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Abstract

Feferman-Vaught-Mostowski (FVM) composition theorems demonstrate when an operation on models
preserves equivalence in a logic. In this presentation, we show that FVM theorems are an application
of lifting the operation, on a category of models, to the Kleisli and Eilenberg-Moore category for a
comonad. In particular, Spoiler-Duplicator game comonads, introduced by Abramsky, Dawar and Wang,
and developed by Abramsky and Shah, internalize model comparison games in finite model theory and
consequently provide semantics for logical equivalence. Our axiomatic account of FVM composition
theorems when instantiated to a particular game comonad recover the usual FVM theorem for the logic
associated to the Spoiler-Duplicator game comonad. Moreover, as these game comonads also provide
semantics for the positive existential and counting quantifier variants of the logic, we also obtain new
FVM theorems for these variants. As a byproduct of presenting the liftings of these operations succinctly,
we employ the notion of bimorphism that not only applies to our scenario, but also generalizes bilinear
maps in classic monad theory.

FVM theorems Feferman-Vaught-Mostowski (FVM) theorems characterize how logical equivalence be-
haves under composition and operations on models [Mos52, FV67]. The typical form of an FVM theorem
states that, for a logic L, and n-ary operation H on models of L:

if Ai ≡L Bi for all 1 ≤ i ≤ n, then H(A1, . . . , An) ≡L H(B1, . . . , Bn) (1)

where ≡L is the equivalence relation identifying all models that satisfy the same L-sentences, i.e. A ≡L B ⇔
∀ϕ ∈ L, A � ϕ⇔ B � ϕ. For example, the first instances of FVM theorems showed that logical equivalence
in first-order logic ≡FO behaves well with coproducts, H = +, [Mos52] and products, H = ×, [FV67] of
models. Beyond applications in model theory [Gur85], FVM theorems are used in algorithmic meta-theorems
[Cou90, CMR00, CE12, Mak04]. For example, Courcelle’s theorem relies on FVM theorems that express
how equivalence in monadic second-order logic behaves under operations that build graphs of bounded tree-
width and bounded clique-width. In our forthcoming paper [JMS22], we provide an axiomatic framework
for proving FVM theorems of the form (1). The core idea of the framework is to provide conditions for when
an operation H lifts to the Kleisli and Eilenberg-Moore categories for a comonad on the category of models.
The generality of these conditions then allow us to apply these axioms to one of the many game comonads
recently discovered in [AS21, ADW17, AM21, CD21].
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Game comonads Model comparison games, such as the Ehrenfeucht-Fräıssé game [Ehr61, Fra55], peb-
bling [KV92], and bisimulation games [HM80], are a key tool in finite model theory used to show inex-
pressiblity of properties in a logic. These resource indexed games are played on models and are defined
such that one player, Duplicator, has a winning strategy in a game whenever the models are equivalent
in an associated logic limited by some syntactic resource such as quantifier rank, variable count, or modal
depth. Recent work [ADW17, AS21] has introduced a way of internalizing these games as comonads over
the category of models. For example, the Ehrenfeucht-Fräıssé comonad (Ek, ε, δ) [AS21] is defined on a
category of σ-structures R(σ), where σ is a relational signature. The elements of EkA, for a σ-structure A,
represents moves in the one-sided variant of the k-round Ehrenfeucht-Fräıssé game, namely EkA consists of
non-empty lists of elements in A of length ≤ k. Morphisms in the Kleisli and Eilenberg-Moore categories of
Ek correspond to Duplicator’s winning strategies in the k-round two-sided, one-sided, and bijection variants
of the Ehrenfeucht-Fräıssé game. Duplicator winning strategies in these games correspond to equivalence
in first-order logic up to quantifier rank ≤ k, FOk, the positive existential fragment ∃+FOk of FOk, and
FOk extended with counting quantifiers #FOk. Thus, by the results in [AS21] equivalence in these logics
without equality1 are characterized in terms of Ek such that for all structures A,B ∈ R(σ):

(C1) A�Ek
B ⇔ A ≡∃+FOk

B

(C2) A↔Ek
B ⇔ A ≡FOk

B

(C3) A ∼=Kl(Ek) B ⇔ A ≡#FOk
B (with A,B assumed to be finite)

where �Ek
denotes the existence of Kleisli morphisms EkA → B and EkB → A, and ∼=Kl(Ek) denotes

isomorphism in the Kleisli category Kl(Ek) of Ek. Evidently from (C1) and (C3), one way to obtain
FVM theorems for ∃+FOk and #FOk with operation H : R(σ) → R(σ) of the form in equation (1) is to
construct a lifting Ĥ : Kl(Ek) → Kl(Ek) of H to Kl(Ek). Namely, we require that ĤFEk

∼= FEk
H where

FEk
: R(σ)→ Kl(Ek) is the identity on objects and takes a morphism f : A→ B ∈ R(σ) to Kleisli morphism

f ◦ ε : EkA → B. By standard constructions in category theory (see e.g. [Jac94, MM07]), such a lifting
Ĥ is equivalent to the existence of a Kleisli law κ : EkH → HEk. To recover the FVM theorem for FOk

with operation H, additional axioms are needed. This is because the relation ↔Ek
in (C2) is defined as

the existence of a notion of open map bisimulation for the Eilenberg-Moore category EM(Ek), detailed in
[AR21], between the cofree Ek-coalgebras FEk(A) and FEk(B). In particular, the Kleisli law κ must satisfy
an additional equalizer requirement in order to define a lifting H̄ : EM(Ek) → EM(Ek) of H to EM(Ek).
Furthermore, another couple of axioms are necessary to ensure this lifting H̄ behaves well with respect to
the bisimulation relation ↔Ek

.
The axiomatic framework for FVM theorems that we develop, generalizing this story about Ek, applies to

a wide range of operationsH and comonads overR(σ). Namely, the framework is flexible enough to work with
n-ary operations H which take input structures and output structures across different signatures σ. The class
of comonads in the scope of our framework allows investigation of operations for any of the logics captured
by other Spoiler-Duplicator comonads such as the pebbling comonad [ADW17], the modal comonad [AS21],
comonads for guarded fragments [AM21], and comonads for logics with generalized quantifiers [CD21].

Bimorphisms and liftings Since a key part of this framework is liftings of operations to Kleisli and
Eilenberg-Moore categories, the axioms are stated in terms Kleisli laws κ of these operations over comonads.
For the operations we consider, the liftings induced by the Kleisli law are succinctly stated in terms of a
notion of bimorphism. Bimorphisms not only apply to our scenario, but also generalize bilinear maps in
classical monad theory as discussed in [Jac94, Sea13, MM07] by subsuming algebra morphisms.

1FVM theorems for FOk with equality can also be handled in our framework by using relative liftings of Ek over a functor
that makes equality an explicit part of our structures.
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