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1 Uninformative Priors and Duality for Conditioning

We recall exact conditioning of random variables as a primitive for Bayesian inference, and argue that the
presence of uninformative priors gives rise to a powerful self-duality via Frobenius structures. We apply
this approach to Gaussian probability, which we have to synthetically extend with an idealized uniform
distribution over the real line to obtain that kind of duality. We achieve this through a novel construction
combining linear relations with probability.

In [18], we have proposed exact conditioning as a primitive for Bayesian inference and probabilistic
programming. We demonstrate this using a noisy measurement example: Let some quantity X be nor-
mally distributed with mean µ = 50 and standard deviation σ = 10, written N (50,10). We only have
access to a noisy measurement Y , which itself has standard deviation 5, and observe a value of Y = 40.
Conditioned on that observation, the posterior distribution over X is now N (42,

√
20). In a categorical

setting, the exact conditioning operation can be rendered as an effect (=:=) : X ×X → I in an appropriate
symmetric monoidal category of ‘open inference problems’ (see below). We draw (=:=) as a cap, and the
comultiplication is copying.
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We can define a conditioning product • : X⊗X→ X in terms of (=:=) as above, and proved in [16] that
it satisfies the laws of a special commutative Frobenius multiplication. The last puzzle piece is whether
• admits a unit uX : I → X , which must act as an uninformative prior over X , a generalized uniform
distribution, conditioning on which gives no information. With such units in place, every object has the
structure of a Frobenius algebra, making the surrounding category a hypergraph category [6] enjoying
a rich duality theory: For example, effects can be seen as synthetic analogues of density functions in
probability, and the study of open inference problems X → Y can be reduced to states I → X ⊗Y . We
obtain a convenient graphical formalism for conditioning and arrive at the following dictionary
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2 Gaussian Conditioning

Treating Bayesian inference using Frobenius structures and closed categories is a classic idea due
to [5], and [15] identifies hypergraph categories as a natural setting for celebrated algorithms such as
message-passing inference. We overcome two challenges that have hitherto prevented this approach
from applying to situations with continuous random variables such as Gaussians: Firstly, exact condi-
tioning has to be defined in a general setting possibly involving probability zero observations. We address
this using the notion of open inference problem in Markov categories. The second challenge, which is
the focus of this abstract, is that uniform distributions over spaces such as the real line do not exist
measure-theoretically. This is often addressed informally using the method of improper priors, where
the Lebesgue measure is treated as a probability distribution despite being unnormalized [11]. Instead,
we propose a categorical construction to extend Gaussian probability with uninformative priors using a
refined linear relations model.

2 Background: Compositional Semantics for Exact Conditioning

Markov and CD categories [7, 4] are receiving increased attention as a convenient formalism for cate-
gorical probability theory [10, 8, 13, 9] and a foundation for the semantics of probabilistic programming
languages [16]. Morphisms in a Markov category C are thought of as generalized stochastic maps, and
admit abstract characterizations of notions such as (conditional) independence, almost-sure equality, sup-
port and conditional probability. In [18], we introduce a synthetic notion of inference problem and define
a CD category Cond(C) which faithfully includes C while internalizing exact conditioning. Morphisms
in Cond(C) are open inference problems modulo contextual equivalence ∼, in an optic-like construction

Cond(C)(X ,Y ) =

(
∑

K∈obj(C)
C(X ,Y ⊗K)×Cdet(I,K)

)
/∼

This approach to conditioning purely relies on the compositional structure of C and avoids all mention
of measure theory, densities or limits. Naively conditioning on probability zero events easily leads to
paradoxes such as Borel’s paradox (e.g. [14]), which the categorical approach can help sidestep.

3 Decorated Linear Relations for Gaussian Probability

Our introductory example takes place in Cond(Gauss), where Gauss is the Markov category of finite-
dimensional vector spaces and affine maps with Gaussian noise [7]. Conditioning in Cond(Gauss) does
not admit a unit, because every Gaussian distribution is biased towards its mean and never fully unin-
formative. The novel contribution of this work is our construction of a Markov category GaussEx of
extended Gaussians which extends Gaussian distributions by ‘nondeterministic noise’ along a vector
subspace D [17]. Roughly, an extended Gaussian on a vector space X is an ordinary Gaussian on a quo-
tient X/D. More generally, we reanalyze linear relations and define for every functor S : Vec→ CMon
two Markov categories LinS of decorated linear maps and LinRelS of decorated linear relations as

LinS(X ,Y ) = Vec(X ,Y )×S(Y ) LinRelS(X ,Y ) = ∑
D⊆X

Vec(X ,Y/D)×S(Y/D)

of which Gauss and GaussEx are special cases for appropriate S. Linear relations have been considered
in [2, 1, 3]; their seamless probabilistic extension is surprising, because probability and nondeterminism
do not combine well in general [19, 12]. Conditioning now has a unit, namely the nondeterministic
distribution on X , which gives Cond(GaussEx) the desired structure of a hypergraph category.
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