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Abstract

We define a monad T on a category of measure spaces such that mor-
phisms from 1 to T(X) correspond to probability density functions on X.
The Kleisli category of this monad is dual to the category of commuta-
tive W*-algebras with normal positive unital maps as morphisms. This is
an extension of the probabilistic Gelfand duality of Bart Jacobs and the
author to W*-algebras.

The proof proceeds by showing that the category of W*-algebras is
monadic over unital C*-algebras and also over Set, a result of interest
in its own right. We then transfer the Radon monad, considered as a
comonad on commutative C*-algebras, up to a comonad on commutative
W*-algebras (this time with normal unital *-homomorphisms as mor-
phisms), and obtain a monad on compact complete strictly localizable
measure spaces by duality.

This is an extended abstract of the preprint [1].
Gelfand duality is the equivalence between the category CHaus of compact

Hausdorff spaces and CC∗Algop, the opposite of the category of commutative
unital C∗-algebras, with unital *-homomorphisms as morphisms. One direction
is given by the functor C : CHaus → CC∗Algop that maps a space X to the
algebra of complex-valued continuous functions, made into a C∗-algebra with
pointwise addition and multiplication of functions.

In [2], Bart Jacobs and the author described how to start with the Radon
monad R, the natural probability monad on the category CHaus of compact
Hausdorff spaces, and define a variant of the Gelfand duality functor to give
an equivalence between Kℓ(R) and CC∗Algop

PU, the category of commutative
C∗-algebras with positive unital maps (not required to preserve multiplication).

The category of commutative W∗-algebras CW∗Alg is to measure spaces
what CC∗Alg is to compact Hausdorff spaces, with the functor L∞ playing the
role of C. To be specific, we take the category Meas to have compact1 complete
strictly localizable measure spaces as objects and equivalence classes of nullset-
reflecting measurable maps as morphisms, where the notion of equivalence2 for
measurable maps f, g : (X,ΣX , νX) → (Y,ΣY , νY ) is that for all T ∈ ΣY we have
νX(f−1(T )△g−1(T )) = 0. Then L∞ : Meas → CW∗Algop is an equivalence,
see for instance [4].

1This is a measure-theoretic notion, not the topological one, see [3, 342A (c)].
2In general this relation is coarser than equality almost everywhere, which would not make

L∞ a faithful functor.
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A natural question arises as to whether there exists a monad T on Meas
to play the role of the Radon monad and provide an equivalence Kℓ(T ) ≃
CW∗AlgPU. Since conditional expectations are morphisms in CW∗AlgPU this
would give a monadic description of conditional expectations.

It turns out that this is the case, although the way of getting it is differ-
ent. We start out with the observation that the proof of probabilistic Gelfand
duality can be viewed under duality as showing that the inclusion CC∗Alg ↪→
CC∗AlgPU has a left adjoint given by CS, the continuous functions on the state
space, and that the coKleisli comparison functor for the comonad also written
CS on CC∗Alg is an equivalence with CC∗AlgPU.

The forgetful functors CW∗Alg → CC∗Alg and CW∗AlgPU → CC∗AlgPU

both have left adjoints, which are essentially the same, given by the double dual
or enveloping W∗-algebra A 7→ A∗∗. For a W∗-algebra of the form A∗∗, we know
what the left adjoint of the inclusion CW∗Alg ↪→ CW∗AlgPU should be:

CW∗AlgPU(A
∗∗, B) ∼= CC∗AlgPU(A,B) ∼= CC∗Alg(C(S(A)), B)

∼= CW∗Alg(C(S(A))∗∗, B).

The trouble is that not every commutative W∗-algebra is a double dual. How-
ever, the forgetful functor CW∗Alg → CC∗Alg and its left adjoint -∗∗ form
a monadic adjunction, and so every commutative W∗-algebra is canonically a
coequalizer of double duals. This allows us to produce a left adjoint to the
inclusion CW∗Alg ↪→ CW∗AlgPU. The coKleisli comparison functor for the
comonad is an equivalence, essentially by the argument given in [5, Theorem
9] (in dual form). We then use the equivalence between CW∗Algop and Meas
to turn this into a monad T on Meas whose Kleisli category is equivalent to
CW∗AlgPU

op.
As an explicit calculation, we are able to show that for all finite sets X, made

into measure spaces with the counting measure, we have L∞(T (X)) ∼= C(2ω)∗∗,
and we find a compact complete strictly localizable measure space Y such that
L∞(Y ) ∼= C(2ω)∗∗. If νd : P(2ω) → [0,∞] is the counting measure and νc :

B̂o(2ω) → [0, 1] is the completion of the usual probability measure describing
an infinite sequence of independent fair coin flips, then

Y = (2ω,P(2ω), νd) + (2ω × 2ω,P(2ω)⊗ B̂o(2ω), νd ⊗ νc),

where B̂o(2ω) is the completion of the Borel σ-algebra (with respect to νc) and
⊗ is Fremlin’s c.l.d. product [6, Definition 251F].

Acknowledgements

Many thanks to Bram Westerbaan, Sam Staton, Phil Scott, Bart Jacobs, Tobias
Fritz and Kenta Cho.

References
[1] Robert Furber. A Probability Monad on Measure Spaces (Preprint). https:

//homepages.inf.ed.ac.uk/rfurber/preprints/cemonad-preprint.
pdf, 2022.

2

https://homepages.inf.ed.ac.uk/rfurber/preprints/cemonad-preprint.pdf
https://homepages.inf.ed.ac.uk/rfurber/preprints/cemonad-preprint.pdf
https://homepages.inf.ed.ac.uk/rfurber/preprints/cemonad-preprint.pdf


[2] Robert Furber and Bart Jacobs. From Kleisli Categories to Commutative
C∗-algebras: Probabilistic Gelfand Duality. Logical Methods in Computer
Science, 11(2), 2014. doi:10.2168/LMCS-11(2:5)2015.

[3] David H. Fremlin. Measure Theory, Volume 3. https://www.essex.ac.uk/
maths/people/fremlin/mt.htm, 2002.

[4] Dmitri Pavlov. Gelfand-type duality for commutative von Neumann al-
gebras. Journal of Pure and Applied Algebra, 226(4):106884, 2022. ISSN
0022-4049. doi:10.1016/j.jpaa.2021.106884.

[5] Bram Westerbaan. Quantum Programs as Kleisli Maps. Electronic Proceed-
ings in Computer Science (EPTCS), 236, 2017. doi:10.4204/EPTCS.236.14.

[6] David H. Fremlin. Measure Theory, Volume 2. https://www.essex.ac.uk/
maths/people/fremlin/mt.htm, 2001.

3

https://doi.org/10.2168/LMCS-11(2:5)2015
https://www.essex.ac.uk/maths/people/fremlin/mt.htm
https://www.essex.ac.uk/maths/people/fremlin/mt.htm
https://doi.org/10.1016/j.jpaa.2021.106884
https://doi.org/10.4204/EPTCS.236.14
https://www.essex.ac.uk/maths/people/fremlin/mt.htm
https://www.essex.ac.uk/maths/people/fremlin/mt.htm

