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ABSTRACT
Modellers in epidemiology and ecology seeking to implement

individual-based models (IBMs) can choose from a variety of soft-

ware libraries, but nearly all suffer from common shortcomings.

These include complex inheritance hierarchies, dissociation be-

tween source code and model structure, and inseparability of an

event’s state update rules and probability computation. We present

Individual.jl, a Julia library that relies on Catlab.jl to specify and

simulate IBMs so that model state and dynamics are transparent in

their implementation and grounded in the mathematics of applied

category theory.

1 MOTIVATION
Here we define IBM to mean a model which does not represent

individuals as a density or other continuous quantity, and therefore

does not have a system of differential equations as its natural math-

ematical description (although many may admit such a description

for its Kolmogorov equations). In an IBM, the state of the world is

represented by a set of individuals along with their attributes and

relationships. Dynamics are specified by events, each of which has

a function computing (1) its probability to fire (i.e. occur) given the

current world state and (2) a state update rule.

Most IBM software is based on object-oriented programming

(OOP) principles. Common generic software include [15, 10, 9, 13]

and [1] is a successful library for epidemiology. In OOP based sys-

tems, users create a class for simulated individuals, which may

fit into a complex inheritance hierarchy. Classes are often tightly

coupled, and require expensive integration tests to ensure correct-

ness after modifications. Inheritance hierarchies make it difficult

to instantiate arbitrary or multiple types of agents (e.g. birds and

humans) in a single model. Additionally, model structure is embed-

ded in the source code rather than expressed as data, so tasks such

as querying state require specialized design patterns.

Specification of events in standard software also suffers from

tight coupling of update rules, computation of firing probability, and

sampling. This means that the only way to interact with a model

is to draw trajectories and statistically analyze results. In addition,

there are generally no formal restrictions on what aspects of state

may be updated by an event; a source of hard to diagnose bugs,

especially for models which are updated to reflect changing real-

world conditions. Conversely, some platforms exhibit the opposite

problem where users are restricted to select from a predefined set

of state transitions and probability computations [5, 7].

While not designed for epidemiological models, the Kappa soft-

ware for biochemical simulation [2] based on graph rewriting is the

closest in spirit to our approach, although [14] identified several

domain-specific design choices which cause difficulty for epidemi-

ological models.

2 DESIGN AND IMPLEMENTATION
Individual.jl is a library that relies on the graph rewriting capabili-

ties of Catlab.jl [3] for specification and simulation of discrete-time

IBMs. To create an IBM in Individual.jl, the user defines a schema,

which completely describes the simulated world, including types of

individuals, attributes of individuals, and relations between individ-

uals. Computation is performed on efficient data structures called

Attributed C-Sets (ACSets), which are programmatically generated

from a schema [11]. For example, the event depicted in Figure 1

applies to the model whose schema is

S I R

A
and a world-state in this model is a functor𝐺 from the free category

on this schema into FinSet. 𝐺 (S),𝐺 (I),𝐺 (R) are sets of suscepti-
ble, infected, and recovered persons.𝐺 (A) is a set of persons. The
morphisms specify that each disease state is assigned to a person.

This schema could be expanded to include attributes such as each

person’s age.

Here we list some advantages of encoding model structure as

an ACSet. (1) The schema provides constraints on allowed world

states such that an invalid state cannot be sampled during a simu-

lation run. (2) Adapting a model, by adding a type or attribute of

individuals, is an unambiguous, local process. Furthermore, using

functorial data migration, events defined on one model can be au-

tomatically reinterpreted as events on the adjusted model. (3) In

OOP software, querying model state is often expensive, involving

applying a predicate to every individual. In contrast, querying AC-

Sets takes advantage of their efficient database structure. For more

complex queries, Catlab.jl supports disjoint unions of conjunctive

queries (duc queries) [12] on models.

Model dynamics are defined by a set of events specified as graph

rewrite rules, each of which describes its preconditions and how



state will change if it fires. Currently we use the double-pushout

(DPO) approach which encodes this information in a span of ACSets

𝐿 ←↪ 𝐼 → 𝑅 (Figure 1). A match morphism𝑚 from preconditions 𝐿

into world-state𝐺 indicates a possible application of the rule. Users

also define a function which computes the probability of firing.

This probability is used to sample which possible applications are

scheduled during that time-step, and scheduled rewrites are applied

at the end of the time-step. The clock then advances and the process

continues. Time steps may be of arbitrary size, and are used for

computing firing probabilities (e.g. via an exponential distribution

function).

Figure 1 shows an example of an infection rewrite rule for an SIR

(Susceptible-Infectious-Recovered) model. A sampled trajectory is

shown in Figure 2.

Figure 1: SIR infection update with DPO rewriting. 𝐺 is the
current world state, which is updated to become 𝐻 by ap-
plying the rule 𝐿 ←↪ 𝐼 → 𝑅. A is the set of individuals, and
S,I,R refer to those states of the SIR model. Coloring indi-
cates the data of the ACSet homomorphisms.

Figure 2: Sampled epidemic trajectory

Events which fire after a non-geometric delay are also accom-

modated. If a match𝑚 into world-state 𝐺𝑡 is identified at time 𝑡 , it

can be scheduled for 𝑡 + 𝑛 by modifying𝑚 to point to 𝐺𝑡+𝑛 . The
partial morphisms between each intervening model update can be

post-composed with𝑚 to yield a match into 𝐺𝑡+𝑛 . If the scheduled
match was interrupted prior to 𝑡 + 𝑛 then no composition exists

and𝑚 is no longer valid. For example, if an individual dies before

being discharged from hospital, the discharge event will be properly

thrown out without the user needing to manually cancel it within

the death event, as common in existing platforms.

3 DISCUSSION AND FURTHERWORK
Using schemas to define the simulated world, ACSets to store data,

and graph rewriting rules to specify dynamics has benefits for prac-

tical modeling. Ill formed rewrite rules such as those with dangling

edges or non-injunctive matches will simply not be possible to

apply. These guard rails alleviate one source of bugs and reduce the

need for expensive integration testing. Resulting code is smaller,

more maintainable, and amenable to unit testing, an increasing

concern for complex infectious disease models [8].

Separation of state update rules and probability computation

means that users can interact with models beyond sampling tra-

jectories. As in Kappa, causal dependence of particular states upon

certain chains of events could be identified [4]. For policy evalu-

ation this allows comparison of an intervened upon system to its

exact counterfactual, rather than statistical comparison of many in-

dependent trajectories. This was considered for SIR type epidemics

in [6], but required laborious manual construction of model specific

graphs. Our framework can enable counterfactual analysis for any

expressible model.

Further development can target specific challenges for epidemi-

ology as identified by [14]. Network models can be easily handled,

indeed Catlab.jl already includes schemas for directed multigraphs.

Secondly, spatial structure can be elegantly implemented. Basic

development into efficient ways to cache identified matches and

restricting morphism searching into updated parts of state are im-

portant areas for performance optimization.
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