ([G] ,(L | R)). Then, there is a
recursive rank decomposition R(d) of Γ s.t. wd(R(d))≤ 2 ·max{wd(d), rank(L), rank(R)}.

Proof sketch. The proof proceeds by induction on d. The base case is easily checked, while the inductive
steps are a bit more involved. If d = (d1, ; j, d2), then there are gi = ([Gi] ,Li,Ri,Pi, [Fi]) such that g =
g1 ; g2 and we can write g as follows.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m
P

C>
R>1 L2

In order to build a recursive rank decomposition of Γ, we need recursive rank decompositions of Γi =
(
[
Gi
]
,Bi), but we can obtain recursive rank decompositions of Γi = ([Gi] ,(Li | Ri)) by applying only in-

duction. Thanks to Lemma 5.9, we obtain a recursive rank decomposition of Γ′2 =(
[
G2 +L2 ·F1 ·L>2

]
,(L2 |

R2 +L2 · (F1 +F>1) ·P>2)). Lastly, we apply Lemma 5.10 to get recursive rank decompositions Ti of Γi.
Thanks to these, we can bound the width of T := (T1, Γ, T2):

wd(T)≤ 2 ·max{wd(d1),wd(d2), j, rank(L), rank(R)} :=2 ·max{wd(d), rank(L), rank(R)}.

If d = (d1,⊗, d2), we proceed similarly. For the details, see Appendix C.

From Proposition 5.8, Proposition 5.11 and Theorem 4.13, we obtain our main result.
Theorem 5.12. Let G be a graph and let g = ([G] ,¡,¡,(), [()]) be the corresponding morphism of Grph.
Then, 1

2 · rwd(G)≤mwd(g)≤ 2 · rwd(G).

6 Conclusions and future work

We have shown that monoidal width, in a suitable category of graphs composable along “open” edges,
yields rank width; a well-known measure from the graph theory literature.

Our goal with this line of research is to develop a generic, abstract “decomposition theory”. We will
study other graph widths like clique width [20] and twin width [12], as well as go beyond graphs: e.g.
by focussing on tree width for hypergraphs and relational structures [1], branch width for matroids and
widths for directed graphs. A part of “decomposition theory” means going beyond width as a mere num-
ber – in fact we believe that in each case the identification of a suitable monoidal category as an algebra
of open graph structures is itself a worthwhile contribution. Indeed, having such an algebra means that
a decomposition, rather than an ad hoc concept-specific construction, becomes more of a mathematical
object in its own right. Such compositional algebras will add to the quiver of compositional structures of
applied category theory; for example serving as syntax for more sophisticated applications [21].

Elena Di Lavore and Paweł Sobociński 15

Acknowledgements. Elena Di Lavore and Paweł Sobociński were supported by the European Union
through the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001). This work
was also supported by the Estonian Research Council grant PRG1210.

References

[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model theory. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.

[2] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics, 25(3):403–423,
1973.

[3] Dorit Aharonov, Zeph Landau, and Johann Makowsky. The quantum fft can be classically simulated, 2006.
arXiv:quant-ph/0611156.

[4] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An algebraic theory of graph
reduction. Journal of the ACM (JACM), 40(5):1134–1164, 1993.

[5] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathematical Systems
Theory, 20(1):83–127, 1987.

[6] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. J. Comb. Theory, Ser. A,
14(2):137–148, 1973.

[7] Christoph Blume, HJ Sander Bruggink, Martin Friedrich, and Barbara König. Treewidth, pathwidth and
cospan decompositions. Electronic Communications of the EASST, 41, 2011.

[8] Hans L Bodlaender. A tourist guide through treewidth. Technical report, 1992.

[9] Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded treewidth. The
Computer Journal, 51(3):255–269, 2008.

[10] Guillaume Boisseau and Paweł Sobociński. String diagrammatic electrical circuit theory. CoRR,
abs/2106.07763, 2021. URL: https://arxiv.org/abs/2106.07763, arXiv:2106.07763.

[11] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A survey of compositional signal flow theory. In
Michael Goedicke, Erich J. Neuhold, and Kai Rannenberg, editors, Advancing Research in Information and
Communication Technology - IFIP’s Exciting First 60+ Years, Views from the Technical Committees and
Working Groups, volume 600 of IFIP Advances in Information and Communication Technology, pages 29–
56. Springer, 2021. doi:10.1007/978-3-030-81701-5_2.

[12] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width i: tractable fo model
checking. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 601–
612. IEEE, 2020.

[13] Benjamin Merlin Bumpus and Zoltan A Kocsis. Spined categories: generalizing tree-width beyond graphs.
arXiv preprint arXiv:2104.01841, 2021.

[14] Apiwat Chantawibul and Paweł Sobociński. Towards compositional graph theory. Electronic Notes in Theo-
retical Computer Science, 319:121–136, 2015.

[15] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Diagrams. Mathemat-
ical Structures in Computer Science, pages 1–34, March 2019. arXiv:1709.00322, doi:10.1017/

S0960129518000488.

[16] Maria Chudnovsky and Paul Seymour. A well-quasi-order for tournaments. Journal of Combinatorial Theory,
Series B, 101(1):47–53, 2011.

[17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes - A first course in Quantum Theory and
Diagrammatic Reasoning. Cambridge University Press, 2017.

[18] Cole Comfort and Aleks Kissinger. A graphical calculus for lagrangian relations. CoRR, abs/2105.06244,
2021. URL: https://arxiv.org/abs/2105.06244, arXiv:2105.06244.

http://arxiv.org/abs/quant-ph/0611156
https://arxiv.org/abs/2106.07763
http://arxiv.org/abs/2106.07763
https://doi.org/10.1007/978-3-030-81701-5_2
http://arxiv.org/abs/1709.00322
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
https://arxiv.org/abs/2105.06244
http://arxiv.org/abs/2105.06244

16 Monoidal Width: Capturing Rank Width

[19] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information
and computation, 85(1):12–75, 1990.

[20] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathe-
matics, 101(1-3):77–114, 2000.

[21] Elena Di Lavore, Jules Hedges, and Paweł Sobociński. Compositional modelling of network games. In 29th
EACSL Annual Conference on Computer Science Logic (CSL 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[22] Elena Di Lavore and Paweł Sobociński. Monoidal Width: Unifying Tree Width, Path Width and Branch
Width, 2022. arXiv:2202.07582.

[23] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic simplification of
quantum circuits with the zx-calculus. Quantum, 4:279, 2020. doi:10.22331/q-2020-06-04-279.

[24] Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group theory. SIAM Journal on Computing, 28(1):57–104, 1998.

[25] Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation to applied category
theory, 2018. arXiv:1803.05316.

[26] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient
statistics. Advances in Mathematics, 370:107239, 2020.

[27] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In Anuj Dawar
and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481. ACM, 2018. doi:10.1145/3209108.
3209165.

[28] Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits. In Valentin
Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer Science Logic, CSL 2017,
August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CSL.2017.24.

[29] Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186, 1976.
[30] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in mathematics, 88(1):55–112,

1991.
[31] Stephen Lack. Composing PROPs. Theor. App. Categories, 13(9):147–163, 2004.
[32] Saunders Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965.
[33] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal of Combinatorial

Theory, Series B, 96(4):514–528, 2006.
[34] R Piziak and PL Odell. Full rank factorization of matrices. Mathematics magazine, 72(3):193–201, 1999.
[35] Pavel Pudlák, Vojtěch Rödl, and Petr Savickỳ. Graph complexity. Acta Informatica, 25(5):515–535, 1988.
[36] Julian Rathke, Paweł Sobociński, and Owen Stephens. Compositional reachability in petri nets. In Interna-

tional Workshop on Reachability Problems, pages 230–243. Springer, 2014.
[37] Neil Robertson and Paul D. Seymour. Graph minors. I. excluding a forest. Journal of Combinatorial Theory,

Series B, 35(1):39–61, 1983.
[38] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal of algo-

rithms, 7(3):309–322, 1986.
[39] Neil Robertson and Paul D. Seymour. Graph minors. X. obstructions to tree-decomposition. Journal of

Combinatorial Theory, Series B, 52(2):153–190, 1991.
[40] Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for physics, pages

289–355. Springer, 2010.
[41] Fabio Zanasi. Interacting Hopf Algebras - The Theory of Linear Systems. PhD thesis, École Normale

Supérieure de Lyon, 2015.

http://arxiv.org/abs/2202.07582
https://doi.org/10.22331/q-2020-06-04-279
http://arxiv.org/abs/1803.05316
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.4230/LIPIcs.CSL.2017.24

Elena Di Lavore and Paweł Sobociński 17

A Matrices

Proof of Lemma 3.8. By induction on d.
If the decomposition has only one node, d = (f), then f is one of the six atoms in the first column of

the table below. The second and third columns show the decompositions of fD for k = 1 and k = 2.

f k = 1 k = 2

=

= =

=

= =

=

If the decomposition starts with a composition node, d = (d1, ;, d2), then f = f1 ; f2, with di monoidal
decomposition of fi.

fn m− k = f1 f2n m− k

By induction, there is a monoidal decomposition D(d2) of f2 ; (m−k⊗ k) such that wd(D(d2)) ≤
wd(d2). Let D(d) := (d1, ;, D(d2)). Then, D(d) is a monoidal decomposition of f ; (m−k ⊗ k)
because f ; (m−k⊗ k) = f1 ; (f2 ; m−k⊗ k).

If the decomposition starts with a tensor node, d = (d1,⊗, d2), then f = f1⊗ f2, with di monoidal
decomposition of fi : ni → mi. There are two possibilities: either k ≤ m2 or k > m2. If k ≤ m2, then
f ; (m−k⊗ k) = f1⊗ (f2 ; (m2−k⊗ k)).

fn m− k =
f1

f2

n1

n2

m1

m2− k

By induction, there is a monoidal decomposition D(d2) of f2 ; (m−k⊗ k) such that wd(D(d2)) ≤
wd(d2). Then, D(d) := (d1,⊗, D(d2)) is a monoidal decomposition of f ; (m−k⊗ k). If k > m2,
then f ; (m−k⊗ k) = (f1 ; (m1−k+m2⊗ k−m2))⊗ (f2 ; m2).

fn m− k =
f1

f2

n1

n2

m1− k+m2

By induction, there are monoidal decompositions D(di) of f1 ; (m1−k+m2 ⊗ k−m2) and f2 ; m2

such that wd(D(di)) ≤ wd(di). Then, D(d) := (D(d1),⊗, D(d2)) is a monoidal decomposition of
f ; (m−k⊗ k).

The second inequality is proven using the same inductive argument.

18 Monoidal Width: Capturing Rank Width

Proof of Proposition 3.9. By hypothesis, d′ is a monoidal decomposition of f . Then, there are g and h
such that f1⊗ f2 = f = g ;h. By Proposition 3.7, there are monoidal decompositions di of fi with wd(di)≤
ri + 1, where ri := rank(Mat fi). By properties of the rank, r1 + r2 = rank(Mat f). By Lemma 3.1,
rank(Mat f)≤ k. There are two cases.

If ri > 0, then r1 + r2 ≥max{r1,r2}+1. Then,

wd(d′)

= max{wd(d′1),k,wd(d′2)}
≥ k

≥ rank(Mat f)

= r1 + r2

≥max{r1,r2}+1

≥max{wd(d1),wd(d2)}
= wd(d)

If there is ri = 0, then fi = ;0 . We may assume that f1 = ;0 . Then, f2 = (⊗) ; g ;k h ;
(⊗). By Lemma 3.8, mwd((⊗) ; g)≤mwd(g) and mwd(h ; (⊗))≤mwd(h). Then,

wd(d′)

= max{wd(d′1),k,wd(d′2)}
≥max{mwd(g),k,mwd(h)}
≥max{mwd((⊗) ; g),k,mwd(h ; (⊗))}
≥mwd(f2)

= wd(d2)

= wd(d)

Proof sketch of Proposition 3.11. Suppose f = f1⊗·· ·⊗ fm = g1⊗·· ·⊗gn with fi : Xi→Yi and g j : Z j→
Wj non ⊗-decomposables. Suppose m≤ n and proceed by induction on m. By induction, f̄ := f1⊗ . . .⊗
fm−1 has a unique ⊗-decomposition and we obtain

f1

fm−1

X1

Xm−1

Y1

Ym−1

... =

f1

fm−1

fm

X1

Xm−1

Y1

Ym−1

...

=

g1

gk−1

gk

gn

...

...

=

g1

gk−1

...

Then, k = m− 1, for every i < m− 1 fi = gi and fm−1 = (⊗) ; gk ; (⊗). With a similar
argument, we obtain that n = m, fm−1 = gm−1 and fm = gm.

Elena Di Lavore and Paweł Sobociński 19

fmXm Ym =

f1

fm−1

fmXm Ym

...

=

g1

gm−1

gm

gn

...

...

=

gm−1

gm

gn

...

The details of this proof can be found below.

Proof of Proposition 3.11. Suppose f = f1⊗·· ·⊗ fm = g1⊗·· ·⊗gn with fi : Xi→ Yi and g j : Z j →Wj

non ⊗-decomposables. Suppose m≤ n and proceed by induction on m.
If m = 0, then f = 0 and gi = 0 for every i = 1, . . . ,n because 0 is initial and terminal.
Suppose that f̄ := f1⊗ . . .⊗ fm−1 has a unique⊗-decomposition. Let A1⊗ . . .⊗Aα and B1⊗ . . .⊗Bβ

be the unique ⊗-decompositions of X1⊗ . . .⊗Xm = Z1⊗ . . .⊗ Zn and Y1⊗ . . .⊗Ym = W1⊗ . . .⊗Wn,
respectively. Then, there are x≤α and y≤ β such that A1⊗ . . .⊗Ax =X1⊗ . . .⊗Xm−1 and B1⊗ . . .⊗By =
Y1⊗ . . .⊗Ym−1. Then,

f̄

= (A1⊗...⊗Ax⊗ Ax+1⊗...⊗Aα
) ; f

; (B1⊗...⊗By⊗ By+1⊗...⊗Bβ
)

= (A1⊗...⊗Ax⊗ Ax+1⊗...⊗Aα
) ; (g1⊗·· ·⊗gn)

; (B1⊗...⊗By⊗ By+1⊗...⊗Bβ
)

= g1⊗ . . .⊗gk−2⊗ ((⊗) ; gk−1 ; (⊗))

f1

fm−1

X1

Xm−1

Y1

Ym−1

... =

f1

fm−1

fm

X1

Xm−1

Y1

Ym−1

...

=

g1

gk−1

gk

gn

...

...

=

g1

gk−1

...

By induction hypothesis, it must be that k = m− 1, for every i < m− 1 fi = gi and fm−1 = (⊗) ;
gk ; (⊗). Then,

fm

= (⊗ Xm) ; f ; (⊗ Ym)

= (⊗ Xm) ; (g1⊗ . . .⊗gn) ; (⊗ Ym)

= ((⊗) ; gm−1 ; (⊗))⊗gm⊗ . . .⊗gn

20 Monoidal Width: Capturing Rank Width

fmXm Ym =

f1

fm−1

fmXm Ym

...

=

g1

gm−1

gm

gn

...

...

=

gm−1

gm

gn

...

By hypothesis, fm is not ⊗-decomposable and m≤ n. Thus, n = m, fm−1 = gm−1 and fm = gm.

Proof of Proposition 3.5. We proceed by induction on k = max{m,n}.
Base cases.

• If n = 0, then f = m because 0 is initial by hypothesis. Then, mwd(f) = mwd(
⊗

m 1) ≤
w(1)≤ 1≤ 0+1.

• If m = 0, then f = n because 0 is terminal by hypothesis. Then, mwd(f) = mwd(
⊗

m 1) ≤
w(1)≤ 1≤ 0+1.

• If m = n = 1, then mwd(f)≤ 2≤ 1+1 by hypothesis.

Induction steps. Suppose that the statement is true for any f ′ : n′→m′ with max{m′,n′}< k =max{m,n}
and min{m′,n′} ≥ 1. There are two possibilities.

1. If 0 < n < m = k, then f can be decomposed as shown below because n+1 is uniform by
hypothesis and morphisms are copiable because P is cartesian by hypothesis.

fn m

= fn m−1
1

= fn
m−1

1

=
f

f
n

m−1

1

This corresponds to f = n ; (n⊗h1) ;n+1 (h2⊗ 1), where h1 := f ; (m−1⊗ 1) : n→ 1
and h2 := f ; (m−1⊗ 1) : n→ m−1.

Then, mwd(f)≤max{mwd(n ; (n⊗h1)),n+1,mwd(h2⊗ 1)}. So, we want to bound the

Elena Di Lavore and Paweł Sobociński 21

monoidal width of the two morphisms appearing in the formula above. For the first morphism,

mwd(n ; (n⊗h1))

≤ (by Lemma 2.9)

max{mwd(h1),n+1}
≤ (by induction hypothesis)

max{min{n,1}+1,n+1}
= (because 0 < n)

= n+1

where we could apply the induction hypothesis because h1 : n→ 1 and 1,n < k.

For the second morphism,

mwd(h2⊗ 1)

≤ (by definition)

mwd(h2)

≤ (by induction hypothesis)

min{n,m−1}+1

= (because n≤ m−1)

n+1

where we could apply the induction hypothesis because h2 : n→ m−1 and n,m−1 < k.

Then, mwd(f)≤ n+1 = min{m,n}+1 because n < m.

2. If 0 < m ≤ n = k, then f can be decomposed as shown below because n+1 is uniform by
hypothesis and morphisms are cocopiable because P is cocartesian by hypothesis.

fn m

= fn−1
1

m

= f
n−1

1
m

=
f

f

n−1

1
m

This corresponds to f = (h1⊗ 1) ;m+1 (m⊗h2) ; m, where h1 := (n−1⊗ 1) ; f : n−1→
m and h2 := (n−1⊗ 1) ; f : 1→ m.

Then, mwd(f) ≤ max{mwd(h1⊗ 1),m+ 1,mwd((m⊗ h2) ; m)}. So, we want to bound

22 Monoidal Width: Capturing Rank Width

the monoidal width of the two morphisms appearing in the formula above. For the first morphism,

mwd(h1⊗ 1)

≤ (by definition)

mwd(h1)

≤ (by induction hypothesis or point 1)

min{n−1,m}+1

≤ (because m≤ n)

m+1

where, if m < n, we could apply the induction hypothesis because n− 1,m < k, or, if m = n, we
could apply point 1 because n−1 < m = k. For the second morphism,

mwd((m⊗h2) ; m)

≤ (by Lemma 2.9)

max{mwd(h2),m+1}
≤ (by induction hypothesis of point 1)

max{min{1,m}+1,m+1}
= (because m≥ 1)

m+1

where, if m < n, we could apply the induction hypothesis because h1 : n→ 1 and 1,n < k, and, if
m = n, we could apply point 1 because 1 < m = k.
Then, mwd(f)≤max{m+1,m+1,m+1}= m+1 = min{m,n}+1 because m≤ n.

Proof of Proposition 3.7. We prove the second inequality. Let d be a monoidal decomposition of f . By
hypothesis, f is non ⊗-decomposable. Then, there are two options.

If d = (f), then either w() = 2≥ rank(Mat()) = 2, w(1) =w(1) = 2≥ rank(Mat(f)) =
1 or w(1) = w(1) = 1≥ rank(Mat f) = 0. Then, wd(d) = w(f)≥ rank(Mat(f)).

If d = (d1, ;k, d2), then there are g : n → k and h : k → m such that f = g ; h. By Lemma 3.1,
k ≥ rank(Mat(f)). Then, wd(d)≥ k ≥ rank(Mat(f)).

We prove the first inequality. By Lemma 3.1, there are g : n→ r and h : r→m such that f = g ;h with
r = rank(Mat(f)). Then, r ≤ m,n by definition of rank. By Lemma 3.6, we can apply Proposition 3.5
to obtan that mwd(g) ≤ min{n,r}+1 = r+1 and mwd(h) ≤ min{m,r}+1 = r+1. Then, mwd(f) ≤
max{mwd(g),r,mwd(h)} ≤ r+1.

B Recursive rank width

Proof of Proposition 4.10. Proceed by induction on |edges(Y)|.
If |edges(Y)|= 0, then either G = /0 or G has one vertex. In either case, we define I (Y,r) := (Γ) and

obtain wd(I (Y,r)) := rank(B)≤ wd(Y,r)+ rank(B).

Elena Di Lavore and Paweł Sobociński 23

If |edges(Y)| > 0, then Y = Y1—Y2 with Y1 and Y2 subcubic trees. Let Vi := r(leaves(Yi)) and Gi :=
G[Vi] be the subgraph of G on the vertices Vi. Since {V1,V2} is a partition of the vertices of G because
(Y,r) is a rank decomposition of G, then we can write [G] =

[(
G1 C
0 G2

)]
, B =

(
A1
A2

)
, B1 = (A1 |C) and

B2 = (A2 |C>). By induction hypothesis, there are recursive rank decompositions Ti of Γi = ([Gi] ,Bi).
Then, T = (T1, Γ, T2) is a recursive rank decomposition of Γ and, by applying Lemma 4.11,

wd(T)
:= max{wd(T1),wd(T2), rank(B)}
= max

T ′≤T
rank(boundary(λ (T ′)))

= max
T ′≤T

rank(A′ |C′)

≤ max
T ′≤T

rank(C′)+ rank(B)

= max
b∈edges(Y)

ord(b)+ rank(B)

:=wd(Y,r)+ rank(B)

Proof of Lemma 4.11. Proceed by induction on T .
If T = (Γ), then Γ′ = /0 or Γ′ = Γ and we are done.
If T = (T1, Γ, T2), then λ (Ti) = Γi = ([Gi] ,Bi) with [G] =

[(
G1 C
0 G2

)]
, B =

(
A1
A2

)
, B1 = (A1 | C)

and B2 = (A2 | C>). Suppose that T ′ ⊆ T1. Then, we can write [G1] =

[(
GL CL D′
0 G′ DR
0 0 HR

)]
, A1 =

(
AL
A′
FR

)
and C =

(
EL
E ′
ER

)
. It follows that B1 =

(
AL EL
A′ E ′
FR ER

)
and CR = (DR | E ′). By induction hypothesis, rank(B′) =

rank(A′ |E ′ |C>L |DR). The rank is invariant to permuting the order of columns, thus rank(B′) = rank(A′ |
C>L | DR | E ′) = rank(A′ |C>L |CR). We proceed analogously if T ′ ⊆ T2.

Proof of Proposition 4.12. A binary tree is, in particular, a subcubic tree. Then, we can define Y to be the
unlabelled tree underlying T . The label of a leaf l of T is a subgraph of Γ with one vertex vl . Then, there
is a bijection r : leaves(T)→ vertices(G) such that r(l) := vl . Then, (Y,r) is a branch decomposition of
G and we can define I †(T) := (Y,r).

By construction, b ∈ edges(Y) if and only if b ∈ edges(T). Let {v,vb} = ends(b) with v parent
of vb in T and let Tb the subtree of T with root vb, with λ (Tb) = Γb = ([Gb] ,Bb). Then, we can write

[G] =

[(
GL CL C
0 Gb CR
0 0 GR

)]
and B =

(
AL
A′
AR

)
. By Lemma 4.11, rank(Bb) = rank(A′ |C>L |CR). By Definition 4.4,

ord(b) := rank(C>L |CR). Then, rank(Bb)≥ ord(b) and

wd(Y,r)
:= max

b∈edges(Y)
ord(b)

≤ max
b∈edges(Y)

rank(Bb)

≤ max
T ′⊆T

rank(boundary(λ (T ′)))

:=wd(T)

24 Monoidal Width: Capturing Rank Width

C Monoidal width and rank width

Proof of Lemma 5.7. Proceed by induction on T .
If T = (Γ), then we define T ′ := (Γ′). Clearly, T and T ′ have the same underlying tree structure.

Since M has full rank, we can compute wd(T ′) := rank(B′) = rank(B′ ·M) :=wd(T).

If T = (T1, Γ, T2), then G =
(

G1 C
0 G2

)
, B1 = (A1 |C) and B2 = (A2 |C>), where B =

(
A1
A2

)
where Γi :=

λi(Ti), Bi := boundary(Γi), Gi = adjacency(Γi) and Ai ∈MatN(n,ki). Then,
(

A1
A2

)
=
(

A′1
A′2

)
·M =

(
A′1·M
A′2·M

)
and Bi = (Ai |Ci) = (A′i |Ci) ·

(
M 0
0 1k−i

)
. Let B′i := (A′i |Ci). The matrix

(
M 0
0 1k−i

)
has full rank because

both its blocks do. By induction hypothesis, there are recursive rank decompositions T ′i of Γi = ([Gi] ,Bi)
with the same underlying tree structure as Ti and such that wd(T ′i) = wd(Ti). Then, T ′ := (T ′1, Γ′, T ′2) is

a recursive rank decomposition of Γ′ because G =
(

G1 C
0 G2

)
, B′1 = (A′1 |C) and B′2 = (A′2 |C>). We can

compute

wd(T ′)
:= max{rank(B′),wd(T ′1),wd(T ′2)}
= max{rank(B′ ·M),wd(T1),wd(T2)}

:=wd(T)

Proof of Lemma 5.6. Let us indicate with C1 :=C and C2 :=C> and let Li ·Mi be a rank decomposition
of (Ai |Ci), with Li ∈MatN(ki,ri), M1 ∈MatN(r1,n+ k2) and M2 ∈MatN(r2,n+ k1). By definition of
rank decomposition, Li and Mi have full rank ri. We can write Mi = (Ni | Ki) with Ni ∈ MatN(ri,n),
K1 ∈MatN(r1,k2) and K2 ∈MatN(r2,k1). Then, Ci = Li ·Ki. The rank of a composition is the minimum
of the ranks and Li has full rank, then

rank(C) = rank(L1 ·K1) = rank(K1)

rank(C) = rank(C>) = rank(L2 ·K2) = rank(K2)

It follows that there are rank decompositions Ki = Pi ·Qi with Qi ∈MatN(s,ri) and s = rank(C). Then,
C = (L1 ·P1) ·Q1 = Q>2 · (P>2 · L>2) are rank factorizations of C. By Lemma 3.1, there is an invertible
matrix R ∈MatN(s,s) such that L1 ·P1 = Q>2 ·R and Q1 = R−1 · (P>2 ·L>2). Let S := P1 ·R−1 ·P>2 and we
obtain C = L1 ·S ·L>2 . Then, (A1 |C) = L1 · (N1 | S ·L>2) and (A2 |C>) = L2 · (N2 | S> ·L>1).

Proof of Proposition 5.8. Proceed by induction on T .
If T = (), then G must be empty, R†(T) = () and we are done.
If T = (Γ), then Γ has one vertex, we define R†(T) := (g) and wd(T) := rank(G) = wd(R†(T)).

If T = (T1, Γ, T2), then λ (Ti) = Γi = ([Gi] ,Bi), with G =
(

G1 C
0 G2

)
, B =

(
A1
A2

)
, B1 = (A1 | C) and

B2 = (A2 | C>). By Lemma 5.6, there are rank decompositions of (A1 | C) and (A2 | C>) of the form:

Elena Di Lavore and Paweł Sobociński 25

(A1 |C) = L1 · (N1 | S ·L>2); and (A2 |C>) = L2 · (N2 | S> ·L>1). This means that we can write g as

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2
,

with ri = rank(Bi). Then, Bi = Li ·Mi with Mi that has full rank ri. By Lemma 5.7, there is a recursive
rank decomposition T ′i of Γ′i = ([Gi] ,Li), with the same underlying binary tree as Ti, such that wd(Ti) =
wd(T ′i). Let gi : ri→ 0 be the morphisms in Grph corresponding to Γ′i and let b : n→ r1 + r2 be defined
as

bn r1 + r2 =

N1

N2

S
n

r1

r2

.

By induction hypothesis, there is a monoidal decomposition R†(T ′i) of gi such that wd(R†(T ′i)) ≤ 2 ·
wd(T ′i) = 2 ·wd(Ti). Then, g = b ;r1+r2 (g1⊗ g2) and R†(T) := (b, ;r1+r2 , (R

†(T ′1),⊗, R†(T ′2))) is a
monoidal decomposition of g. Its width can be computed.

wd(R†(T))

:= max{w(b),w(r1 + r2),wd(R
†(T ′1)),wd(R

†(T ′2))}
≤max{w(b),w(r1 + r2),2 ·wd(T ′1),2 ·wd(T ′2)}
= max{w(b),r1 + r2,2 ·wd(T1),2 ·wd(T2)}
≤ 2 ·max{r1,r2,wd(T1),wd(T2)}

:=2 ·wd(T)

Proof of Lemma 5.10. Proceed by induction on T . If T = (Γ), then we define T ′ := (Γ′). Clearly, T
and T ′ have the same underlying tree structure. We can compute wd(T ′) := rank(B′) = rank(B ·M) ≤
rank(B) :=wd(T). The inequality becomes an equality when M has full rank and we are done.

If T = (T1, Γ, T2), then G =
(

G1 C
0 G2

)
, B1 = (A1 |C) and B2 = (A2 |C>), where B =

(
A1
A2

)
where Γi :=

λi(Ti), Bi := boundary(Γi), Gi = adjacency(Γi) and Ai ∈MatN(n,ki). Then,
(

A′1
A′2

)
=
(

A1
A2

)
·M =

(
A1·M
A2·M

)
and B′i = (A′i |Ci) = (Ai |Ci) ·

(
M 0
0 1k−i

)
. By induction hypothesis, there are recursive rank decompositions

T ′i of Γ′i = ([Gi] ,B′i) with the same underlying tree structure as Ti and such that wd(T ′i) ≤ wd(Ti). If M

has full rank, then
(

M 0
0 1k−i

)
has full rank too because both its blocks do. In this case, the induction

hypothesis gives wd(T ′i) = wd(Ti). Define T ′ := (T ′1, Γ′, T ′2). It is a recursive rank decomposition of Γ′

26 Monoidal Width: Capturing Rank Width

because G =
(

G1 C
0 G2

)
, B′1 = (A′1 |C) and B′2 = (A′2 |C>). We can compute

wd(T ′)
:= max{rank(B′),wd(T ′1),wd(T ′2)}
= max{rank(B ·M),wd(T ′1),wd(T

′
2)}

≤max{rank(B),wd(T1),wd(T2)}
:=wd(T)

Again, the inequality is an equality when M has full rank.

Proof of Lemma 5.9. Note that (L | R+ L · (F +F>) ·P>) = (L | R) ·
(

1 j (F+F>)·P>
0 1m

)
. Then, rank(L |

R+L · (F +F>) ·P>)≤ rank(L | R). Proceed by induction on T .
If T = (Γ), then Γ has one vertex and we can define T ′ := (Γ′). We can compute wd(T ′) := rank(L |

R+L · (F +F>) ·P>)≤ rank(L | R) :=wd(T).
If T = (T1, Γ, T2), then there are Γ1 = ([G1] ,(L1 | R1 | C)) and Γ2 = ([G2] ,(L2 | R2 | C)) such

that Ti is a recursive rank decomposition of Γi, and we can write [G] =
[(

G1 C
0 G2

)]
and (L | R) =(L1 R1

L2 R2

)
. We can write

[
G+L ·F ·L>

]
=
[(

G1+L1·F ·L>1 C+L1·(F+F>)·L>2
0 G2+L2·F ·L>2

)]
and (L | R+L · (F +F>) ·P>) =(

L1 R1+L1·(F+F>)·P>
L2 R2+L2·(F+F>)·P>

)
. Let

Γ
′
1 :=(

[
G1 +L1 ·F ·L>1

]
,(L1 | R1 +L1 · (F +F>) ·P> |C+L1 · (F +F>) ·L>2))

=(
[
G1 +L1 ·F ·L>1

]
,(L1 | (R1 |C)+L1 · (F +F>) · (P> | L>2)))

and

Γ
′
2 :=(

[
G2 +L2 ·F ·L>2

]
,(L2 | R2 +L2 · (F +F>) ·P> |C>+L2 · (F +F>) ·L>1))

=(
[
G2 +L2 ·F ·L>2

]
,(L2 | (R2 |C>)+L2 · (F +F>) · (P> | L>1)))

By induction, we have recursive rank decompositions T ′i of Γ′i such that wd(T ′i) ≤ wd(Ti). Since Γ′i
satisfy the conditions for a recursive rank decomposition, we can define a recursive rank decomposition
of Γ′ as T ′ := (T ′1, Γ′, T ′2), and compute its width.

wd(T ′)

:= max{wd(T ′1),wd(T ′2), rank(L | R+L · (F +F>) ·P>)}
≤max{wd(T1),wd(T2), rank(L | R+L · (F +F>) ·P>)}
≤max{wd(T1),wd(T2), rank(L | R)}

:=wd(T)

Proof of Proposition 5.11. Proceed by induction on d.
If d = (g), then wd(d) := k, where k is the number of vertices of g. Pick any recursive rank decom-

position of Γ and define R(d) := T . Surely, wd(T)≤ k :=wd(d)

Elena Di Lavore and Paweł Sobociński 27

If d = (d1, ; j, d2), then there are gi = ([Gi] ,Li,Ri,Pi, [Fi]) such that g = g1 ; g2. Given the partition of

the vertices determined by g1 and g2, we can decompose g in another way, by writing [G] =
[(

G1 C
0 G2

)]
and B = (L | R) =

(
L1 R1
L2 R2

)
. Then, we have that G1 = G1, L1 = L1, P = P2 · P1, C = R1 · L>2 , R1 =

R1 ·P>2 , L2 = L2 ·P1, R2 = R2 + L2 · (F1 +F>1) ·P>2 , G2 = G2 + L2 ·F1 · L>2 , and F = F2 +P2 ·F1 ·P>2 .
Diagrammatically, this corresponds to the following equation.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m
P

C>
R>1 L2

We define B1 := (L1 | R1 |C) and B2 := (L2 | R2 |C>). In order to build a recursive rank decomposition
of Γ, we need recursive rank decompositions of Γi = (

[
Gi
]
,Bi). We obtain these in three steps. Firstly,

we apply induction to obtain recursive rank decompositions R(di) of Γi = ([Gi] ,(Li | Ri)) such that
wd(R(di)) ≤ 2 ·max{wd(di), rank(Li), rank(Ri)}. Secondly, we apply Lemma 5.9 to obtain a recursive
rank decomposition T ′2 of Γ′2 = (

[
G2 +L2 ·F1 ·L>2

]
,(L2 | R2 +L2 · (F1 +F>1) ·P>2)) such that wd(T ′2) ≤

wd(R(d2)). Lastly, we observe that (R1 |C) = R1 · (P>2 | L>2) and (L2 |C>) = L2 · (P1 | R>1). Then we

obtain that B1 = (L1 | R1) ·
(

1n 0 0
0 P>2 L>2

)
and B2 = (L2 | R2 +L2 · (F1 +F>1) ·P>2) ·

(
P1 0 R>1
0 1m 0

)
, and we can

apply Lemma 5.10 to get recursive rank decompositions Ti of Γi such that wd(T1) ≤ wd(R(d1)) and
wd(T2) ≤ wd(T ′2) ≤ wd(R(d2)). If k1,k2 > 0, then we define R(d) := (T1, Γ, T2), which is a recursive
rank decomposition of Γ because Γi satisfy the two conditions of a recursive rank decomposition from
Definition 4.8. If k1 = 0, then Γ = Γ2 and we can define R(d) := T2. Similarly, if k2 = 0, then Γ = Γ1
and we can define R(d) := T1. In any case, we can compute the width of R(d) (if ki = 0 then Ti = () and
wd(Ti) = 0) using the inductive hypothesis, Lemma 5.9, Lemma 5.10, the fact that rank(L)≥ rank(L1),
rank(R)≥ rank(R2) and j ≥ rank(R1), rank(L2) because R1 : j→ k1 and L2 : j→ k2.

wd(T)
:= max{wd(T1),wd(T2), rank(L | R)}
≤max{wd(R(d1)),wd(T ′2), rank(L | R)}
≤max{wd(R(d1)),wd(R(d2)), rank(L | R)}
≤max{wd(R(d1)),wd(R(d2)), rank(L)+ rank(R)}
≤max{2 ·wd(d1),2 · rank(L1),2 · rank(R1),2 ·wd(d2),2 · rank(L2),2 · rank(R2), rank(L)+ rank(R)}
≤ 2 ·max{wd(d1), rank(L1), rank(R1),wd(d2), rank(L2), rank(R2), rank(L), rank(R)}
≤ 2 ·max{wd(d1),wd(d2), j, rank(L), rank(R)}

:=2 ·max{wd(d), rank(L), rank(R)}

28 Monoidal Width: Capturing Rank Width

If d = (d1,⊗, d2), then there are gi = ([Gi] ,Li,Ri,Pi, [Fi]) : ni→mi such that g = g1⊗g2. By exlicitly
computing the monoidal product, we obtain that [G] =

[(
G1 0
0 G2

)]
, L =

(L1 0
0 L2

)
, R =

(R1 0
0 R2

)
, P =

(P1 0
0 P2

)
and F =

(F1 0
0 F2

)
. By induction, we have recursive rank decompositions R(di) of Γi := ([Gi] ,Bi), where

Bi = (Li | Ri), such that wd(R(di))≤ 2 ·max{wd(di), rank(Li), rank(Ri)}. Let B1 := (L1 | 0n2 | R1 | 0m2 |
0k2) = B1 ·

(
1n1 0 0 0 0
0 0 1m1 0 0

)
and B2 := (0n1 | L2 | 0m1 | R2 | 0k1) = B2 ·

(
0 1n2 0 0 0
0 0 0 1m2 0

)
. By Lemma 5.10,

we can obtain recursive rank decompositions Ti of Γi := ([Gi] ,Bi) such that wd(Ti) ≤ wd(R(di)). If
k1,k2 > 0, then we define R(d) := (T1, Γ, T2), which is a recursive rank decomposition of Γ because Γi

satisfy the two conditions of a recursive rank decomposition in Definition 4.8. If k1 = 0, then Γ = Γ2 and
we can define R(d) := T2. Similarly, if k2 = 0, then Γ = Γ1 and we can define R(d) := T1. In any case,
we can compute the width of R(d) (if ki = 0 then Ti = () and wd(Ti) = 0) using the inductive hypothesis
and Lemma 5.10.

wd(T)
:= max{wd(T1),wd(T2), rank(L | R)}
≤max{wd(R(d1)),wd(R(d2)), rank(L | R)}
≤max{wd(R(d1)),wd(R(d2)), rank(L)+ rank(R)}
≤max{2 ·wd(d1),2 · rank(L1),2 · rank(R1),2 ·wd(d2),2 · rank(L2),2 · rank(R2), rank(L)+ rank(R)}
≤ 2 ·max{wd(d1), rank(L1), rank(R1),wd(d2), rank(L2), rank(R2), rank(L), rank(R)}
≤ 2 ·max{wd(d1),wd(d2), rank(L), rank(R)}

:=2 ·max{wd(d), rank(L), rank(R)}

	Introduction
	Monoidal width
	The width of copying

	Monoidal width in matrices
	Monoidal width in Bialg

	Graphs and rank width
	Graphs with dangling edges

	Monoidal width and rank width
	Rank width in open graphs

	Conclusions and future work
	Matrices
	Recursive rank width
	Monoidal width and rank width

