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We propose a categorical framework to reason about scientific explanations: descriptions of a phe-
nomenon meant to translate it into simpler terms, or into a context that has been already understood.
Our motivating examples come from systems biology, electrical circuit theory, and concurrency. We
demonstrate how three explanatory models in these seemingly diverse areas can be all understood
uniformly via a graphical calculus of layered props. Layered props allow for a compact visual pre-
sentation of the same phenomenon at different levels of precision, as well as the translation between
these levels. Notably, our approach allows for partial explanations, that is, for translating just one
part of a diagram while keeping the rest of the diagram untouched. Furthermore, our approach paves
the way for formal reasoning about counterfactual models in systems biology.

1 Introduction

Different fields of science and engineering come with their own notions and traditions of explaining one
phenomenon in terms of another one. For example, statistical mechanics explains thermodynamics, since
it relies on fewer assumptions, which are moreover perceived as more fundamental than those of thermo-
dynamics. A similar pattern may be found in the reduction of climate science to various areas of physics
and biology. The converse move, from a “lower” to a “higher” level, is also interesting: for instance, tem-
perature and vessel shape may be used to explain crystallisation. Choosing the right level of abstraction
is paramount for successful communication between different disciplines, as well as between the scien-
tific community and the general public. In particular, the definition of what constitutes an explanation is
an increasingly important topic in the areas of automated reasoning and artificial intelligence [[19].

Perhaps the most drastic divide between different modes of explaining can be found in biology,
where some phenomena are explained mechanistically (or reductively), that is, by reducing them to the
underlying chemical or physical laws, while others are explained functionally, that is, by appealing to
what an organism does as a part of a larger whole [10, 21]. For instance, when explaining production
of ATP within a cell, the mitochondria can either be introduced as elementary blocks providing energy
to the cell (functional), or as compartments containing a whole pathway to process ATP (mechanistic).
This divide is not merely of conceptual interest, but has practical implications for the modelling of
biological systems: the ability to replicate biological functions is taken as a measure of success of the
rule based models [8,[10]. However, the existing rule based languages that model molecular interactions
are typically not able to formally distinguish between mechanistic and functional rules, as these exist at
different levels of abstraction [10]].

The goal of this work is to identify fundamental mathematical structures underlying explanations
across different fields of science. Upon these structures, we develop a formalism that is able to describe
the different levels of abstractions involved in an explanation, and account for more elaborate aspects
such as the divide above. Additionally, we attempt to provide a uniform framework for counterfac-
tual reasoning by allowing explanations that depend on what could potentially occur. Ability to model
counterfactual dependencies is of interest in rule-based models of molecular interactions [13]]. We shall
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2 String Diagrams for Layered Explanations

illustrate our approach by showing how it models case studies in diverse scientific areas

In our framework, explanations always concern a certain process. The process can be thought of
as an actually occurring natural phenomenon, or a computation, or a rule in some formal system. An
explanation should then consist of another process whose level of abstraction is strictly lower than that
of the process being explained. In addition to the lower level process, an explanation should state in what
way the two processes are related, for example by giving a translation from one to the other. Moreover,
we want the explanations to be modular or compositional, in the sense that the same explanation may
be reused multiple times in case different systems have equivalent subsystems, and that the explanations
can be composed to create larger, more complicated explanations. The reason for requiring modularity
is twofold. First, it allows explanations to be reused by potentially different areas, in much the same way
lemmas and theorems in mathematics are used to develop different theories. Second, this allows for a
certain efficiency, as we may be interested in explaining only a part of a large system; in such a case
modularity allows us to focus on this one part only, instead of explaining the whole system.

The above requirements for what an explanation should be like lead naturally to monoidal categories,
as these allow for both sequential and parallel composition of processes (i.e. morphisms in a category).
We assume that the monoidal categories are partially ordered “by abstraction”, so that more abstract
theories (i.e. categories) are higher in the order. We want to be able to compose not just the processes
but also the explanations, so that we require the categories and functors under consideration to have a
monoidal structure. We thus arrive at a 2-category which is able to simultaneously talk about processes
in all the individual categories (0-cells), translations between processes (1-cells), compositions of the
processes and the translations, as well as rules or equations between the processes and the translations
(2-cells). The definitions of an explanation (Definitions [7] and [8)) use all of this structure. This is the
motivation for what we call a layered prop (Definition [2).

It is worth noting that, in the categorical approaches inspired by the paradigm of functorial semantics,
an explanation and what is being explained live in two separate categories, with some translation between
them expressed as a functor — see e.g. [} 14} [3]. Within this perspective, some equality or relation in
the domain is explained by passing to the codomain (or vice versa). Our framework allows to treat
such situations in a single language, staying within one category. The main technical advantage of our
approach is that partial interpretations are built into our language from the very beginning, potentially
reducing the amount of computation that is needed. More conceptually, unlike in the functorial semantics
approach, working in our framework allows for counterfactual reasoning: since we can mix-and-match
categories and morphisms, this gives the flexibility to ask such questions as What would happen if p did
not occur?

Our contributions are organised as follows. In Section [2] we define layered props and outline their
connection to the so-called internal string diagram construction. Section [3|briefly outlines how a layered
prop can be interpreted in the bicategory of pointed profunctors. We give three definitions of an explana-
tion in Section[d} one applies to 1-cells, another one to 2-cells, and the last one formalises counterfactual
explanations. The remaining sections contain case studies formalised in our framework. Section[5]shows
an example involving biology and chemistry. Section [6] shows the explanation of electrical circuit be-
haviour in terms of signal flow graphs — as it draws from the circuit theory developed in [3} 4], this
example also clarifies how our approach relates to the ‘functorial semantics’ approaches. Finally, Sec-
tion[7] presents a case study from concurrency, involving the explanation of CCS expressions.

'0n the other hand, we do not delve into the philosophical ramifications of our approach. Rather, the aim is to offer an
abstract formalisation of of existing intuitions, thus potentially providing precise tools for debating what a scientific explanation
should be.
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2 Layered Props

We shall build our language on string diagrammatic syntax: the standard representation of morphisms in
(strict) monoidal categories [22]]. Algebraic reasoning on string diagrams is typically formulated using
props (product and permutation categories), which are just symmetric strict monoidal categories with
the natural numbers as objects — see e.g. [15} [12} 24] for an overview. In fact, in order to model the
different layers involved in an explanation, we will need a more sophisticated concept: layered props.

Since we want to talk about “string diagrams in context”, the context being a theory at a particular
level of abstraction, we draw the string diagrams inside a rectangle which represents its context. This
allows us to reason both internally with the string diagrams, as well as externally by pasting and piling
the rectangles. In order to formalise such graphical intuition as a layered prop, we need the preliminary
notions of a system of sets and a layered monoidal theory.

We begin with systems of sets, which we think of as contexts and translations between them. Fix a
collection of sets Q. An Q-type is a finite list of pairs (@;, ;.. .; @, &, ) where each ®; is in Q and each
0; € @ is an element in the free monoid on ;. Precisely, define Q-types recursively as:

* the empty list € is an Q-type,

o iftisatype, @ €Q, and o € @, then (¢; ®, @) is an Q-type.

We denote the collection of all Q-types by type®.

We call Q a system of sets when it is equipped with a partial order, and, for each comparable pair
o < ®', with a choice of a homomorphism f: ®™* — @*. Intuitively, as we think of the sets @ € Q
as contexts, the partial order is saying which contexts are more abstract, and the homomorphisms are
translations from more abstract contexts to less abstract ones. We now introduce the counterpart of
algebraic theories for monoidal categories (typically called monoidal theories, see e.g. [24]]) based on
this structure.

Definition 1 (Layered monoidal theory). A layered monoidal theory is a tuple (,X,ar, coar) consist-
ing of a system of sets Q, a set £ (signature), and functions ar, coar : £ — type®.

It is convenient to introduce notation for the internal signature X', defined as
Y :={ceX: thereare € Qand &, € w* s.t. ar(c) = (w, o) and coar(c) = (w,B)}.

The idea is that the generators in X' are completely contained in a single context @: there is no transition
between contexts involved. We define the terms and the corresponding sorts (arity-coarity pairs of types
(t]s)) of a layered monoidal theory by the recursive procedure in Figure I} For the ®,-rule, there is a
side condition that only the rules for ¥/, identity, composition and ®,, are used in constructing the terms
x and y. This ensures that x and y only contain generators from the internal signature, so that it makes
sense to graphically represent the term x ®, y as juxtaposition of x and y inside the rectangle representing
®. We call the terms that are generated using only these four rules internal. If a layered monoidal theory
is generated by monoidal categories (see Section[2.1|below), the internal terms will correspond precisely
to morphisms inside the categories.

We think of the pants and the copants (line 3 of Figure|l)) as composition and decomposition within
a level of abstraction. The black and white triangles (line 4 of Figure [I)) are translations between the
levels: « translates an abstract layer to a more concrete one (refinement), while > maps towards a higher
abstraction (coarsening). In the pointed profunctor semantics (Section[3)), pants will be interpreted as the
monoidal product (seen as a profunctor), and copants as its adjoint profunctor (cf. axioms in Figure [3).
Likewise, refinement will be interpreted as a monoidal functor (seen as a profunctor), and coarsening as
its adjoint (cf. axioms in Figure ).
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Figure 1: Recursive construction of the terms of a layered monoidal theory. Each term of the sort
(w,a | t,B) is drawn as an area connecting the type @, o on the left to the type 7,3 on the right. The
area inside a term, demarcated by black lines, is to be thought as representing the set @, and an internal
red wire as & (the element of ®*). The change of type o — 8 inside w is drawn as a red box. The change
of type at the level of sets w — 7 is drawn as a vertical black line.

In order to define a layered prop, we need to consider the terms modulo certain equations. Given
weQand o, € ®*, consider the internal terms with the sort (@, a | @, ). We may quotient this subset
by the usual rules of monoidal categories: the identities and the monoidal unit are given by the third rule

on the first line,
S s PR

while the monoidal product ®, is represented by vertical juxtaposition inside the @-rectangle. Further,
we may quotient all the terms with the sort (7 | s) by the usual rules of symmetric monoidal categories:
the identities are given by appropriate vertical juxtapositions of terms generated by the third rule on the
first line, the monoidal unit is given by the second rule on the second line, and the monoidal product ®
is once again represented by vertical juxtaposition, this time of whole rectangles.

Definition 2 (Layered prop). A layered prop generated by a layered monoidal theory (Q,X,ar,coar)
is a 2-category whose O-cells are the types type® and whose 1-cells ¢ — s are terms with sort (¢ | s)
quotiented by the laws of symmetric monoidal categories both internally and externally, as discussed
above. The 2-cells are generated by the rules in Figures [2] [3|and l] Where arrows are going in both
directions, we require the 2-cells to be inverses. Further, we require the usual triangle identities to
hold for each unit-counit pair in Figure [3| and the usual laws of monoidal categories to hold for the
isomorphisms in Figure 4]
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Figure 2: 2-cells of a layered prop expressing functoriality of refinement, coarsening, pants and copants.
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Figure 3: 2-cells of a layered prop that exhibit pants-copants and refinement-coarsening as two adjoint
pairs.

Note that the 1-categorical structure of a layered prop can be seen as a generalisation of a coloured
prop: any coloured prop gives rise to a layered prop with just one layer (i.e. with just one set in Q).
Furthermore, layered props are known in the literature as the internal string diagram construction. This
was first introduced in the work of Bartlett, Douglas, Schommer-Pries and Vicary on topological quantum
field theories [2]. The connection to profunctors is discussed by Hu [9].

2.1 Layered Props from Monoidal Categories

It is natural to build layered props from existing monoidal categories. In fact all the examples of layered
props we consider arise in this way — see Sections below. We assume that instead of a system of
sets, we have a system of monoidal categories Q with monoidal functors instead of homomorphisms.
The construction of the layered prop £(Q) then proceeds as before, taking the internal signature to
contain all morphisms in each category in Q. We now proceed to define this formally.

A system of monoidal categories € is a subcategory of Cat such that

* every category @ € L is strict monoidal,

* every functor in Q is strict monoidal,

* there is at most one functor between any pair of categories, that is, € is posetal.
The last condition is assumed merely for simplicity, we could construct a layered prop from Q with
multiple monoidal functors between a pair of monoidal categories. The formalism could be modified to
incorporate non-strict monoidal categories, we leave this for future work.

We view a system of monoidal categories as a system of sets in a straightforward manner: the col-
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Figure 4: 2-cells of a layered prop that are motivated by monoidal categories and functors.

lection of sets is given by {Ob(®) : @ € Ob(Q)}, we identify aff = o ® 3 for all &, € @ and w € Q, we
have ® < ®" whenever there is a functor f: ® — ®, and the monoid homomorphisms are given by the
restriction of each functor to objetcs.

Assuming that all the categories @ € Q as well as Q itself are small, we define the signature £(Q) as
follows:

(@) ={o5?}

The arities and coarities are defined as:

0eOb(Q),a,BeOb(0),0:0—

ar Ga’ﬁ =0,0 coar Ga’ﬁ =,p.
(05") - . (05")-0.p

In other words, X(Q) contains every morphism in every category @ € Q.

Definition 3 (Layered prop generated by a system of monoidal categories). A layered prop generated
by a system of monoidal categories Q is the layered prop generated by the layered monoidal theory
(Q,X(Q),ar, coar). Additional generators for 2-cells are given by the equalities of morphisms in each
category o € Q.

We denote the layered prop generated by a system of monoidal categories Q by L(Q).

3 Pointed Profunctor Semantics

While our framework is purely syntactic (indeed, the whole point of constructing a layered prop is that
we are able to treat all the layers in the same language), we are able to provide a semantic justification for
the layered prop formalism: as we show in this section, they can be naturally interpreted in the category
of pointed profunctors Prof,. We include the Appendix [A] on profunctors and pointed profunctors as
a quick reference and to disambiguate any notation. For a proper introduction, see Borceux [6] and
Loregian [14], and references therein.
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Definition 4. Let £ be a layered prop. A profunctor model of L is a 2-functor £ — Prof, which is
consistent in the sense that
* if the O-cells (@, o) and (w, B) are respectively mapped to (C,c) and (D,d), then C =D,
e if the 1-cells v a @ po and oo p o are respectively mapped to (P, f) and (Q, g), then
P=0.

For the rest of this section, we assume that €2 is a system of monoidal categories. We will show that
there is a natural profunctor model of the layered prop generated by Q. To this end, we wish to define a
2-functor Z : L(Q) — Prof,.

Let us define Z on objects (i.e. Q-types) recursively as follows: Z(€) = (1,e), and Z(t; 0, @) =
Z(t) x (@, ). In order to define Z on morphisms, for each @ € Q, let us write I, : 1 - ® for the functor
sending the unique object of 1 to the monoidal unit of @. Likewise, let us write 5: C x D — D x C for the
symmetry map in Cat. Note that since s is an isomorphism, we have ps ~ p®. We then define Z by the
following action on the generators:

v Pe ° s g
€ G e o - (pl“’,idI) o ¢ D € g (pr,idl)
< >
; o = (p%,id(gep)) | o ; = (Pew:1d(asp))
o B B
o o BT ..
= (p%idga)) xy > I(y)oZ(x)
T B o o
X®awYy e Z(x)®wZ(y) x®y ind Z(x) xZ(y)-

where p~ and p_ are the covariant and contravariant embeddings of Cat in the category of pro-
functors, and o stands for the pointed profunctor (homg,c). We prove the following proposition in

Appendix

Proposition 5. The assignment T is a profunctor model of L(Q). Namely, it preserves the equalities of
morphisms in each category @ € Q as well as the rules in Figures 2} [3|and {4}

4 Explanations

Using the formalism introduced in the previous sections, we are now able to formulate precisely the
notion of an explanation. First, we give names to two special shapes of 1-cells in a layered prop and
outline their connection to explanations. We assume that we are working with a layered prop generated
by a system of monoidal categories €2.

Definition 6 (Window, cowindow). A window is a morphism in a layered prop of the form on the left
below. Dually, a cowindow is a morphism in a layered prop of the form on the right below.

< > > <
=] =]
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Windows correspond to reductive explanations: a process at the higher level gets translated to the
lower level, where we can apply laws or rules that are (presumably) more flexible, after which we trans-
late back to the higher level, hence completing the explanation. This remark should be compared to the
shape of the explanation of glucose phosphorylation in Section [5| below.

Cowindows, in turn, correspond to functional explanations: a process at the lower level is justified by
passing through a higher level in such a way that the higher level process translates back to what is being
explained. It can thus be thought that the lower level process takes place in order to yield the appropriate
form at the higher level. Axioms unit-ref and counit-ref state that there is an asymmetry between
reductive and functional explanations: using unit-ref, it is always possible to create a window (and
hence give a reductive explanation), while counit-ref only allows reducing a trivial cowindow to the
identity. Note that what we call a cowindow is usually called a functorial box in the literature — see
e.g. [16].

We may now define what an explanation is: we do this separately for 1-cells and for 2-cells. Both
correspond to a reduction: an explanation of a 1-cell reduces a process to another one at a lower level
of abstraction, while an explanation of a 2-cell reduces a rule between two processes to a rule between
reductions of these processes. For examples of explanations (now in a formal sense), see Figure [6| and
the discussion in Section [/|(1-cell), and Figure[7|(2-cell).

Definition 7 (Explanation of a 1-cell). Let ¢ and o be parallel 1-cells in a layered prop (that is, having
the same domain and codomain). We say that ¢ is an explanation of o if
1. o is an internal morphism contained in some category @ € €2,
2. every internal non-identity morphism of ¢ is contained in some category @’ such that ®’ < @ in the
partial order of Q,
3. there is either a 2-cell ¢ - ¢ or a 2-cell o — ¢.

Definition 8 (Explanation of a 2-cell). Let 7 and p be parallel 2-cells in a layered prop. We say that
is an explanation of U if
1. u is generated by an equality of morphisms in some category w € 2,
2. m can be constructed using the generating 2-cells of a layered prop and the 2-cells that come from
an equality of morphisms in those categories @' for which @’ < @ in the partial order of Q.

The above definitions correspond to the intuitive understanding of a (reductive) explanation we out-
lined in Section |1} The first condition in both definitions ensures that what is being explained is internal
to a particular category, that is, to a description at a particular level of abstraction. The second condition
says that the explanation is indeed reductive: it may only use lower levels of description than what is
being explained (in addition to the metalanguage of the layered prop). This implies that an explanation
must contain at least one window. The third condition in the first definition ensures that the explanation
is relevant in the sense that it is either a sufficient or a necessary cause for what is being explained.
There is no such condition for the explanations of 2-cells since in our setup there are no 3-cells. We thus
simply assume that an explanation is relevant. This assumption need not be made if we are working with
higher categories. These definitions can be dualised, this gives definitions of functional explanations, or
“coexplanations”. We will not need these in this work, and therefore omit the explicit statements.

Interestingly, if we require that the third condition of Definition /| does not hold (i.e. there is no 2-
cell between the explanation and what is being explained), we obtain the definition of a counterfactual
explanation. Ability to model counterfactual reasoning is important for the causal analysis in the rule-
based models of molecular interactions, such as the Kappa language [[13]]. While a particular simulation
of a rule-based model may tell us that a rule ¢ was invoked in the computation of the effect o, so that ¢
explains o in the sense of Definition[7] this tells nothing about necessity (or sufficiency) of ¢ for . Thus
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a rule-based model is not (without modifications) able to deal with such questions as Would ¢ occur
had ¢ not occurred? In a layered prop, the positive answer to such question (establishing non-necessity)
can be provided by finding a counterfactual explanation of ¢ that has the same sort as ¢. Intuitively, a
(possibly) counterfactual explanation can be thought of as a 1-cell that “fills in the gap” left by e:

< >
Hed
We give an example of a counterfactual explanation in our discussion of concurrency in Section
Models based on variable substitution [18] and trajectory sampling [[13]] have been proposed to model
counterfactual statements. Since our setup remains agnostic about what the internal morphisms in a

layered prop actually are, we expect that both of these situations can be modelled within a layered prop.
We leave this investigation for future work.

S Example: Glucose Phosphorylation

In this section, we construct a minimal example — inspired by Krivine [11] — that illustrates our notion
of an explanation (specifically, Definition [/)) for an important biochemical process known as phospho-
rylation of glucose. This is motivated by the problem of systematising a vast amount of experimental
data in systems biology in a way that is easy for humans to both understand and use. Our strategy is to
define three monoidal categories that are capable of talking about chemical reactions at three different
abstraction levels:

L English names of the relevant molecules
Mol* Molecules
Part Mol* | Partitions of molecules into smaller units

First, let us define £* as the free monoidal category with generating objects
{glucose,ATP, glucose-6-phosphate, ADP, hydrogen ion},
whose monoidal product is denoted by +, and with just one generating morphism
glucose + ATP — glucose-6-phosphate + ADP + hydrogen ion. )

The generating morphism simply represents the high-level chemical rule describing phosphorylation of
glucose. Here ATP and ADP stand for adenosine triphosphate and adenosine diphosphate.

5.1 Molecules and Molecule Partitions

We define a molecule partition as a certain connected multigraph (Definition [I0). We then identify as
molecules those molecule partitions that do not have free variables. Fix a countable set of free variables
FW. We denote the elements of FW by lowercase Greek letters o, f3,7,.... Let us define the set of
atoms as containing the symbol for each main-group element of the periodic table together with the
symbols — and +: At:={-,+,H,C,0,P,...}. Define the function v: AtuUFW — N as taking each element
symbol to the valence of that elementEI, define v(-) = v(+) = 1 and finally for all o € FW let v(a) = 1.

2This is a bit of a naive model, as valence is in general context-sensitive and not determined by a single atom. Yet this is
good enough for the purposes of this example.
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Definition 10 (Molecule partition). A molecule partition is a triple (V,7,m), where V is a finite set of
vertices, T:V — AtuUFW is a function taking each vertex to its type and m: V xV — N is a function
satisfying the following conditions:

* forall veV, we have m(v,v) =0,

o for all v,w eV, we have m(v,w) = m(w,v),

e for all v,u € V with v # u, there are wy,...,w, € V such that wy = v and w,, = u and m(w;_1,w;) #0

foreachi=1,...,n,

* forall veV, we have Y.y m(u,v) =vt(v).
In other words, the integers m(i, j) form an adjacency matrix of an irreflexive, symmetric and connected
multigraph, and the sum of each row or column gives the valence of the (type of) corresponding vertex.

Definition 11 (Molecule). We say that a molecule partition (V,T,m) is a molecule if the image of the
function 7 is contained in At.

We denote the set of all molecules by Mol and the set of all molecule partitions by PartMol.
Define the partitioning relation R € Part Mol x (Part Mol x Part Mol) as follows. Let M = (V,7,m)
be a molecule partition, let u,v € V and let o € FW. Denote by m’: V xV — N the function such that
m'(u,v) =m’(v,u) =0 and m’ = m otherwise. Suppose that the following conditions are satisfied:

1. m(u,v) =1,

2. the graph (V,m') is not connected,

3. o does not appear as a free variable in M (that is, T(w) # o for all w e V).

In such case we denote by V (u) and V(v) the connected components of u and v, respectively, in (V,m").
Let MY = (V(u)u{a},Ts,m,) be the molecule partition where 7,(a) = @ and 7, = T otherwise, and
my(u,a) = my(ct,u) = 1 and m, = m otherwise. The molecule partition M* = (V(v)u{a},tq,m,) is
defined similarly. Now we finally define R by stipulating that MR(MJ, M) for all M, v, u and o that
satisfy the above conditions.

Let us define Mol as the free monoidal category with generating objects Mol and just one gen-
erating morphism, which has the same shape as the generating morphism of £* (9), except that all the
English names of the molecules are translated to the corresponding graphs (see Figure [5). Similarly,
define Part Mol* as the free monoidal category with generating objects Part Mol. For all variables o
and  we add the rule

H (on (on

| | a
(I) + (x—lpl—o- — H* + ﬁ—o—lpl—o- +

B o] o)

as a generating morphism to Part Mol*. We draw this as a box: . Further, for all molecule
partitions M, N and K such that MR(N,K) we introduce the following generators

NN —

M oM

ok ok
We now wish to define monoidal functors £* L Mol* <> Part Mol* so as to make this into a system
of monoidal categories. First, define a monoidal functor 7 : £L* — Mol™ by the action on the generating
objects in Figure [5] where we use the convention from chemistry that an unlabelled vertex represents
a carbon atom with an appropriate number of hydrogen atoms attached to it to make its valence equal
to 4. The only generating morphism of £* is mapped to the only generating morphism of Mol". The

monoidal functor Mol* <> Part Mol* is identity on objects and maps the only generating morphism of
Mol™ to the composite morphism in the middle rectangle of Figure [6]
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Figure 5: Translation of English names to chemical graphs.

5.2 Explaining Phosphorylation

We can now use the lowest level language Part Mol* to explain the high-level rule (9) as is shown in
Figure [6] Note that this is indeed an explanation according to Definition [7] since the rule that is being
explained is internal to £*, the explanation does not use any non-identity morphisms from £*, and
the explanation can be derived starting from the rule (9) using the 2-cells of the layered prop, whose
composite gives a 2-cell from the rule to the explanation. While the diagram in Figure [6] fulfills the

o 4 Mol* < PartMol* > Mol* > c*
pobeo i
Il L }—CH,—0—P-0O"
0 Cl glucose-6-phosphate
glucose S H* hydrogen ion
ATP B ADP
[
a—b- o
|c|>
(0}
O’—lP—O—lPl—O—P—O—CHz—(Il (X—O—lfl—O—P—O—CHz—g Of—lf’—O—fl—O—CHz—El

Figure 6: Explaining glucose phosphorylation: each area between the vertical black bars represents a
layer, so in this case L*, Mol* or Part Mol™.

definition of an explanation, it is not very “explanatory” in an intuitive sense. This is because we chose
to stop at a fairly high level of abstraction. It is important to note that the morphism Apgaqor+ 1S just
a black box, which could itself be explained at the level of atoms exchanging electrons. Modularity of
layered props would then allow us to add this further level to the diagram. The resulting explanation
would bring us closer to satisfactorily answering the question Why does this reaction occur?.

We conclude this example by remarking that we didn’t have to assume that we already know the
higher level chemical rule (9). Instead we could have chosen to generate the higher level rules by
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declaring as morphisms every 1-cell from (L*,¢) to (L*,d) for some objects c,d € L*. Instead of an
explanation, this would correspond to deriving higher level rules from a single lower level rule.

6 Example: Electrical Circuits

While in the previous section we constructed a minimal example from scratch, in this section we take an
existing example from the literature where explanations are already used implicitly. Namely, we focus
on the research program that has formalised electrical circuits in terms of string diagrams and given them
an interpretation in graphical affine algebra [[1} 4} |5, 3]].

The string diagrammatic electrical circuit theory is a paradigmatic example of explanations taking
a functorial form: the relations between electrical components are proved by interpreting them as mor-
phisms in the graphical affine algebra. Thus this example also shows how functorial explanations can be
incorporated into our framework. Note, however, that Boisseau and Sobocinski [3] already use some-
thing like layered explanations to only partially translate their diagrams. They call the notational device
used for this an impedance box. In our language, impedance boxes arise in a principled way as instances
of a general definition: they are just windows (Definition [0 of a particular shape.

We define the props graphical affine algebra GAA and electrical circuits ECire as well as the trans-
lation functor Z : ECirc — GAA as in [3]], except that we quotient the morphisms in ECirc by equality
under Z. This makes Z faithful, which we reflect in our syntax by adding a left inverse to the 2-cell
unit-ref in Figure@ Additionally, we define the impedance category Imp and the category of bipoles
Bip in order to express the impedance calculus of [3]] formally within our setup.

Definition 12 (Impedance category). The impedance category Imp is a prop whose generating mor-
phisms are all the morphisms of GAA with exactly one input and exactly one output. The identity is
-~ o, and composition is given by the rule

—c}— : —p}— = —« o .
: )

Definition 13 (Bipole category). The bipole category Bip is the subcategory of ECirc given by those
generators which have exactly one input and one output. That is, it is the free prop generated by
R Vv I

A k-0~ |-e-

Define the “boxing” functor B : Bip — Imp by the following action on the generators:

L
LYY L

¢
AN @ e e @ —= - B

\4 1
O - e O e
Further, define a "wrapping” functor W : Imp — GAA which acts as n — 2n on objects and on morphisms
as shown below left. The boxing and the wrapping functors are so defined that we have a commutative
square below right:

Bip———ECirc
~ i
Imp——GAA

w

3This causes some problems for the semantic interpretation of Section [3} whose resolution we leave for a more technical
paper.
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where the top horizontal morphism is the inclusion functor, and Z is the translation of electrical circuits
to graphical affine algebra. Treating the above diagram of monoidal functors as a system of monoidal
categories, we obtain a layered prop. Within this layered prop, we are able to replicate what is called the
impedance calculus in [3]]. To illustrate this, we give an explanation of the rule governing the sequential
composition of resistors. This rule is a 2-cell in the layered prop, and the explanation is therefore that of
a 2-cell (Definition [§).

Figure /| shows how the rule for composing two resistors

R1 R2 R1+R2
—VWVWN— —
can be explained (this is essentially part (i) of Proposition 3 of [3]). This is indeed an explanation of
a 2-cell (Definition [8)), since we are explaining an equality in ECirc using only the 2-cells of a layered
prop and a 2-cell from Imp (the third 2-cell of the derivation).

ECirc < Imp P ECirc ECirc Imp > ECire
RI1 R2 Rl R2 p .
A— s A— -\ /
‘
ECirc < Imp > ECire < Imp > ECirc ECirc
R1+R2 R1+R2
i’ RI+R2] i’ o o+ ANANN— AVAVAY.

Figure 7: Explaining sequential composition of resistors. Note that the explanation relies on the compo-
sition in Imp. This could, in turn, be itself explained by translating to GAA.

As for the example with glucose phosphorylation, we could choose to generate the equalities in
ECirc rather than assume them a priori. In this case, there would be no need to quotient morphisms in
ECirc by equality under the translation functor, yet the equality of 1-cells should be taken up to a trivial
window.

7 Example: Calculus of Communicating Systems

The calculus of communicating systems (CCS) [l17] is widely used to reason about programs, formal lan-
guages and concurrency. Here we consider a restricted version of CCS and two ways to give semantics to
the CCS expressions: reduction semantics is very heavily syntactic, in addition to the structural congru-
ences, it only allows for only one rewrite rule (the reduction), while the labelled transition system (LTS)
semantics [[17] is more flexible and comes with more rewrite rules. Our goal is to show how the LTS
semantics can be used to give an explanation (this time in the sense of Definition [7)) of the rewrite rule
of the reduction semantics. Intuitively, the LTS semantics may be seen as a lower level implementation
of the concurrent processes described abstractly by CCS. Furthermore, we demonstrate that LTS seman-
tics has a larger scope of allowed derivations than the reduction semantics by giving a counterfactual
explanation of a rewrite rule in the reduction semantics.

Let us fix a set of action names A. Define A = {@:a€ A} and Act = AUAU{t}. The set of processes
is defined recursively as follows, where x ranges over Act:

Pz= 0| xP|P|P.
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Definition 14 (Congruence). Define the congruence as the smallest equivalence relation ~ on the set of
processes that satisfies:

Pllo~Q| P, (PIO)IIR~PI(QIR),

0| P~P, ifP~P andQ~Q', thenP| Q~P | Q.

Definition 15 (Reduction semantics). A rewrite rule in reduction semantics is an ordered pair of pro-
cesses, which we write as P — O, generated by the following three deduction rules:

P-0 P->Q P~P' Q9~Q
xP|xQ-PllQ  P|R->Q|R P~

In other words, rewrite rules are parallel compositions of the reduction (first rule in the above defini-
tion) up to the congruence. For instance, we can derive the following rewrite rule:

x01 (y0]x0)=0] (y0]0). (16)

In order to talk about layered props, we wish to express reduction semantics as a monoidal category.
Let Red be the monoidal category whose objects are the processes, monoidal product on objects is the
parallel composition ||, and whose morphisms are generated by:

P— 0 5%? 0— P~ x.P P
S 00 e [ A 0
Qo P R R P 0 -

together with inverses for the first four generators. Here P, Q and R range over processes, and x ranges

over A. The first four morphisms correspond to the congruence, and R corresponds to the first deduction

rule for transitions. The parallel composition is taken care of by the monoidal structure. Note that the

monoidal product is not strictly associative, so we need to keep track of the bracketing of the wires.
Next, we introduce a LTS as an alternative semantics for the above fragment of CCS.

Definition 17 (Labelled transition). A labelled transition is a triple (P,x,Q), where P and Q are processes

and x € Act, generated by the deduction rules below. We write P % Q for such triple. Note that we write
the silent action 7 as an unlabelled arrow.

PILP PILP - Pli)P QliQ
X
PloSPllo  Q|PSQ|P  xPSP PO-P|0O

Definition 18 (Bisimulation). A bisimulation on the set of processes is a binary relation b such that for
all processes P and Q and all x € Act, we have that PbQ implies

o if PS5 P/, then there is a process Q' such that Q = Q' and P'bQ’,

« if 05 O, then there is a process P’ such that P 5 P and P'bQ’.
The largest bisimulation is the union of all bisimulations.

Labelled transitions define the LTS semantics, which, similarly to the reduction semantics, can be
modelled as a monoidal category. Thus let LTS be the free monoidal category whose generating objects
are pairs P, 1 x, where P is a process and x € Act. We think of 1 x as the “pending action”, and omit the
silent pending action: P := P,1 7. The morphisms of LTS are generated by

Ptx—

P - P—
Plo—s P 0tx Serlotx wpfal—pte SUTMT 0
o o :

0,1x—
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where P and Q range over processes, x € Act and y € AUA and we identify y :=y. The structural iso-
morphisms of the monoidal category have the same form as the structural isomorphisms of Red, and
correspond to the largest bisimulation. The other morphisms in LTS model those rewrite rules of the
usual LTS semantics that are derivable via our restricted set of deduction rules.

There is a monoidal functor / : Red — LTS, whose action on objects is defined as 0 —~ 0,1 7, x.P —
Pttand P| Q+~ (I(P),I(Q)). For morphisms, I takes each structural isomorphism in Red to the
corresponding isomorphism in LTS, and the morphism R to

xP AR P (P
A

ro o e’
where the dots refer to an appropriate decomposition of P and Q into /(P) and I(Q).
We use the functor I to view the LTS semantics as the lower level language that explains the reduction
semantics. For instance, we can explain the rewrite rule by just moving its derivation in Red

x.0 - - 0
-1 R a
x.0 o /4‘—‘—~
00— = 0 —— 0
X0 — T y.0 H — 0

through the window, that is, essentially by applying /. In this case, we are also able to give a counterfac-
tual explanation:

Red <« LTS > Red
! 0,1 x
x.0 \A_'l ~_ 0o 0
.0 — As - 0.
%.0 Ay bio ” - y0[0,1% »0[0 T 0
NS

The above diagram is indeed a counterfactual explanation (see the discussion in Section[d)) of the rewrite
rule (16): (1) the rewrite rule is an internal morphism in Red, (2) every non-identity internal morphism
in the diagram is contained in LTS, which is strictly below Red in the partial order of the layered prop,
(3) there are no 2-cells between the rewrite rule and the diagram. To see that (3) is indeed the case, note
that there are in fact no 2-cells having the above diagram as either domain or codomain (one can see this
by going through the generators of 2-cells of a layered prop one by one).

The fact that there is a counterfactual explanation of the rewrite rule shows that it is not neces-
sary to invoke the (analogue of) rule R in its derivation at the level of LTS. This observation allows us to
show neatly that LTS semantics is more flexible than the reduction semantics, in the sense that there are
more derivations of the same transitions. Note that the counterfactual explanation does not need to be
more complex than an ordinary explanation: in this case it is in fact more direct, in the sense that it shows
that there is an actual labelled transition, while the explanation obtained by translating the diagram in
Red merely shows that there is a labelled transition up to the largest bisimulation.

8 Conclusions and Future Work

We have taken the first steps towards developing a mathematical framework for formalising explanations.
Explanations in a category theoretic context usually take the form of a functor, whose domain is thought
of as syntax and codomain as semantics. Our approach differs from this: in a layered prop, there are
several possible translations to different levels, which are nonetheless syntactically represented in the
same language (that is, within one layered prop). A layered prop allows one to easily work with different
theories describing the same phenomenon, and, importantly, allows for partial translations instead of
having to translate the full diagram, as we have illustrated with the examples. We have also observed
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how counterfactual processes arise naturally within layered props: these are those processes that “look
like” a translation without being one. Furthermore, the examples show that the same abstract principles
hold in areas as distant as biology, electrical circuit theory and concurrency theory. Layered props can
thus indeed be conceived as the initial stage of a general mathematical theory of explanations.

On the mathematical level, the next phase of developing the theory is to explore the precise connec-
tion of layered props to pointed profunctors. Currently, there is a canonical 2-functor which translates a
layered prop generated by a system of monoidal categories to the category of pointed profunctors which
preserves the axioms of a layered prop. One way to proceed would be to characterise the image of this
functor, thus identifying a subcategory of Prof, to which a given layered prop is equivalent. Another
mathematical aspect that is important for practical applications is to modify the definition of a layered
prop to allow for non-strictly associative monoidal categories, as for instance described diagrammatically
in [23]. As briefly remarked in Section [f] the current semantics cannot adequately handle the important
special case when the translation functor is faithful. This suggests that the current interpretation of the
2-cells as natural transformations is too restrictive, and some other notion of 2-cells for pointed profunc-
tors should be used. In order to connect layered props to known structures, it would also be useful to
express them as a Grothendieck construction.

Even though it was beyond the scope of this paper, we believe it is important to connect our work
with the philosophy of science literature on explanations. Since the initial motivation for our work comes
from biology, it is particularly interesting to see how ideas on explanations and causality in biology fit our
framework. For instance, one of the main motivations of Robert Rosen for introducing the theoretical
framework of relational biology was to put the function of an organism on equal grounding with the
mechanism that underlies it [21]. This can be modelled within a layered prop: reductive and functional
explanations are a priori completely symmetric, and in any case equally well-defined.

Several systems with multiple layers are known in the applied category theory literature. In addi-
tion to the already discussed [23] and [3] (Section [6)), we mention the formalism of hierarchical petri
nets [[7], and Romén’s notion of an open diagram [20]. All of these rely on an intuitive notion composing
processes at different levels, and hence we plan to explore them using layered props.
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A Profunctors and Pointed Profunctors

In order to fix notational conventions, we recall the standard definition of profunctors. We also define the
not-so-standard category of pointed profunctors. We state the results about (pointed) profunctors needed
in the main body of the paper, mostly without proof.

A.1 Profunctors

We follow Loregian [14] in our discussion of profunctors and coends.

Definition 19 (Bicategory of profunctors). Define the bicategory of profunctors Prof as follows.
¢ the O-cells are (small) categories,
* the 1-cells, denoted by C —— D, are functors

C°? xD — Set,

¢ the 2 —cells are natural transformations o : F = G,
* the composition
cac:Prof(A,B) xProf(B,C) - Prof(A,C)

takes profunctors F : A——Band G: B——C to the coend GoF = /B F(-,B)xG(B,=). Explicitly,
we define

BeB
(GoF)(A,C) ::f F(A,B) x G(B,C).

There is a bifunctor
x : Prof x Prof — Prof

defined as the product functor of n-cells for each n =0, 1,2 which equips Prof with a symmetric monoidal
structure.

Given a 2-category IC, let us write KC°? for the 2-category whose O-cells and 2-cells are those of K and
whose 1-cells are the reversed 1-cells of /C, that is, for all 0-cells A and B we have K°P(A,B) = K(B,A)°P.
Similarly, we write X for the 2-category whose 0-cells and 1-cells are those of K and whose 2-cells are
the reversed 2-cells of KC, that is, for all 0-cells A and B we have K’ (A,B) = K(A,B)°P.

There are two ways to embed the 2-category Cat into Prof: one is contravariant on the 1-cells, the
other on the 2-cells. Both embeddings are identity on objects. The embedding

p~ : Cat® — Prof

takes a functor F : C — D to the profunctor p’ : C —— D defined on objects by p’ (C,D) = D(FC,D),
and a natural transformation 1 : F — G to the natural transformation p® — p’ whose (C, D)-component
is given by —o 1.
Dually, the embedding
p_: Cat’” - Prof
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takes a functor F : C - D to the profunctor pr : D ——C defined on objects by pr(C,D) :=D(D,FC),
and a natural transformation 1 : F — G to the natural transformation p/" — p® whose (C,D)-component
is given by nco-.

Both p~ and p_ are 2-functors, locally fully faithful and for every functor F the 1-cell p* is the left
adjoint to pr in the bicategory Prof (see section 5.1 of Loregian [[14] for the details).

Proposition 20. Both p~ : Cat® — Prof and p_ : Cat’” — Prof are monoidal 2-functors.

Proof. We prove the result for p~: the argument for p_ is dual.

Since the embedding is identity on objects, the monoidal product of O-cells (which is just the cartesian
product of categories) is preserved.

For 1-cells, let F:C - D and G :C' — D’ be functors. We wish to show that p*C ~ pf" x p@. We
compute as follows:

p"™C(c,C';D,D") =D xD'(F xG(C,C"),(D,D"))
=DxD'((FC,GC"),(D,D"))
=D(FC,D)xD'(GC',D")
=p"(C,D) xp9(C",D")
= (" xp9) (C,C";D.D"),

G and pf x pC agree on objects. The fact that they agree on morphisms is a

whence it follows that p

similar computation.
For 2-cells, let F,F':C - D and G,G’': C' — D’ all be functors. Given natural transformations

N:F —F and u: G — G', we wish to show that p7** = p" x p*. This follows by observing that their

components coincide:

Plecrppy =2 (M=) ey =(=omec) x (=opcr) =pd <P pr = (0" X9 crp -

A.2 Pointed Profunctors

Definition 21 (Pointed profunctors). Define the bicategory of pointed profunctors Prof, as follows:
¢ the O-cells are pairs (C,c) of a (small) category C and an object ¢ € Ob(C),
e the 1-cells (P, f): (C,c) — (D,d) consist of a profunctor P:C —— D, that is, a functor

P:C°? xD — Set,

together with an element f € P(c,d),

e the 2-cells ot : (P, f) - (Q, g) are natural transformations o : P = Q such that o, 4(f) = g,

* the composition of (P, f): (C,c) - (D,d) and (Q,g) : (D,d) - (€,e) is given by (QoP,[f,g]).
where o is the composition of profunctors and [ f,g] the equivalence class of the pair (f,g) in
(QoP)(c.0).

Note that a pointed hom-functor (C(-,-),f): (C,c) - (C,c") is precisely a morphism f:c¢ — ¢'.

Thus we will simply write the hom-functor (C(—,-), f) as f. For a category C, we define an assignment

z¢ : C — Prof,
cH(C,c)
(fre=>d) o (f:(Ce) > (C,C))
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Proposition 22. The assignment z¢ is a pseudofunctor (when C is taken to have the trivial bicategory
structure).

Proof. We first show that z¢ preserves composition. Thus let f: ¢ — d and g : d - ¢ be morphisms in C.
First, C(—,—) oC(—,—) ~C(-,—) since the hom-profunctor is the identity profunctor. Observe that such
an isomorphism is given by [“C(c,a) xC(a,e) — C(c,e) given by [n,m] + mon (this is well-defined).
Thus in particular [ f,g] ~ gf, whence

ZC(g) OZC(f) = (C(_v_)7g) °© (C(_a_)7f) = (C(_7_)agf) :ZC(gf)'

From the above it follows that id. : (C,c) — (C,¢) is the identity on (C,c), so that zc preserves the
identities. O

There is a pseudofunctor
x : Prof, x Prof, — Prof,

defined as
* (C,c)x(D,d)=(CxD,(c,d)) on the O-cells,
* (P.f)x(Q,8)=(PxQ,(f,8)) on the 1-cells,
* the product of natural transformations on the 2-cells.
Writing 1 for the terminal category and e for its unique object, we have the following:

Proposition 23. (Prof.,x,(1,e)) is a symmetric monoidal bicategory.

B Semantic Properties of Layered Props

We discuss the properties that the interpretation functor Z : £(Q) — Prof,. has. Throughout the section,
we assume that € is a system of monoidal categories.
We begin by proving that 7 is indeed a pointed profunctor model (Proposition [5).

Proof of Proposition[5] The equalities of morphisms for each category w € Q are preserved by Propo-
sition The unit and counit maps in Figure [3| are preserved and the triangle equalities for them hold
since we have defined each pair of profunctors as an adjoint pair. Since all the internal morphisms are
identities, there is nothing to show for the composition of the internal morphisms.

All the rules in Figure {4 follow from the fact that each category and functor in € is monoidal and
that both p~ and p_ are monoidal 2-functors (Proposition 20). For example, by (strict) associativity we
have that ®(id x ®) = ®(® xid) in Cat. We get the desired equations by applying the embeddings:

p®o (p®xid) =p®o(idxp®) assoc,
(idxpg)ope = (pe xid) opg coassoc.

It remains to show that the rules in Figure [2|are preserved. These are the only rules with a non-trivial
internal structure. Observe that all these rules are either of the form

(p/.idsg) oo~ foo(plidre)  or  oo(pyidsg) = (py,idsa)o fo

for some functor f: @ — 7 and some morphism & : & — 3. We show the isomorphism on the left. First, at
the level of profunctors the isomorphism holds since hom-functors are the identities. It remains to show
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that [0,idsg ] ~ [idf«, fO] under this isomorphism. To this end, note that the left-hand side evaluates via
the isomorphism

[ ot@nxotrsB)=o(farp)  k]~kefh

to fo. Similarly, the right-hand side evaluates via the isomorphism

[T otran <o sB)=otarp) K ~koh

also to fo, whence the desired identification follows. The argument for the rules of the second form is
dual. O

The following proposition shows that we can detect properties of monoidal categories in a layered
prop. This observation is not relevant for the examples that we discuss in this work, yet it is important
for the development of the general theory of layered props.

Proposition 24. If both T, ® € Q are monoidal closed (resp. coclosed) and f: @ — T in Q is also monoidal
closed (resp. coclosed), then the interpretation T preserves the 2-cell C (resp. coC) in Figure[S]

Proof. For C, we have to show that
p¥o(pyxid) =prop®o(idxp’).

Both profunctors are of the type T x @ —— w. Let us compute both sides on the triple of objects
(D,C,C"). The right-hand side computes to

B.Eet
f 1(fC,B) x 1(D®B,E) x 1(E,FC') = 1(D® FC,FC'),
while in order to reduce the left-hand side we use the monoidal closed structure:

Acw Acw
/ 7(D,FA) x 0(A®C,C’) = f (D, FA) x o(A,[C,C'])
~t(D,F[C,C'])
~t(D,[FC,FC'])
~t(D®FC,FC").

Since these agree and all isomorphisms are natural, we have the desired isomorphism. The argument for
coC is dual, using that the categories and functors are monoidal coclosed. O

1,

T fo

op

Figure 8: Monoidal (co)closure equations.
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