
Submitted to:
ACT 2022

© Mario Román
This work is licensed under the
Creative Commons Attribution License.

Promonads and String Diagrams for Effectful Categories

Mario Román
Tallinn University of Technology

mroman@ttu.ee

Premonoidal and Freyd categories are both generalized by non-cartesian Freyd categories: effectful
categories. We construct string diagrams for effectful categories in terms of the string diagrams for a
monoidal category with a freely added object. We show that effectful categories are pseudomonoids
in a monoidal bicategory of promonads with a suitable tensor product.

1 Introduction

Category theory has two sucessful applications that are rarely combined: monoidal string diagrams [21]
and functional programming semantics [28]. We use string diagrams to talk about quantum transfor-
mations [1], relational queries [6], and even computability [31]; at the same time, proof nets and the
geometry of interaction [11, 5] have been widely applied in computer science [2, 16]. On the other hand,
we traditionally use monads and comonads, Kleisli categories and premonoidal categories to explain
effectful functional programming [17, 18, 28, 34, 44]. Even if we traditionally employ Freyd categories
with a cartesian base [32], we can also consider non-cartesian Freyd categories [40], which we call
effectful categories.

Contributions. These applications are well-known. However, some foundational results in the in-
tersection between string diagrams, premonoidal categories and effectful categories are missing in the
literature. This manuscript contributes two such results.

• We introduce string diagrams for effectful categories. Jeffrey [20] was the first to preformally
employ string diagrams of premonoidal categories. His technique consists in introducing an ex-
tra wire – which we call the runtime – that prevents some morphisms from interchanging. We
promote this preformal technique into a result about the construction of free premonoidal, Freyd
and effectful categories: the free premonoidal category can be constructed in terms of the free
monoidal category with an extra wire.
Our slogan, which constitutes the statement of Theorem 2.14, is

“Premonoidal categories are Monoidal categories with a Runtime.”

• We prove that effectful categories are promonad pseudomonoids. Promonads are the profunctorial
counterpart of monads; they are used to encode effects in functional programming (where they are
given extra properties and called arrows [17]). We claim that, in the same way that monoidal cate-
gories are pseudomonoids in the bicategory of categories [42], premonoidal effectful categories are
pseudomonoids in a monoidal bicategory of promonads. This result justifies the role of effectful
categories as a foundational object.

1.1 Synopsis

Sections 2.1 and 2.2 contain mostly preliminary material on premonoidal, Freyd and effectful categories.
Our first original contribution is in Section 2.3; we prove that premonoidal categories are monoidal

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Runtime as a resource

categories with runtime (Theorem 2.14). Section 3 makes explicit the well-known theory of profunctors,
promonads and identity-on-objects functors. In Section 4, we introduce the pure tensor of promonads.
We use it in Section 5 to prove our second main contribution (Theorem 5.3).

2 Premonoidal and Effectful Categories

2.1 Premonoidal categories

Premonoidal categories are monoidal categories without the interchange law, (f ⊗ id) # (id⊗g) 6= (id⊗
g) # (f ⊗ id). This means that we cannot tensor any two arbitrary morphisms, (f ⊗g), without explicitly
stating which one is to be composed first, (f ⊗ id)#(id⊗g) or (id⊗g)#(f ⊗ id), and the two compositions
are not equivalent (Figure 1).

Figure 1: The interchange law does not hold in a premonoidal category.

In technical terms, the tensor of a premonoidal category (⊗) : C×C→ C is not a functor, but only
what is called a sesquifunctor: independently functorial on each variable. Tensoring with any identity is
itself a functor (•⊗ id) : C→ C, but there is no functor (•⊗•) : C×C→ C.

A good motivation for dropping the interchange law can be found when describing transformations
that affect some global state. These effectful processes should not interchange in general, because the
order in which we modify the global state is meaningful. For instance, in the Kleisli category of the writer
monad, (Σ∗×•) : Set→ Set for some alphabet Σ∈ Set, we can consider the function print : Σ∗→ Σ∗×1.
The order in which we “print” does matter (Figure 2).

Figure 2: Writing does not interchange.

Not surprisingly, the paradigmatic examples of premonoidal categories are the Kleisli categories of
Set-based monads T : Set→ Set (more generally, of strong monads), which fail to be monoidal unless
the monad itself is commutative [13, 33, 34, 14]. Intuitively, the morphisms are “effectful”, and these
effects do not always commute.

However, we may still want to allow some morphisms to interchange. For instance, apart from asking
the same associators and unitors of monoidal categories to exist, we ask them to be central: that means
that they interchange with any other morphism. This notion of centrality forces us to write the definition
of premonoidal category in two different steps: first, we introduce the minimal setting in which centrality
can be considered (binoidal categories [34]) and then we use that setting to bootstrap the full definition
of premonoidal category with central coherence morphisms.
Definition 2.1 (Binoidal category). A binoidal category is a category C endowed with an object I ∈ C
and an object A⊗B for each A ∈ C and B ∈ C. There are functors (A⊗•) : C→ C, and (•⊗B) : C→ C
that coincide on (A⊗B), even if (•⊗•) is not itself a functor.

Mario Román 3

Again, this means that we can tensor with identities (whiskering), functorially; but we cannot tensor
two arbitrary morphisms: the interchange law stops being true in general. The centre, Z (C), is the
wide subcategory of morphisms that do satisfy the interchange law with any other morphism. That is,
f : A→ B is central if, for each g : A′→ B′,

(f ⊗ idA′) # (idB⊗g) = (idA⊗g) # (f ⊗ idB′), and (idA′⊗ f) # (g⊗ idB) = (g⊗ idA) # (idB′⊗ f).

Definition 2.2. A premonoidal category is a binoidal category (C,⊗, I) together with the following
coherence isomorphisms αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C, ρA : A⊗ I→ A and λA : I⊗A→ A which
are central, natural separately at each given component, and satisfy the pentagon and triangle equations.

A premonoidal category is strict when these coherence morphisms are identities. A premonoidal
category is moreover symmetric when it is endowed with a coherence isomorphism σA,B : A⊗B→ B⊗A
that is central and natural at each given component, and satisfies the symmetry condition and hexagon
equations.

Remark 2.3. The coherence theorem of monoidal categories still holds for premonoidal categories: every
premonoidal is equivalent to a strict one. We will construct the free strict premonoidal category using
string diagrams. However, the usual string diagrams for monoidal categories need to be restricted: in
premonoidal categories, we cannot consider two morphisms in parallel unless any of the two is central.

2.2 Effectful and Freyd categories

Premonoidal categories immediately present a problem: what are the strong premonoidal functors? If we
want them to compose, they should preserve centrality of the coherence morphisms (so that the central
coherence morphisms of F # G are these of F after applying G), but naively asking them to preserve all
central morphisms rules out important examples [40]. The solution is to explicitly choose some central
morphisms that represent “pure” computations. These do not need to form the whole centre: it could be
that some morphisms considered effectful just “happen” to fall in the centre of the category, while we do
not ask our functors to preserve them. This is the well-studied notion of a non-cartesian Freyd category,
which we shorten to effectful monoidal category or effectful category.1

Effectful categories are premonoidal categories endowed with a chosen family of central morphisms.
These central morphisms are called pure morphisms, constrasting with the general, non-central, mor-
phisms that fall outside this family, which we call effectful.

Definition 2.4. An effectful category is an identity-on-objects functor V→ C from a monoidal category
V (the pure morphisms, or “values”) to a premonoidal category C (the effectful morphisms, or “compu-
tations”), that strictly preserves all of the premonoidal structure and whose image is central. It is strict
when both are. A Freyd category [24] is an effectful category where the pure morphisms form a cartesian
monoidal category.

Effectful categories solve the problem of defining premonoidal functors: a functor between effectful
categories needs to preserve only the pure morphisms. We are not losing expressivity: premonoidal
categories are effectful with their centre, Z (C)→ C. From now on, we study effectful categories.

1The name “Freyd category” sometimes assumes cartesianity of the pure morphisms, but it is also used for the general case.
Choosing to call “effectful categories” to the general case and reserving the name “Freyd categories” for the cartesian ones
avoids this clash of nomenclature. There exists also the more fine-grained notion of “Cartesian effect category” [10], which
generalizes Freyd categories and may further justify calling “effectful category” to the general case.

4 Runtime as a resource

Definition 2.5 (Effectful functor). Let V→ C and W→ D be effectful categories. An effectful functor is
a quadruple (F,F0,ε,µ) consisting of a functor F : C→ D and a functor F0 : V→W making the square
commute, and two natural and pure isomorphisms ε : J ∼= F(I) and µ : F(A⊗B) ∼= F(A)⊗F(B) such
that they make F0 a monoidal functor. It is strict if these are identities.

When drawing string diagrams in an effectful category, we shall use two different colours to declare
if we are depicting either a value or a computation (Figure 3).

Figure 3: “Hello world” is not “world hello”.

Here, the values “hello” and “world” satisfy the interchange law as in an ordinary monoidal category.
However, the effectful computation “print” does not need to satisfy the interchange law. String diagrams
like these can be found in the work of Alan Jeffrey [20]. Jeffrey presents a clever mechanism to graph-
ically depict the failure of interchange: all effectful morphisms need to have a control wire as an input
and output. This control wire needs to be passed around to all the computations in order, and it prevents
them from interchanging.

Figure 4: An extra wire prevents interchange.

A common interpretation of monoidal categories is as theories of resources. We can interpret pre-
monoidal categories as monoidal categories with an extra resource – the “runtime” – that needs to be
passed to all computations. The next section promotes Jeffrey’s observation into a theorem.

2.3 Premonoidals are monoidals with runtime

String diagrams rely on the fact that the morphisms of the monoidal category freely generated over a
polygraph of generators are string diagrams on these generators, quotiented by topological deformations
[22]. We justify string diagrams for premonoidal categories by proving that the freely generated effectful
category over a pair of polygraphs (for pure and effectful generators, respectively) can be constructed as
the freely generated monoidal category over a particular polygraph that includes an extra wire.

Definition 2.6. A polygraph G (analogue of a multigraph [38]) is given by a set of objects, Gobj, and
a set of arrows G (A0, . . . ,An;B0, . . . ,Bm) for any two sequences of objects A0, . . . ,An and B0, . . . ,Bm. A
morphism of polygraphs f : G →H is a function between their object sets, fobj : Gobj →Hobj, and a
function between their corresponding morphism sets,

fA0,...,An;B0,...,Bn : G (A0, . . . ,An;B0, . . . ,Bm)→H (fobj(A0), . . . , fobj(An); fobj(B0), . . . , fobj(Bm)).

Mario Román 5

A polygraph couple is a pair of polygraphs (V ,G) sharing the same objects, Vobj = Gobj. A morphism
of polygraph couples (u, f) : (V ,G)→ (W ,H) is a pair of morphisms of polygraphs, u : V →W and
f : G →H , such that they coincide on objects, fobj = uobj.

Remark 2.7. There exists an adjunction between polygraphs and strict monoidal categories. Any mo-
noidal category C can be seen as a polygraph UC where the edges UC(A0, . . . ,An;B0, . . . ,Bm) are the
morphisms C(A0⊗ . . .⊗An,B0⊗ . . .⊗Bm), and we forget about composition and tensoring. Given a
polygraph G , the free strict monoidal category Mon(G) is the strict monoidal category that has as mor-
phisms the string diagrams over the generators of the polygraph.

We will construct a similar adjunction between polygraph couples and effectful categories. Let us
start by formally adding the runtime to a free monoidal category.

Definition 2.8 (Runtime monoidal category). Let (V ,G) be a polygraph couple. Its runtime monoidal
category, MonRun(V ,G), is the monoidal category freely generated from adding an extra object – the
runtime, R – to the input and output of every effectful generator in G (but not to those in V), and letting
that extra object be braided with respect to every other object of the category.

In other words, it is the monoidal category freely generated by the following polygraph, Run(V ,G),
(Figure 5), assuming A0, . . . ,An and B0, . . . ,Bm are distinct from R

• Run(V ,G)obj = Gobj +{R}= Vobj +{R},

• Run(V ,G)(R,A0, . . . ,An;R,B0, . . . ,Bn) = G (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G)(A0, . . . ,An;B0, . . . ,Bn) = V (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G)(R,A0;A0,R) = Run(V ,G)(A0,R;R,A0) = {σ},

with Run(V ,G) empty in any other case, and quotiented by the braiding axioms for R (Figure 6).

Figure 5: Generators for the runtime monoidal category.

Figure 6: Axioms for the runtime monoidal category.

Somehow, we are asking the runtime R to be in the Drinfeld centre [9] of the monoidal category. The
extra wire that R provides is only used to prevent interchange, and so it does not really matter where it is
placed in the input and the output. We can choose to always place it on the left, for instance – and indeed
we will be able to do so – but a better solution is to just consider objects “up to some runtime braidings”.
This is formalized by the notion of braid clique.

Definition 2.9 (Braid clique). Given any list of objects A0, . . . ,An in Vobj = Gobj, we construct a clique
[43, 39] in the category MonRun(V ,G): we consider the objects, A0⊗ . . .⊗R(i)⊗ . . .⊗An, created by

6 Runtime as a resource

inserting the runtime R in all of the possible 0 6 i 6 n+ 1 positions; and we consider the family of
commuting isomorphisms constructed by braiding the runtime,

σi, j : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ A0⊗ . . .⊗R(j)⊗ . . .⊗An.

We call this the braid clique, BraidR(A0, . . . ,An), on that list.

Definition 2.10. A braid clique morphism, f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is a family of
morphisms in the runtime monoidal category, MonRun(V ,G), from each of the objects of first clique to
each of the objects of the second clique,

fik : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ B0⊗ . . .⊗R(k)⊗ . . .⊗Bm,

that moreover commutes with all braiding isomorphisms, fi j #σ jk = σil # f.

A braid clique morphism f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is fully determined by any
of its components, by pre/post-composing it with braidings. In particular, a braid clique morphism is
always fully determined by its leftmost component f00 : R⊗A0⊗ . . .⊗An→ R⊗B0⊗ . . .⊗Bm.

Lemma 2.11. Let (V ,G) be a polygraph couple. There exists a premonoidal category, Eff(V ,G), that
has objects the braid cliques, BraidR(A0, . . . ,An), in MonRun(V ,G), and as morphisms the braid clique
morphisms between them. See Appendix, Lemma A.1.

Lemma 2.12. Let (V ,G) be a polygraph couple. There exists an identity-on-objects functor Mon(V)→
Eff(V ,G) that strictly preserves the premonoidal structure and whose image is central. See Appendix,
Lemma A.2.

Lemma 2.13. Let (V ,G) be a polygraph couple and consider the effectful category determined by
Mon(V)→ Eff(V ,G). Let V→ C be a strict effectful category endowed with a polygraph couple mor-
phism F : (V ,G)→U (V,C). There exists a unique strict effectful functor from (Mon(V)→ Eff(V ,G))
to (V→ C) commuting with F as a polygraph couple morphism. See Appendix, Lemma A.3.

Theorem 2.14 (Runtime as a resource). The free strict effectful category over a polygraph couple (V ,G)
is Mon(V)→ Eff(V ,G). Its morphisms A→ B are in bijection with the morphisms R⊗A→ R⊗B of
the runtime monoidal category,

Eff(V ,G)(A,B)∼= MonRun(V ,G)(R⊗A,R⊗B).

Proof. We must first show that Mon(V)→ Eff(V ,G) is an effectful category. The first step is to see
that Eff(V ,G) forms a premonoidal category (Lemma 2.11). We also know that Mon(V) is a monoidal
category: in fact, a strict, freely generated one. There exists an identity on objects functor, Mon(V)→
Eff(V ,G), that strictly preserves the premonoidal structure and centrality (Lemma 2.12).

Let us now show that it is the free one over the polygraph couple (V ,G). Let V→ C be an effectful
category, with an polygraph couple map F : (V ,G)→ U (V,C). We can construct a unique effectful
functor from (Mon(V)→ Eff(V ,G)) to (V→ C) giving its universal property (Lemma 2.13).

Corollary 2.15 (String diagrams for effectful categories). We can use string diagrams for effectful cate-
gories, quotiented under the same isotopy as for monoidal categories, provided that we do represent the
runtime as an extra wire that needs to be the input and output of every effectful morphism.

Mario Román 7

3 Profunctors and Promonads

We have elaborated on string diagrams for effectful categories. Let us now show that effectful categories
are fundamental objects. The profunctorial counterpart of a monad is a promonad. Promonads have
been widely used for functional programming semantics, although usually with an extra assumption of
strength and under the name of “arrows” [15, 17, 18]. Promonads over a category endow it with some
new, “effectful”, morphisms; while the base morphisms of the category are called the “pure” morphisms.
This terminology will coincide when regarding effectful categories as promonads.

In this section, we introduce profunctors and promonads. In the following sections, we show that
effectful categories are to promonads what monoidal categories are to categories: they are the pseu-
domonoids of a suitably constructed monoidal bicategory of promonads. In order to obtain this result,
we introduce the pure tensor of promonads in Section 4. The pure tensor of promonads combines the
effects of two promonads over different categories into a single one. In some sense, it does so in the
universal way that turns “purity” into “centrality” (Theorem 4.2).

3.1 Profunctors: an algebra of processes

Profunctors P : Aop×B→ Set [3, 7, 4] can be thought as indexing families of processes P(A,B) by the
types of an input channel A and an output channel B [23].

The category A has as morphisms the pure transformations f : A′→ A that we can apply to the input
of a process p ∈ P(A,B) to obtain a new process, which we call (f > p) ∈ P(A′,B). Analogously, the
category B has as morphisms the pure transformations g : B→ B′ that we can apply to the output of a
process p ∈ P(A,B) to obtain a new process, which we call (p < g) ∈ P(A,B′). The profunctor axioms
encode the compositionality of these transformations.

Definition 3.1. A profunctor (P,>,<) between two categories A and B is a family of sets P(A,B) indexed
by objects of A and B, and endowed with jointly functorial left and right actions of the morphisms of
A and B, respectively. Explicitly, types of these actions are (>) : hom(A′,A)×P(A′,B)→ P(A,B), and
(<) : hom(B,B′)×P(A,B)→ P(A,B′). They must satisfy

• compatibility, (f > p)<g = f > (p<g),

• preserve identities, id> p = p, and p< id = p,

• and composition, (p< f)<g = p< (f #g) and f > (g> p) = (f #g)> p.

More succintly, a profunctor P : A 9 B is a functor P : Aop×B→ Set. When presented as a family of
sets with a pair of actions, profunctors are sometimes called bimodules.

A profunctor homomorphism α : P→ Q transforms processes of type P(A,B) into processes of type
Q(A,B). The homomorphism affects only the effectful processes, and not the pure transformations we
could apply in A and B. This means that α(f > p) = f >α(p) and that α(p<g) = α(p)<g.

Definition 3.2 (Profunctor homomorphism). A profunctor homomorphism from the profunctor P : A9B
to the profunctor Q : A9B is a family of functions αA,B : P(A,B)→Q(A,B) preserving the left and right
actions, α(f > p<g) = f >α(p)<g. Equivalently, it is a natural transformation α : P→Q between the
two functors Aop×B→ Set.

How to compose two families of processes? Assume we have a process p ∈ P(A,B1) and a process
q ∈ Q(B2,C). Moreover, assume we have a transformation f : B1 → B2 translating from the output of
the second to the input of the first. In this situation, we can plug together the processes: p ∈ P(A,B1)
writes to an output of type B1, which is translated by f to an input of type B2, then used by q ∈Q(B2,C).

8 Runtime as a resource

There are two slightly different ways of describing this process, depending on whether we consider the
translation to be part of the first or the second process. We could translate just after finishing the first
process, (p< f ,q); or translate just before starting the second process, (p, f >q).

These are two different pairs of processes, with different types. However, if we take the process
interpretation seriously, it does not really matter when to apply the translation. These two descriptions
represent the same process. They are dinaturally equivalent [23, 25].

Definition 3.3 (Dinatural equivalence). Let P : A 9 B and Q : B 9 C be two profunctors. Consider the
set of matching pairs of processes, with a given input A and output C,

RP,Q(A,C) = ∑
B∈B

P(A,B)×Q(B,C).

Dinatural equivalence (∼), on the set RP,Q(A,C) is the smallest equivalence relation satisfying (p<
g,q)∼ (p,g>q). The set of matching processes RP,Q(A,C) quotiented by dinaturality (∼) is written as
(P �Q)(A,C). It is a particular form of colimit over the category B, called a coend, usually denoted by
an integral sign.

(P�Q)(A,C) = RP,Q(A,C)/(∼) =
∫ B∈B

P(A,B)×Q(B,C).

Definition 3.4 (Profunctor composition). The composition of two profunctors P : A 9 B and Q : B 9 C
is the profunctor (P�Q) : A 9 C has as processes the matching pairs of processes in P and Q quotiented
by dinaturality on B,

(p,g<q)∼ (p>g,q).

Its actions are the left and right actions of p and q, respectively, f > (p,q)<g = (f > p,q<g).
The identity profunctor A : A 9 A has as processes the morphisms of the category A, it is given by

the hom-sets. Its actions are pre and post-composition, f >h<g = f #h #g.

Profunctors are better understood as providing a double categorical structure to the category of cate-
gories. A double category D contains 0-cells (or “objects”), two different types of 1-cells (the “arrows”
and the “proarrows”), and cells [37]. Arrows compose in an strictly associative and unital way, while
proarrows come equipped with natural isomorphisms representing associativity and unitality. We employ
the graphical calculus of double categories [29], with arrows going left to right and proarrows going top
to bottom.

Definition 3.5. The double category of categories, CAT, has as objects the small categories A,B, . . . , as
arrows the functors between them, F : A→ A′, as proarrows the profunctors between them, P : A 9 B,
and as cells, the natural transformations, αA,B : P(A,B)→ Q(FA,GB).

Figure 7: Cell in the double category of categories.

Every functor has a companion and a conjoint profunctors: their representable and corepresentable
profunctors [12]. This structure makes CAT into the paradigmatic example of a proarrow equipment (or
framed bicategory [37]).

Mario Román 9

3.2 Promonads: new morphisms for an old category

Promonads are to profunctors what monads are to functors.2 It may be then surprising to see that so little
attention has been devoted to them, relative to their functorial counterparts. The main source of examples
and focus of attention has been the semantics of programming languages [17, 30, 18]. Strong monads
are commonly used to give categorical semantics of effectful programs [28], and the so-called arrows (or
strong promonads) strictly generalize them.

Part of the reason behind the relative unimportance given to promonads elsewhere may stem from the
fact that promonads over a category can be shown in an elementary way to be equivalent to identity-on-
objects functors from that category [25]. The explicit proof is, however, difficult to find in the literature,
and so we include it here (Theorem 3.9).

Under this interpretation, promonads are new morphisms for an old category. We can reinterpret the
old morphisms into the new ones in a functorial way. The paradigmatic example is again that of Kleisli
or cokleisli categories of strong monads and comonads. This structure is richer than it may sound, and
we will explore it further during the rest of this text.
Definition 3.6 (Monoids and promonoids). A monoid in a double category is an arrow T : A→A together
with cells m ∈ hom(M⊗M;1,1;M) and e ∈ cell(1;1,1;M), called multiplication and unit, satisfying
unitality and associativity. A promonoid in a double category is a proarrow M : A 9 A together with
cells m ∈ cell(1;M⊗M,M,1) and e ∈ cell(1;1,M;1), called promultiplication and prounit, satisfying
unitality and associativity.

Figure 8: Data and axioms of a promonoid in a double category.

Dually, we can define comonoids and procomonoids.
A monad is a monoid in the category of categories, functors and profunctors Cat. In the same way,

a promonad is a promonoid in Cat.
Definition 3.7. A promonad (P,?, ◦) over a category C is a profunctor P : C 9 C together with natural
transformations representing inclusion (◦)X ,Y : C(X ,Y)→ P(X ,Y) and multiplication (?)X ,Y : P(X ,Y)×
P(Y,Z)→ P(X ,Z), and such that

i. the right action is premultiplication, f ◦ ? p = f > p;

ii. the left action is posmultiplication, p? f ◦ = p< f ;

iii. multiplication is dinatural, p? (f >q) = (p< f)?q;

iv. and multiplication is associative, (p1 ? p2)? p3 = p1 ? (p2 ? p3).
Equivalently, promonads are promonoids in the double category of categories, where the dinatural mul-
tiplication represents a transformation from the composition of the profunctor P with itself.
Lemma 3.8 (Kleisli category of a promonad). Every promonad (P,?, ◦) induces a category with the same
objects as its base category, but with hom-sets given by P(•,•), composition given by (?) and identities
given by (id◦). This is called its Kleisli category, kleisli(P). Moreover, there exists an identity-on-objects
functor C→ kleisli(P), defined on morphisms by the unit of the promonad. See Appendix, Lemma B.1.

2To quip, a promonad is just a monoid on the category of endoprofunctors.

10 Runtime as a resource

The converse is also true: every category C with an identity-on-objects functor from some base
category V arises as the Kleisli category of a promonad.

Theorem 3.9. Promonads over a category C correspond to identity-on-objects functors from the category
C. Given any identity-on-objects functor i : C→D there exists a unique promonad over C having D as its
Kleisli category: the promonad given by the profunctor homD(i(•), i(•)). See Appendix, Theorem B.2.

3.3 Homomorphisms and transformations of promonads

We have characterized promonads as identity-on-objects functors. We now characterize the homomor-
phisms and transformations of promonads as suitable pairs of functors and natural transformations.

Definition 3.10 (Promonoid homomorphism). Let (A,M,m,e) and (B,N,n,u) be promonoids in a double
category. A promonoid homomorphism is an arrow T : A→ B together with a cell t ∈ cell(F ;M,N;F)
that preserves the promonoid promultiplication and prounit.

Figure 9: Axioms for a promonoid homomorphism.

Definition 3.11 (Promonad homomorphism). Let (A,P,?, ◦) and (B,Q,?, ◦) be two promonads, possibly
over two different categories. A promonad homomorphism (F0,F) is a functor between the underlying
categories F0 : A→ B and a natural transformation FX ,Y : P(X ,Y)→Q(FX ,FY) preserving composition
and inclusions. That is, F(p1 ? p2) = F(p1)?F(p2), and F(f ◦) = F0(f)◦.

Proposition 3.12. A promonad homomorphism between two promonads understood as identity-on-objects
functors, V→ C and W→ D, is equivalently a pair of functors (F0,F) that commute strictly with the two
identity-on-objects functors on objects F0(X) = F(X) and morphisms F0(f)◦ = F(f ◦). See Appendix,
Proposition B.3.

Definition 3.13 (Promonoid modification). Let (A,M,m,e) and (B,N,n,u) be promonoids in a dou-
ble category, and let t ∈ cell(F ;M,N;F) and r ∈ cell(G;M,N;G) be promonoid homomorphisms. A
promonoid modification is a cell α ∈ cell(F ;1,1;G) such that its precomposition with t is its postcom-
position r.

Figure 10: Axiom for a promonoid transformation.

Definition 3.14. A promonad modification between two promonad homomorphisms (F0,F) and (G0,G)
between the same promonads (A,P,?, ◦) and (B,Q,?, ◦) is a natural transformation αX : F0(X)→ G0(X)
such that αX >G(p) = F(p)<αY for each p ∈ P(X ,Y).

Proposition 3.15. A promonad modification between two promonad homomorphisms understood as
commutative squares of identity-on-objects functors F0(f)◦ = F(f ◦) and G0(f)◦ = G(f ◦) is a natural

Mario Román 11

transformation α : F0 ⇒ G0 that can be lifted via the identity-on-objects functor to a natural transfor-
mation α◦ : F ⇒ G. In other words, a pure natural transformation.

Figure 11: Promonad modifications are cylinder transformations.

Summarizing this section, we have shown a correspondence between promonads, their homomor-
phisms and modifications, and identity-on-objects functors, squares and cylinder transformations of
squares. The double category structure allows us to talk about homomorphisms and modifications, which
would be more difficult to address in a bicategory structure.

Promonad Identity-on-objects functor Theorem 3.9
Promonad homomorphism Commuting square Proposition 3.12

Promonad modification Cylinder transformation Proposition 3.15

4 Pure Tensor of Promonads

This section introduces the pure tensor of promonads. The pure tensor of promonads combines the effects
of two promonads, possibly over different categories, into the effects of a single promonad over the
product category. Effects do not generally interchange. However, this does not mean that no morphisms
should interchange in the pure tensor of promonads: in our interpretation of a promonad V→ C, the
morphisms coming from the inclusion are pure, they produce no effects; pure morphisms with no effects
should always interchange with effectful morphisms, even if effectful morphisms do not interchange
among themselves.

A practical way to encode and to remember all of the these restrictions is to use monoidal string
diagrams. This is another application of the idea of runtime: we introduce an extra wire so that all
the rules of interchange become ordinary interchange laws in a monoidal category. That is, we insist
again that effectful morphisms are just pure morphisms using a shared resource – the runtime. When
we compute the pure tensor of two promonads, the runtime needs to be shared between the impure
morphisms of both promonads.

4.1 Pure tensor, via runtime

Definition 4.1 (Pure tensor). Let C : V 9 V and D : W 9 W be two promonads. Their pure tensor,
C∗D : V×W→ V×W, is a promonad over V×W where elements of C∗D(X ,Y ;X ′,Y ′), the morphisms
X⊗R⊗Y→X ′⊗R⊗Y ′ in the freely presented monoidal category generated by the elements of Figure 12
and quotiented by the axioms of Figure 13.

Figure 12: Generators for the elements of the pure tensor of promonads.

12 Runtime as a resource

Figure 13: Axioms for the elements of the pure tensor of promonads.

Multiplication is defined by composition in the monoidal category, and the unit is defined by the
inclusion of pairs, as depicted in Figure 14.

Figure 14: The pure tensor promonad.

In other words, the elements of the pure tensor are the morphisms the category presented by the graph
that has as objects the pairs of objects (X ,Y) with X ∈ Vobj and Y ∈Wobj, formally written as X⊗R⊗Y ;
and the morphisms generated by

• an edge fC : X⊗R⊗Y → X ′⊗R⊗Y for each arrow f ∈ C(X ,X ′) and each object Y ∈W;

• an edge gD : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow g ∈ D(Y,Y ′) and each object X ∈ V;

• an edge vV : X⊗R⊗Y → X ′⊗R⊗Y for each arrow v ∈ V(X ,X ′) and each object Y ∈W;

• and an edge wW : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow w ∈W(Y,Y ′) and each object X ∈ V;

quotiented by centrality of pure morphisms: fC # wW = wW # fC and gD # vV = vV # gD; by compositions
and identities of one promonad: fC # f ′C = (f ? f ′)C and idC = id; by compositions and identities of the
other promonad: gD # g′D = (g ? g′)D and idD = id; and by the coincidence of pure morphisms and their
effectful representatives: vV = v◦C and wW = w◦D.

Crucially in this definition, fC and gD do not interchange: they are sharing the runtime, and that
prevents the application of the interchange law. The pure tensor of promonads, C ∗D, takes its name
from the fact that, if we interpret the promonads V→ C and W→D as declaring the morphisms in V and
W as pure, then the pure morphisms of the composition interchange with all effectful morphisms. The
spirit is similar to the free product of groups with commuting subgroups [27].

4.2 Universal property of the pure tensor

There are multiple canonical ways in which one could combine the effects of two promonads, C : V 9 V
and D : W 9 W, into a single promonad, such as taking the product of both, C×D : V×W 9 V×W.
Let us show that the pure tensor has a universal property: it is the universal one in which we can include

Mario Román 13

impure morphisms from each promonads, interchanging with pure morphisms from the other promonad,
so that purity is preserved.

Theorem 4.2. Let C : V 9 V and D : W 9 W be two promonads and let C∗D : V×W→ V×W be their
pure tensor. There exist a pair of promonad homomorphisms L : C×W→ C∗D and R : V×D→ C∗D.
These are universal in the sense that, for every pair of promonad homomorphisms, A : C×W→ E and
B : V×D→E, there exists a unique promonad homomorphism (A∨B) : C∗D→E that commutes strictly
with them, (A∨B) #L = A and (A∨B) #R = B. See Appendix, Theorem B.4.

5 Effectful Categories are Pseudomonoids

We will now use the pure tensor of promonads to justify effectful categories as the promonadic coun-
terpart of monoidal categories: effectful categories are pseudomonoids in the monoidal bicategory of
promonads with the pure tensor. Pseudomonoids [42, 45] are the categorification of monoids. They are
still formed by a 0-cell representing the carrier of the monoid and a pair of 1-cells representing multipli-
cation and units. However, we weaken the requirement for associativity and unitality to the existence of
invertible 2-cells, called the associator and unitor.

In the same way that monoids live in monoidal categories, pseudomonoids live in monoidal bicat-
egories. A monoidal bicategory A is a bicategory in which we can tensor objects with a pseudofunctor
(�) : A×A→ A and we have a tensor unit I : 1→ A, these are associative and unital up to equivalence,
and satisfy certain coherence equations up to invertible modification [36].

5.1 Pseudomonoids

Definition 5.1. In a monoidal bicategory, a pseudomonoid over a 0-cell M is a pair of 1-cells, M�
M→M and I→M, together with the following triple of invertible 2-cells representing associativity and
unitality (Figure 15), and satisfying the pentagon and triangle equations (see Appendix, Figure 24). A
homomorphism of pseudomonoids is given by a 1-cell between their underlying 0-cells and the following
invertible 2-cells, representing preservation of the multiplication and the unit (Figure 15), and satisfying
compatibility with associativity and unitality (see Appendix, Figure 28).

Figure 15: Data for a pseudomonoid and pseudomonoid homomorphism.

A pseudomonoid is strict when the associators and unitors are identity cells. Note that, in strict 2-
categories (sometimes called 2-categories, in contrast to bicategories), this is the same as a monoid in
the monoidal category that we obtain by ignoring the 2-cells.
Remark 5.2. A pseudomonoid in the monoidal bicategory of categories with the cartesian product of
categories, (Cat,×) is a monoidal category. A strict pseudomonoid in the same monoidal bicategory is
a strict monoidal category.

A strict pseudomonoid in the monoidal bicategory of categories with the funny tensor product of
categories (Cat,�) is a strict premonoidal category. However, it is not immediately clear how to re-
cover premonoidal categories as pseudomonoids. A naive attempt will fail: (Cat,�) is usually made
into a monoidal bicategory with non-necessarily-natural transformations, but we do want our coherence

14 Runtime as a resource

morphisms to be natural, so we must ask at least naturality. This will not be enough: taking natural
transformations as 2-cells will give us premonoidal categories where the associators and unitors do not
need to be central. Centrality is what requires a more careful approach.

5.2 Effectful categories are promonad pseudomonoids

Promonads form a monoidal category with the pure tensor product and moreover a strict monoidal bicat-
egory with promonad modifications. Effectful categories are the pseudomonoids in this category.
Theorem 5.3. An effectful category (or monoidal Freyd category) is a pseudomonoid on the monoidal
2-category of promonads with promonad homomorphism, promonad transformations and the pure tensor
of promonads. A pseudomonoid homomorphism between effectful categories is an effectful functor.

As a consequence, preomonoidal categories with their centre are pseudomonoids. See Appendix,
Theorem D.1.

6 Conclusions

Premonoidal categories are monoidal categories with runtime, and we can still monoidal string diagrams
and unrestricted topological deformations to reason about premonoidal categories. Instead of dealing
directly with premonoidal categories, we employ the better behaved notion of non-cartesian Freyd cate-
gories, effectful categories. There exists a more fine-grained notion of “Cartesian effect category” [10],
which generalizes Freyd categories and justifies calling “effectful category” to the general case.

Promonads have been arguably under-appreciated, possibly because of their characterization as “just”
identity-on-objects functors. However, speaking of promonads as the proarrow counterpart of mon-
ads makes many aspects of the theory of monads clearer: every monad and every comonad induce
a promonad (their Kleisli category) via the proarrow equipment, monad morphisms lift to promonad
morphisms, distributive laws of monads induce a way of composing morphisms from different kleisli
categories [8]. Justifying effectful categories in terms of promonads highlights their importance as the
monadic counterpart of monoidal categories.

Ultimately, this is a first step towards our more ambitious project of presenting the categorical struc-
ture of programming languages in a purely diagrammatic way, revisiting Alan Jeffrey’s work [20, 19, 35].
The internal language of premonoidal categories and effectful categories is given by the arrow do-
notation [30]; at the same time, we have shown that it is given by suitable string diagrams. This corre-
spondence allows us to translate between programs and string diagrams (Figure 16).

Figure 16: Premonoidal program in arrow do-notation and string diagrams.

Mario Román 15

7 Acknowledgements

The author thanks conversations with Edward Morehouse, Matt Earnshaw, Niels Voorneveld, Elena Di
Lavore. The author thanks the anonymous reviewers at ACT’22 for their careful reading and their many
suggestions. Mario Román was supported by the European Union through the ESF funded Estonian IT
Academy research measure (2014-2020.4.05.19-0001). This work was also supported by the Estonian
Research Council grant PRG1210.

16 Runtime as a resource

References

[1] Samson Abramsky & Bob Coecke (2009): Categorical quantum mechanics. Handbook of quantum logic and
quantum structures 2, pp. 261–325. arXiv:0808.1023.

[2] Samson Abramsky, Esfandiar Haghverdi & Philip J. Scott (2002): Geometry of Interaction and Linear Com-
binatory Algebras. Math. Struct. Comput. Sci. 12(5), pp. 625–665, doi:10.1017/S0960129502003730. Avail-
able at https://doi.org/10.1017/S0960129502003730.

[3] Jean Bénabou (1967): Introduction to bicategories. In: Reports of the midwest category seminar, Springer,
pp. 1–77.

[4] Jean Bénabou (2000): Distributors at work. Lecture notes written by Thomas Streicher 11.

[5] Richard F Blute, J Robin B Cockett, Robert AG Seely & Todd H Trimble (1996): Natural deduction and
coherence for weakly distributive categories. Journal of Pure and Applied Algebra 113(3), pp. 229–296.

[6] Filippo Bonchi, Jens Seeber & Pawel Sobocinski (2018): Graphical Conjunctive Queries. In Dan R. Ghica &
Achim Jung, editors: 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-
7, 2018, Birmingham, UK, LIPIcs 119, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–13:23,
doi:10.4230/LIPIcs.CSL.2018.13. Available at https://doi.org/10.4230/LIPIcs.CSL.2018.13.

[7] Francis Borceux (1994): Handbook of categorical algebra: volume 1, Basic category theory. 1, Cambridge
University Press.

[8] Eugenia Cheng (2021): Distributive Laws for Lawvere Theories (Invited Talk). In Fabio Gadducci & Alexan-
dra Silva, editors: 9th Conference on Algebra and Coalgebra in Computer Science, CALCO 2021, August 31
to September 3, 2021, Salzburg, Austria, LIPIcs 211, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
1:1–1:1, doi:10.4230/LIPIcs.CALCO.2021.1. Available at https://doi.org/10.4230/LIPIcs.CALCO.
2021.1.

[9] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych & Victor Ostrik (2010): On braided fusion categories I.
Selecta Mathematica 16(1), pp. 1–119.

[10] Jean-Guillaume Dumas, Dominique Duval & Jean-Claude Reynaud (2011): Cartesian effect categories are
Freyd-categories. Journal of Symbolic Computation 46(3), pp. 272–293.

[11] Jean-Yves Girard (1989): Geometry of interaction 1: Interpretation of System F. In: Studies in Logic and
the Foundations of Mathematics, 127, Elsevier, pp. 221–260.

[12] Marco Grandis & Robert Paré (1999): Limits in double categories. Cahiers de topologie et géométrie
différentielle catégoriques 40(3), pp. 162–220.

[13] René Guitart (1980): Tenseurs et machines. Cahiers de topologie et géométrie différentielle catégoriques
21(1), pp. 5–62.

[14] Jules Hedges (2019): Folklore: Monoidal kleisli categories. Available at https://julesh.com/2019/04/
18/folklore-monoidal-kleisli-categories/.

[15] Chris Heunen & Bart Jacobs (2006): Arrows, like Monads, are Monoids. In Stephen D. Brookes &
Michael W. Mislove, editors: Proceedings of the 22nd Annual Conference on Mathematical Foundations
of Programming Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, Electronic Notes in Theoreti-
cal Computer Science 158, Elsevier, pp. 219–236, doi:10.1016/j.entcs.2006.04.012. Available at https:
//doi.org/10.1016/j.entcs.2006.04.012.

[16] Naohiko Hoshino, Koko Muroya & Ichiro Hasuo (2014): Memoryful geometry of interaction: from coal-
gebraic components to algebraic effects. In Thomas A. Henzinger & Dale Miller, editors: Joint Meet-
ing of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, ACM, pp. 52:1–52:10, doi:10.1145/2603088.2603124. Available at https:
//doi.org/10.1145/2603088.2603124.

https://arxiv.org/abs/0808.1023
http://dx.doi.org/10.1017/S0960129502003730
https://doi.org/10.1017/S0960129502003730
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.4230/LIPIcs.CSL.2018.13
http://dx.doi.org/10.4230/LIPIcs.CALCO.2021.1
https://doi.org/10.4230/LIPIcs.CALCO.2021.1
https://doi.org/10.4230/LIPIcs.CALCO.2021.1
https://julesh.com/2019/04/18/folklore-monoidal-kleisli-categories/
https://julesh.com/2019/04/18/folklore-monoidal-kleisli-categories/
http://dx.doi.org/10.1016/j.entcs.2006.04.012
https://doi.org/10.1016/j.entcs.2006.04.012
https://doi.org/10.1016/j.entcs.2006.04.012
http://dx.doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/2603088.2603124

Mario Román 17

[17] John Hughes (2000): Generalising monads to arrows. Science of Computer Programming 37(1-3), pp. 67–
111, doi:10.1016/S0167-6423(99)00023-4. Available at https://doi.org/10.1016/S0167-6423(99)
00023-4.

[18] Bart Jacobs, Chris Heunen & Ichiro Hasuo (2009): Categorical semantics for arrows. J. Funct. Pro-
gram. 19(3-4), pp. 403–438, doi:10.1017/S0956796809007308. Available at https://doi.org/10.1017/
S0956796809007308.

[19] Alan Jeffrey (1997): Premonoidal categories and a graphical view of programs. Preprint at Research-
Gate. Available at https://www.researchgate.net/profile/Alan-Jeffrey/publication/

228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/

00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.

pdf.

[20] Alan Jeffrey (1997): Premonoidal categories and flow graphs. Electron. Notes Theor. Comput. Sci. 10,
p. 51, doi:10.1016/S1571-0661(05)80688-7. Available at https://doi.org/10.1016/S1571-0661(05)
80688-7.

[21] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in mathematics 88(1), pp.
55–112.

[22] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in mathematics 88(1), pp.
55–112.

[23] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
CoRR abs/2202.02061. arXiv:2202.02061.

[24] Paul Blain Levy (2004): Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in
Computation 2, Springer.

[25] Fosco Loregian (2021): (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, doi:10.1017/9781108778657.

[26] Saunders Mac Lane (1978): Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer New York, doi:10.1007/978-1-4757-4721-8.

[27] Wilhelm Magnus, Abraham Karrass & Donald Solitar (2004): Combinatorial group theory: Presentations of
groups in terms of generators and relations. Courier Corporation.

[28] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4. Available at https://doi.org/10.1016/0890-5401(91)90052-4.

[29] David Jaz Myers (2016): String Diagrams For Double Categories and Equipments. arXiv: Category Theory.

[30] Ross Paterson (2001): A New Notation for Arrows. In Benjamin C. Pierce, editor: Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy,
September 3-5, 2001, ACM, pp. 229–240, doi:10.1145/507635.507664. Available at https://doi.org/
10.1145/507635.507664.

[31] Dusko Pavlovic (2013): Monoidal computer I: Basic computability by string diagrams. Inf. Comput. 226,
pp. 94–116, doi:10.1016/j.ic.2013.03.007. Available at https://doi.org/10.1016/j.ic.2013.03.007.

[32] John Power (2002): Premonoidal categories as categories with algebraic structure. Theor. Comput. Sci.
278(1-2), pp. 303–321, doi:10.1016/S0304-3975(00)00340-6. Available at https://doi.org/10.1016/
S0304-3975(00)00340-6.

[33] John Power & Edmund Robinson (1997): Premonoidal Categories and Notions of Computation. Math.
Struct. Comput. Sci. 7(5), pp. 453–468, doi:10.1017/S0960129597002375. Available at https://doi.
org/10.1017/S0960129597002375.

[34] John Power & Hayo Thielecke (1999): Closed Freyd- and kappa-categories. In Jirı́ Wiedermann, Peter
van Emde Boas & Mogens Nielsen, editors: Automata, Languages and Programming, 26th International
Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, Lecture Notes in Computer

http://dx.doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1017/S0956796809007308
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1017/S0956796809007308
https://www.researchgate.net/profile/Alan-Jeffrey/publication/228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.pdf
https://www.researchgate.net/profile/Alan-Jeffrey/publication/228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.pdf
https://www.researchgate.net/profile/Alan-Jeffrey/publication/228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.pdf
https://www.researchgate.net/profile/Alan-Jeffrey/publication/228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.pdf
http://dx.doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1016/S1571-0661(05)80688-7
https://arxiv.org/abs/2202.02061
http://dx.doi.org/10.1017/9781108778657
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664
http://dx.doi.org/10.1016/j.ic.2013.03.007
https://doi.org/10.1016/j.ic.2013.03.007
http://dx.doi.org/10.1016/S0304-3975(00)00340-6
https://doi.org/10.1016/S0304-3975(00)00340-6
https://doi.org/10.1016/S0304-3975(00)00340-6
http://dx.doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129597002375

18 Runtime as a resource

Science 1644, Springer, pp. 625–634, doi:10.1007/3-540-48523-6 59. Available at https://doi.org/10.
1007/3-540-48523-6_59.

[35] Mario Román (2022): Notes on Jeffrey’s A Graphical View of Programs. Available at https://www.ioc.
ee/~mroman/data/talks/premonoidalgraphicalview.pdf.

[36] Christopher J. Schommer-Pries (2011): The Classification of Two-Dimensional Extended Topological Field
Theories. arXiv:1112.1000.

[37] Michael Shulman (2008): Framed Bicategories and Monoidal Fibrations. Theory and Applications of Cate-
gories 20(18), pp. 650–738.

[38] Michael Shulman (2016): Categorical logic from a categorical point of view. Available on the web. Available
at https://mikeshulman.github.io/catlog/catlog.pdf.

[39] Michael Shulman (2018): The 2-Chu-Dialectica construction and the polycategory of multivariable adjunc-
tions. arXiv preprint arXiv:1806.06082.

[40] Sam Staton & Paul Blain Levy (2013): Universal properties of impure programming languages. In Roberto
Giacobazzi & Radhia Cousot, editors: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, ACM, pp. 179–192,
doi:10.1145/2429069.2429091. Available at https://doi.org/10.1145/2429069.2429091.

[41] Ross Street (1996): Categorical structures. Handbook of algebra 1, pp. 529–577.
[42] Ross Street & Brian Day (1997): Monoidal bicategories and Hopf algebroids. Adv. Math 129, pp. 99–157.
[43] Todd Trimble (2010): Coherence Theorem for Monoidal Categories (nLab entry), Section 3. Discussion.

https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories, Last accessed
on 2022-05-10.

[44] Tarmo Uustalu & Varmo Vene (2008): Comonadic Notions of Computation. In Jiřı́ Adámek & Clemens
Kupke, editors: Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science, CMCS
2008, Budapest, Hungary, April 4-6, 2008, Electronic Notes in Theoretical Computer Science 203, Elsevier,
pp. 263–284, doi:10.1016/j.entcs.2008.05.029. Available at https://doi.org/10.1016/j.entcs.2008.
05.029.

[45] Dominic Verdon (2017): Coherence for braided and symmetric pseudomonoids. CoRR abs/1705.09354.
arXiv:1705.09354.

[46] Mark Weber (2013): Free products of higher operad algebras. Theory and applications of categories 28(2),
pp. 24–65.

http://dx.doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1007/3-540-48523-6_59
https://www.ioc.ee/~mroman/data/talks/premonoidalgraphicalview.pdf
https://www.ioc.ee/~mroman/data/talks/premonoidalgraphicalview.pdf
https://arxiv.org/abs/1112.1000
https://mikeshulman.github.io/catlog/catlog.pdf
http://dx.doi.org/10.1145/2429069.2429091
https://doi.org/10.1145/2429069.2429091
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
http://dx.doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
https://arxiv.org/abs/1705.09354

Mario Román 19

A Effectful string diagrams

During the following two lemmas, we will choose to always deal with the leftmost component of the braid
clique morphism. Given any clique BraidR(A0, . . . ,An) we call A = A0⊗ . . .⊗An to its tensoring; clique
morphisms BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) are represented by morphisms R⊗A→ R⊗B.

Lemma A.1. Let (V ,G) be a polygraph couple. There exists a premonoidal category, Eff(V ,G), that
has as objects the braid cliques, BraidR(A0, . . . ,An), in MonRun(V ,G), and as morphisms the braid
clique morphisms between them.

Proof. Let us first give Eff(V ,G) category structure. The identity on BraidR(A0, . . . ,An) is the identity
on R⊗A. The composition of a morphism R⊗A→ R⊗B with a morphism R⊗B→ R⊗C is their plain
composition in MonRun(V ,G).

Let us now check that it is moreover a premonoidal category. Tensoring of cliques is given by
concatenation of lists, which coincides with the tensor in MonRun(V ,G). However, it is interesting to
note that the tensor of morphisms cannot be defined in this way: a morphism R⊗A→ R⊗B cannot be
tensored with a morphism R⊗A′→ R⊗B′ to obtain a morphism R⊗A⊗A′→ R⊗B⊗B′.

Whiskering of a morphism f : R⊗A→ R⊗B is defined with braidings in the left case, R⊗C⊗A→
R⊗C⊗B, and by plain whiskering in the right case, R⊗A⊗C→ R⊗B⊗C, as depicted in Figure 17.

Figure 17: Whiskering in the runtime premonoidal category.

Finally, the associators and unitors are identities, which are always natural and central.

Lemma A.2. Let (V ,G) be a polygraph couple. There exists an identity-on-objects functor Mon(V)→
Eff(V ,G) that strictly preserves the premonoidal structure and whose image is central. This determines
an effectful category.

Proof. A morphism v ∈Mon(V)(A,B) induces a morphism (idR⊗ v) ∈MonRun(V ,G)(R⊗A,R⊗B),
which can be read as a morphism of cliques (idR⊗ v) ∈ Eff(V ,G)(A,B). This is tensoring with an
identity, which is indeed functorial.

Let us now show that this functor strictly preserves the premonoidal structure. The fact that it pre-
serves right whiskerings is immediate. The fact that it preserves left whiskerings follows from the axioms
of symmetry (Figure 18, left). Associators and unitors are identities, which are preserved by tensoring
with an identity.

Figure 18: Preservation of whiskerings, and centrality.

20 Runtime as a resource

Finally, we can check by string diagrams that the image of this functor is central, interchanging with
any given x : R⊗C→ R⊗D (Figure 18, center and right).

Lemma A.3 (Freeness). Let (V ,G) be a polygraph couple and consider the effectful category deter-
mined by Mon(V)→ Eff(V ,G). Let V→ C be a strict effectful category, with a polygraph couple
morphism F : (V ,G)→U (V,C). There exists a unique effectful functor from (Mon(V)→ Eff(V ,G))
to (V→ C) commuting with F as a polygraph couple morphism.

Proof. By freeness, there already exists a unique strict monoidal functor H0 : Mon(V)→ V that sends
any object A ∈ Vobj to Fob j(A). We will show there is a unique way to extend this functor together with
the hypergraph assignment G → C into a functor H : Eff(V ,G)→ C. Giving such a functor amounts to
give some mapping of morphisms containing the runtime R in some position in their input and output,

f : A0⊗ . . .⊗R⊗ . . .⊗An→ B0⊗ . . .⊗R⊗ . . .⊗Bm

to morphisms H(f) : FA0⊗ . . .⊗FAn → FB0⊗ . . .⊗FBn in C, in a way that preserves composition,
whiskerings, inclusions from Mon(V), and that is invariant to composition with braidings. In order
to define this mapping, we will perform structural induction over the monoidal terms of the runtime
monoidal category of the form MonRun(V ,G)(A0⊗ . . .⊗R(i)⊗ . . .⊗An,R⊗B0⊗ . . .⊗R(j)⊗ . . .⊗Bm)
and show that it is the only mapping with these properties (Figure 19).

Monoidal terms in a strict, freely presented, monoidal category are formed by identities (id), com-
position (#), tensoring (⊗), and some generators (in this case, in Figure 5). Monoidal terms are subject
to (i) functoriality of the tensor, id⊗ id = id and (f #g)⊗ (h # k) = (f ⊗h) # (g⊗ k); (ii) associativity and
unitality of the tensor, f ⊗ idI = f and f ⊗ (g⊗h) = (f ⊗g)⊗h; (iii) the usual unitality, f # id = f and
id # f = f and associativity f # (g # h) = (f # g) # h; (iv) the axioms of our presentation (in this case, in
Figure 6).

Figure 19: Assignment on morphisms, defined by structural induction on terms.

• If the term is an identity, it can be (i) an identity on an object A ∈ (V ,G)obj, in which case it must
be mapped to the same identity by functoriality, H(idA) = idA; (ii) an identity on the runtime, in
which case it must be mapped to the identity on the unit object, H(idR) = idI; or (iii) an identity
on the unit object, in which case it must be mapped to the identity on the unit, H(idI) = idI .

• If the term is a composition, (f # g) : A0⊗ . . .⊗R⊗ . . .⊗An → C0⊗ . . .⊗R⊗ . . .⊗Ck, it must
be along a boundary of the form B0⊗ . . .⊗R⊗ . . .⊗Bm: this is because every generator leaves
the number of runtimes, R, invariant. Thus, each one of the components determines itself a braid
clique morphism. We must preserve composition of braid clique morphisms, so we must map
H(f #g) = H(f) #H(g).

Mario Román 21

• If the term is a tensor of two terms, (x⊗u) : A0⊗ . . .⊗R⊗ . . .⊗An→ B0⊗ . . .⊗R⊗ . . .⊗Bm, then
only one of them was a term taking R as input and output (without loss of generality, assume it to be
the first one) and the other was not: again, by construction, there are no morphisms taking one R as
input and producing none, or viceversa. We split this morphism into x : A0⊗ . . .⊗R⊗ . . .⊗Ai−1→
B0⊗ . . .⊗R⊗ . . .⊗B j−1 and u : Ai⊗ . . .⊗An→ B j⊗ . . .⊗Bm.
Again by structural induction, this time over terms u : Ai⊗ . . .⊗An → B j ⊗ . . .⊗Bm, we know
that the morphism must be either a generator in V (Ai, . . . ,An;B j, . . . ,Bn) or a composition and
tensoring of them. That is, u is a morphism in the image of Mon(V), and it must be mapped
according to the functor H0 : Mon(V)→ V.
By induction hypothesis, we know how to map the morphism x : A0 ⊗ . . .⊗ R⊗ . . .⊗ Ai−1 →
B0⊗ . . .⊗R⊗ . . .⊗B j−1. This means that, given any tensoring x⊗u, we must map it to H(x⊗u) =
(H(x)⊗ id) # (id⊗H0(u)) = (id⊗H0(u)) # (H(x)⊗ id), where H0(u) is central.

• If the string diagram consists of a single generator, f : R⊗A→ R⊗B, it can only come from a
generator f ∈ Run(V ,G)(R,A0, . . . ,An;R,B0, . . . ,Bm) = G (A0, . . . ,An;B0, . . . ,Bm), which must be
mapped to H(f) = F(f) ∈ C(A0⊗ . . .⊗An,B0⊗ . . .⊗Bm). If the string diagram consists of a
single braiding, it must be mapped to the identity, because the want the assignment to be invariant
to braidings.

Now, we need to prove that this assignment is well-defined with respect to the axioms of these
monoidal terms. Our reasoning follows Figure 20.

• The tensor is functorial. We know that H(id⊗ id) = H(id), both are identities and that can be
formally proven by induction on the number of wires. Now, for the interchange law, consider
a quartet of morphisms that can be composed or tensored first and such that, without loss of
generality, we assume the runtime to be on the left side. Then, we can use centrality to argue
that

H((x⊗u) # (y⊗ v)) = (H(x)⊗ id) # (id⊗H0(u)) # (H(y)⊗ id) # (id⊗H0(v))

= ((H(x) #H(y))⊗ id) # (id⊗ (H0(u) #H0(v)))

= H((x # y)⊗ (u # v)).

• The tensor is monoidal. We know that H(x⊗ idI) = (H(x)⊗ idI) # (id⊗ idI) = H(x). Now, for
associativity, consider a triple of morphisms that can be tensored in two ways and such that, without
loss of generality, we assume the runtime to be on the left side. Then, we can use centrality to argue
that

H((x⊗u)⊗ v) = (((H(x)⊗ id) # (id⊗H0(u)))⊗ id) # id⊗H0(v)

= (H(x)⊗ id) # (id⊗H0(u)⊗H0(v))

= H(x⊗ (u⊗ v))

• The terms form a category. And indeed, it is true by construction that H(x # (y # z)) = H((x # y) # z)
and also that H(x # id) = H(x) because H preserves composition.

• The runtime category enforces some axioms. The composition of two braidings is mapped to the
identity by the fact that H preserves composition and sends both to the identity. Both sides of the
braid naturality over a morphism v are mapped to H0(v); with the multiple braidings being mapped
again to the identity.

Thus, H is well-defined and it defines the only possible assignment and the only possible strict pre-
monoidal functor.

22 Runtime as a resource

Figure 20: The assignment is well defined.

Mario Román 23

B Promonads

Lemma B.1 (Kleisli category of a promonad). Every promonad (P,?, ◦) induces a category with the same
objects as its base category, but with hom-sets given by P(•,•), composition given by (?) and identities
given by (id◦). This is called its Kleisli category, kleisli(P). Moreover, there exists an identity-on-objects
functor C→ kleisli(P), defined on morphisms by the unit of the promonad.

Proof. Indeed, let us show that the composition defined by (?) is unital and associative. Given any
p ∈ P(A,B), we have that identities are neutral with respect to composition on the right, p ? id◦B = p<
idB = p, and on the left id◦A ?u = idB >u = u. Composition is associative by the definition of promonad
(Definition 3.7, iii).

Let us now check that the unit of the promonad (◦) defines an identity-on-objects functor, which is to
say that the assignment on morphisms is functorial. By construction, (id◦) is the identity on kleisli(P).
Let us show now that the unit of the promonad also preserves composition,

f ◦ ?g◦ = (id◦ ? f ◦)?g◦ = id◦ < f < g = id◦ < (f #g) = id◦ ? (f #g)◦ = (f ?g)◦.

Theorem B.2. Promonads over a category C correspond to identity-on-objects functors from the cate-
gory C. Given any identity-on-objects functor i : C→ D there exists a unique promonad over C having
D as its Kleisli category: the promonad given by the profunctor homD(i(•), i(•)).

Proof. Note that the hom-sets of a category homD(i(•), i(•)) form a profunctor with actions

(p< f) = p # i(f), and (g> p) = i(g) # p.

We define the unit to be the assignment of the functor on morphisms. That is, f ◦ = i(f). We define
multiplication of the promonad to be composition in D. Let us now check the axioms of a promonad:
premultiplication f ◦ ? p = i(f) # p = f > p, postmultiplication p ? g◦ = p # i(g) = p < g, dinaturality
p? (f >q) = p # i(f) #q = (p< f)?q, and associativity (p1 ? p2)? p3 = (p1 # p2 # p3) = p1 ? (p2 ? p3). We
can conclude (with Lemma 3.8) that promonads coincide with identity-on-objects functors.

Proposition B.3. A promonad homomorphism between two promonads understood as identity-on-objects
functors, V→ C and W→ D, is equivalently a pair of functors (F0,F) that commute strictly with the two
identity-on-objects functors on objects F0(X) = F(X) and morphisms F0(f)◦ = F(f ◦).

Proof. Given a promonad homomorphism (F0,F), we will construct the pair of functors. One of them
is already F0. For the second one, we observe that F(p1 ? p2) = F(p1) ?F(p2), and F(id) = F0(id)

◦ =
id, making F itself into the morphism assignment of a functor. Moreover, this functor, with the same
assignment on objects as F0, makes the square commute.

Given any strictly commutative square of functors with F0(f)◦ = F(f ◦), we can see that, by functo-
riality, F induces a natural transformation determining a promonad homomorphism.

F(f > p<g) = F(f ◦ ? p?g◦) = F0(f)◦ ?F(p)?F0(g)
◦ = F0(f)>F(p)<F0(g).

Again by functoriality, and by the commutativity of the square, we can see that it must also satisfy the
promonad homomorphism axioms.

24 Runtime as a resource

Theorem B.4. Let C : V 9 V and D : W 9 W be two promonads and let C∗D : V×W→ V×W be their
pure tensor. There exist a pair of promonad homomorphisms L : C×W→ C∗D and R : V×D→ C∗D.
These are universal in the sense that, for every pair of promonad homomorphisms, A : C×W→ E and
B : V×D→E, there exists a unique promonad homomorphism (A∨B) : C∗D→E that commutes strictly
with them, (A∨B) #L = A and (A∨B) #R = B.

Proof. We start by constructing L : C×W→C∗D and R : V×D→C∗D. These are defined by L(f ,w) =
fC # wW = wW # fC and R(g,v) = gD # vV = vV # gD. Let us check that L is promonad homomorphism, R
follows a similar reasoning.

• L((v,w′)> (f ,w)) = L(v> f ,w′ #w) = v # f #w′ #w = v #w′ # f #w = (v,w′)>L(f ,w),

• L((f ,w)< (v,w′)) = L(f < v,w #w′) = f # v #w #w′ = f #w # v #w′ = L(f ,w)< (v,w′),

• L((f ,w)? (f ′,w′)) = L(f ? f ′,w #w′) = f # f ′ #w #w′ = f #w # f ′ #w′ = L(f ,w)?L(f ′,w′),

• L(v◦,w) = v #w = L0(v,w)
◦.

We will now construct the promonad homomorphism as (A∨B)(fC) = A(id, f) and (A∨B)(gD) =
B(g, id). This definition is forced by commutation with l and r and automatically defines the promonad
homomorphism on all the generators of C ∗D. We can see it is well-defined, with the most interesting
case being proving that it preserves the interchange of morphisms: indeed, (A∨B)(fC #wW) = A(f , id) #
B(id,w) = A(f , id) # ((id,w)>B(id, id)) = A(f , id)< (id,w) = A(f ,w) = (A∨B)(wW # fC), and the case
with (v,g) is analogous.

C Cliques

Definition C.1 (Clique). In a category C, a clique (X ,θ), is a family of objects, Xi, indexed by a set i∈ I,
and a family of isomorphisms θi, j : Xi→ X j such that θi j #θ jk = θik and θii = id.

Definition C.2 (Clique morphism). A morphism between two cliques in the same category, f : (X ,θ)→
(Y,ψ), is a family of morphisms fi j : Xi→ Yj making every possible square commute, which means that
θi j # f jl = fik #ψkl .

Proposition C.3. A clique morphism f : (X ,θ)→ (Y,ψ) is completely determined by its value between
any two indices, fi j : Xi→ Yj.

Proof. By the definition, fkl = θki # fi j # ψ
−1
lk , where we use that the clique is made up of isomorphisms.

D Pseudomonoids

Theorem D.1. An effectful category (or monoidal Freyd category) is a pseudomonoid on the monoidal
2-category of promonads with promonad homomorphism, promonad transformations and the pure tensor
of promonads. A pseudomonoid homomorphism between effectful categories is an effectful functor.

Proof sketch. Consider the data for a pseudomonoid (V→ C,⊗, I,α,λ ,ρ) of promonads with the pure
tensor. The promonad V→ C gives us the pair of categories that will form the effectful category. We
have a pair of promonad homomorphisms, (⊗) : (V×V→C∗C)→ (V→C) and I : (1→ 1)→ (V→C)
that make V into a monoidal category and C into a premonoidal category with the same unit and tensor.

Mario Román 25

Finally, the promonad transformations are natural transformations. This means that the associator and
unitor 2-cells are natural transformations describing the associators and unitors of the monoidal category
V. These are the same associators and unitors of the premonoidal category C. Crucially, because they
are in V, they are central with respect to every morphism in C.

E Background material

E.1 Monoidal categories

This section of the appendix has been repurposed from a similar summary of monoidal categories [23],
but it contains only standard material on monoidal categories that we choose to repeat to fix conventions.

Definition E.1 ([26]). A monoidal category, (C,⊗, I,α,λ ,ρ), is a category C equipped with a functor
⊗ : C×C→ C, a unit I ∈ C, and three natural isomorphisms: the associator αA,B,C : (A⊗ B)⊗C ∼=
A⊗(B⊗C), the left unitor λA : I⊗A∼= A and the right unitor ρA : A⊗ I ∼= A; such that αA,I,B;(idA⊗λB) =
ρA⊗ idB and (αA,B,C⊗ id);αA,B⊗C,D;(idA⊗αB,C,D) = αA⊗B,C,D;αA,B,C⊗D. A monoidal category is strict
if α , λ and ρ are identities.

Definition E.2 (Monoidal functor, [26]). Let

(C,⊗, I,αC,λ C,ρC) and (D,�,J,αD,λ D,ρD)

be monoidal categories. A monoidal functor (sometimes called strong monoidal functor) is a triple
(F,ε,µ) consisting of a functor F : C→D and two natural isomorphisms ε : J∼=F(I) and µ : F(A⊗B)∼=
F(A)�F(B); such that

• the associators satisfy αD
FA,FB,FC;(idFA⊗µB,C); µA,B⊗C = (µA,B⊗ idFC); µA⊗B,C;F(αC

A,B,C),

• the left unitor satisfies (ε⊗ idFA); µI,A;F(λ C
A) = λ D

FA

• the right unitor satisfies (idFA⊗ ε); µA,I;F(ρC
FA) = ρD

FA.

A monoidal functor is a monoidal equivalence if it is moreover an equivalence of categories. Two
monoidal categories are monoidally equivalent if there exists a monoidal equivalence between them.

During most of the paper, we omit all associators and unitors from monoidal categories, implicitly
using the coherence theorem for monoidal categories.

Theorem E.3 (Coherence theorem, [26]). Every monoidal category is monoidally equivalent to a strict
monoidal category.

Definition E.4 (Symmetric monoidal category, [26]). A symmetric monoidal category (C,⊗, I,α,λ ,ρ,σ)
is a monoidal category (C,⊗, I,α,λ ,ρ) equipped with a braiding σA,B : A⊗B→ B⊗A, which satisfies
the hexagon equation

αA,B,C;σA,B⊗C;αB,C,A = (σA,B⊗ id);αB,A,C;(id⊗σA,C)

and additionally satisifes σA,B;σB,A = id.

Definition E.5 ([26]). A symmetric monoidal functor between two symmetric monoidal categories
(C,σC) and (D,σD) is a monoidal functor F : C→ D such that σD; µ = µ;F(σC).

26 Runtime as a resource

E.2 Sesquifunctors

Definition E.6. Let A1, . . . ,An and B be categories. A sesquifunctor T : A1, . . . ,An→ B [41] is an assign-
ment on objects and morphisms that is independently functorial on each variable. That is, the sesqui-
functor is given by a family of functors

Ti(X1, . . . ,•i . . . ,Xn) : Ai→ B for i = 1, . . . ,n.

These functors coincide on objects, in that T (X1, . . . ,Xn) is uniquely determined independently of the Ti

we use to define it.

Remark E.7. Sesquifunctors form a multicategory with ordinary composition, which preserves single-
variable functoriality. Moreover, they form a 2-multicategory with transformations between them.

Proposition E.8. The multicategory of sesquiprofunctors is representable by the funny tensor product of
categories (�) : Cat×Cat→ Cat. The funny tensor product of two categories, C�D, is computed as
the following pushout, where C0 and D0 are the discrete categories on the objects of C0 and D0.

C0×D0 C×D0

C0×D C�D

Explicitly, objects of the funny tensor product are pairs of objects. Morphisms are either morphisms
in C, in D, or formal compositions of both, as it happens with the coproduct of monoids. See Weber, [46].

E.3 Double categories

Definition E.9 (Monoids and promonoids). A monoid in a double category is an arrow T : A→ A to-
gether with cells m ∈ hom(M⊗M;1,1;M) and e ∈ cell(1;1,1;M), called multiplication and unit, satis-
fying unitality and associativity.

Figure 21: Data and axioms of a monoid in a double category.

A promonoid in a double category is a proarrow M : A→ A together with cells m ∈ cell(1;M⊗
M,M,1) and e ∈ cell(1;1,M;1), called promultiplication and prounit, satisfying unitality and associativ-
ity.

Mario Román 27

Figure 22: Data and axioms of a promonoid in a double category.

Dually, we can define comonoids and procomonoids.

A monad is a monoid on the category of categories, functors and profunctors Cat.

E.4 Monoidal bicategories

Definition E.10. In a monoidal bicategory, a pseudomonoid over a 0-cell M is a pair of 1-cells, M�
M→M and I→M, together with the following triple of invertible 2-cells representing associativity and
unitality (Figure 15), and satisfying the pentagon and triangle equations (Figure 24).

Figure 23: Data for a pseudomonoid.

Figure 24: Pentagon and triangle axioms for a pseudomonoid.

A symmetric pseudomonoid is a pseudomonoid endowed with an invertible 2-cell representing com-
mutation (Figure 25), and satisfying symmetry and the two hexagon equations (Figure 26).

Figure 25: Commutator and symmetry for a pseudomonoid.

28 Runtime as a resource

Figure 26: Hexagon equations for a symmetric pseudomonoid.

Definition E.11 (Homomorphism of pseudomonoids). A homomorphism of pseudomonoids is given by
a 1-cell between their underlying 0-cells and the following invertible 2-cells, representing preservation of
the multiplication and the unit (Figure 15), and satisfying compatibility with associativity and unitality
(Figure 28).

Figure 27: Data for a pseudomonoid homomorphism.

Figure 28: Axioms for a pseudomonoid homomorphism.

	Introduction
	Synopsis

	Premonoidal and Effectful Categories
	Premonoidal categories
	Effectful and Freyd categories
	Premonoidals are monoidals with runtime

	Profunctors and Promonads
	Profunctors: an algebra of processes
	Promonads: new morphisms for an old category
	Homomorphisms and transformations of promonads

	Pure Tensor of Promonads
	Pure tensor, via runtime
	Universal property of the pure tensor

	Effectful Categories are Pseudomonoids
	Pseudomonoids
	Effectful categories are promonad pseudomonoids

	Conclusions
	Acknowledgements
	Effectful string diagrams
	Promonads
	Cliques
	Pseudomonoids
	Background material
	Monoidal categories
	Sesquifunctors
	Double categories
	Monoidal bicategories

