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EXTENDED ABSTRACT

TOBIAS FRITZ AND ANDREAS KLINGLER

The d-separation criterion [3] is a method for testing the compatibility of a probability
distribution with a given causal structure. It states that a joint distribution of a collection
of random variables is compatible with a causal structure if and only if it satisfies a list of
conditional independence relations encoded in the causal structure. While causal models
are mainly studied for probability distributions which are discrete or Gaussian, we here
introduce a way of treating causal models and the d-separation criterion independently of
the underlying types of variables. To the best of our knowledge, this yields the first proof
of a d-separation criterion for continuous variables.

Our approach belongs to the field of categorical probability theory. This framework consti-
tutes an abstract way of treating probability independently of measure theory. It allows
for a transparent treatment that already contains all structural properties necessary for
developing the d-separation criterion. The main objects of study are Markov categories [1],
which model Markov kernels of certain classes (i.e. arising from discrete, Gaussian, or
measure-theoretic probability distributions) as morphisms. Markov categories allow for
proofs of statements independently of whether random variables are discrete, Gaussian
or continuous. More concretely, we study causal models and causal compatibility in the
recent framework of generalized causal models introduced in [ 2] by defining a categorical
notion of d-separation and proving an abstract version of the d-separation criterion.

By definition, generalized causal models are the morphisms of a free Markov category,
or equivalently certain kinds of string diagrams. The wires in such a string diagram cor-
respond to local random variables and the boxes to causal mechanisms. We call a Markov
kernel f compatible with a given causal structure if f arises as the diagram by filling in
concrete Markov kernels into its boxes. Therefore, compatibility is a functorial property.
This framework is more general than the traditional notion of causal structure defined as
a directed acyclic graph in several ways: for example, it models Markov kernels rather
than mere probability distributions; through string diagrams in which the same box ap-
pears several times, it allows for causal structures with the constraint of multiple identical
causal mechanisms.

Based on the categorical definition of causal models, we define a categorical notion of
d-separation. A causal model displays d-separation of a collection of wires Z if the string
diagram becomes disconnected upon removing the wires in Z. Our first main result is
that categorical d-separation is equivalent to the classical d-separation whenever the latter
makes sense (Proposition 19). Finally, we prove an abstract version of the d-separation
criterion as our main result:
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2 THE D-SEPARATION CRITERION IN CATEGORICAL PROBABILITY

Theorem 27. Let C be a strict Markov category with conditionals, ¢ a pure bloom causal model
in which each type of box appears at most once in @, and f a morphism in C. Then the following
statements are equivalent:

(a) f is compatible with .
(b) f satisfies the global Markov property, i.e. for every three disjoint subsets X, Y, Z of wires
in g,
Z d-separates X and )Y — X LY |Z.

(c) f satisfies the local Markov property, i.e. every output is conditionally independent from
its non-descendants given its inputs.

A central assumption in this result is the existence of conditionals [1]. Pictorially, a
Markov category has conditionals if every f : A -+ X ® Y factorizes like this:

X Y
X v
{ ]

In other words, the outputs in f are generated successively while having access to all
prior information. Conditionals exist for discrete random variables as well as continuous
random variables on standard Borel spaces and in Gaussian probability, and this facilitates
the application of our results to all of these cases.

Our abstract approach to the d-separation criterion has several attractive features:

e In contrast to classical d-separation, the formulation in terms of string diagram
connectedness makes our categorical d-separation criterion is very simple to un-
derstand.

e It provides a uniform treatment of the d-separation criterion for discrete variables,
Gaussian variables and continuous variables, where the latter seems to be entirely
new.

e We may hope for future extensions to more general kinds of causal models to
which classical d-separation does not apply.
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THE D-SEPARATION CRITERION IN CATEGORICAL PROBABILITY

TOBIAS FRITZ AND ANDREAS KLINGLER

AsstrACT. The d-separation criterion detects the compatibility of a joint probability distri-
bution with a directed acyclic graph through certain conditional independences. In this
work, we study this problem in the context of categorical probability theory by introducing
a categorical definition of causal models, a categorical notion of d-separation, and proving
an abstract version of the d-separation criterion. This approach has two main benefits. First,
categorical d-separation is a very intuitive criterion based on topological connectedness.
Second, our results apply in measure-theoretic probability (with standard Borel spaces),
and therefore provide a clean proof of the equivalence of local and global Markov properties
with causal compatibility for continuous and mixed variables.
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1. INTRODUCTION

The d-separation criterion [ 18] is a necessary and sufficient condition for the compatibil-
ity of a probability distribution with a causal structure in the form of a directed acyclic
graph (DAG). It states that a joint probability distribution of a collection of random vari-
ables is compatible with the DAG—in the sense that each of its nodes is one of the given
variables, and each arrow denotes the possibility of causal influence—if and only if the
distribution satisfies a list of conditional independence relations encoded in the structure
of the DAG.

In this paper, we study this causal compatibility problem in the framework of categorical
probability theory. We elaborate on the framework of generalized causal models recently
proposed in [10], introduce a categorical notion of d-separation, and prove a categorical
generalization of the d-separation criterion.

DEePARTMENT OF MATHEMATICS, TECHNIKERSTR. 13, A-6020 INNSBRUCK, AUSTRIA

INsTITUTE FOR THEORETICAL PHYSICS, TECHNIKERSTR. 21A, A-6020 INNSBRUCK, AUSTRIA

E-mail addresses: tobias.fritz@uibk.ac.at, andreas.klingler@uibk.ac.at.

Date: July 11, 2022.

Acknowledgments. We thank Rob Spekkens for the original idea behind the definition of categorical d-
separation and Patrick Forré for discussion and pointers to the literature. AK acknowledges support from the
Stand Alone project P33122-N of the Austrian Science Fund (FWF).

1



2 THE D-SEPARATION CRITERION IN CATEGORICAL PROBABILITY

The framework of generalized causal models involves freely generated categories called
free Markov categories [10]. Starting from a set of morphisms as building blocks (represent-
ing the basic causal mechanisms), we construct a morphism in this category by assembling
these blocks consistently. More precisely, a morphism in such a free category is a string
diagram consisting of wires and boxes. In our context, these diagrams represent the causal
models. Each wire corresponds to a local random variable and each box to a causal mecha-
nism generating one or several new output variables from its input ones. A morphism in
any Markov category is compatible with such a causal model if it can be decomposed in the
form specified by the causal model; this generalizes the standard factorization definition
of Bayesian networks [6].

Further, we define a categorical notion of d-separation in terms of the string diagrams. A
causal structure displays d-separation of a collection of outputs Z if it becomes disconnected
upon removing the corresponding wires in Z. We show that this is equivalent to classical
d-separation for the class of causal models for which the latter is defined, namely those
that correspond to DAGs.

Finally, we prove an abstract version of the d-separation criterion for our categorical
notions of causal model and d-separation. We show that a given distribution, possibly
depending on additional input variables, is compatible with a causal structure if and only
if it displays conditional independence between sets of variables whenever the causal
model displays d-separation for the corresponding sets of wires. This result holds not
just for “distributions” in the usual sense, but in the general sense of morphisms in any
suitable Markov category C. A central structural ingredient in the proof is the assumption
that C has conditionals [9]. Intuitively, this property states that every Markov kernel with
multiple output variables arises by generating one output variable after the other, namely
as a function of the input variables and previously generated outputs. Such conditionals
exist in the Markov category FinStoch which describes discrete random variables, but
also for continuous or mixed random variables (technically for variables taking values in
standard Borel spaces, but not arbitrary measurable spaces) as well as Gaussian variables.
This implies that our definitions and results apply equally easily to all of these cases.

This approach leads to new insights into the structure of d-separation and generalizes
the classical result, to the best of our knowledge, in two notable directions:

— It gives a criterion for compatibility of Markov kernels with a causal structure rather
than probability distributions.” This is because Markov categories describing
probabilities have Markov kernels as their morphisms, which therefore become
the basic primitives of our formalism.

— It provides a uniform proof of the equivalence between d-separation and causal
compatibility for discrete variables, continuous variables (or rather arbitrary vari-
ables taking values in standard Borel spaces) and Gaussian variables. This follows
from the fact that we reason abstractly and even more generally in any Markov
category with conditionals. This approach generalizes the d-separation criterion
on the pure DAG-setting for continuous variables shown for distribution with a
density [15, 14], which was later extended to arbitrary variables with values in
standard Borel spaces [3].

This paper is organized as follows. In Section 2, we give a more detailed non-technical
overview of the main concepts of this paper, including causal models as string diagrams
and categorical d-separation. In Section 3, we recall and explain the definitions of Markov
categories and gs-monoidal categories. In Section 4, we review the construction of free

IFor a different approach to causal compatibility of Markov kernels we refer to [7].
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gs-monoidal and free Markov categories, leading to generalized causal models and causal
compatibility for morphisms in Markov categories. In Section 5, we present the notions
of conditionals and conditional independence. In Section 6 we introduce a categorical
notion of d-separation and prove the main results of this paper, namely the equivalence
with classical d-separation (Proposition 21) and our abstract version of the d-separation
criterion for causal compatibility (Theorem 27).

2. CAUSAL MODELS AND MARKOV CATEGORIES

In this paper, we study causal models, in the sense of Bayesian networks, from a categor-
ical perspective. In order to make this accessible to readers without a formal background
in category theory, we outline this paper’s main concepts and results in this section.

Section 2.1 gives a non-technical introduction to the string-diagrammatic formalism
representing causal models and its relation to the classical DAG formalism. We then present
the concept of causal compatibility in Section 2.2 as a functorial property. In Section 2.3,
we present categorical d-separation as a statement about the connectedness of the string
diagram and explain our result on the d-separation criterion in Section 2.4. Therefore, the
string diagrammatic approach opens the door for a new perspective on d-separation and
its connection to causal compatibility.

2.1. Extending Bayesian networks with string diagrams. Traditionally, the definition
of Bayesian networks relies on the concept of directed acyclic graphs (DAG), since such
a graph encodes the underlying causal structure. To each node v € V(G) of a DAG G is
associated a random variable X, and each directed arrow w — v is associated a direct
possible causal dependence of the variable X, on X,,. Formally, if we index the nodes
by 1,...,n, then this means that a joint probability distribution P is compatible with the
causal structure G if P factorizes into

P(Xy,....X,) =[] P(X; | Pa(X;))
i=1

where Pa(X;) = {X; : G contains the arrow j — i} is the set of parents of X relative to G.

In the categorical framework, we can refine the notion of Bayesian networks via string
diagrams, an idea that extends the categorical approach developed by Fong [6] and
others [19, 20, 12, 13]. These diagrams arise naturally in categorical probability, which refers
more generally to recent work on axiomatizing probability theory with simple, algebraic
rules which avoid the low-level machinery of measure theory by hiding it in the proofs of
the relevant axioms [9].

In categorical probability, a probability measure or probability distribution on a set or
measurable space X is a morphism p: I — X, depicted as

X

v

Here I is a singleton set that is not drawn in the diagram, the upper wire represents
the probability space X, and the box p a probability distribution, considered now as a
function with no input and one (random) output in X. Depending on the particular
context, p can be a finite probability distribution, a Gaussian, or a probability measure on
an arbitrary measurable space. A conditional probability distribution—also known as a
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Markov kernel—is represented as a general morphism f: X — Y, depicted as

Y

X

where the wire X represents the input and Y the output space. The basic primitives in
categorical probability are Markov kernels, of which probability distributions as above are
special cases obtained by setting X = I.

These morphisms can be composed into new ones. For example, composing f with p,
pictorially

\/

gives rise to a new distribution of a random variable with values in Y. In the concrete
setting, the composition is given by the Chapman-Kolmogorov equation, which reads for
discrete distributions as

(fop)(y)= D, fylx) p(x)

reX

and for Markov kernels on arbitrary measurable spaces as

(Fop)(A) = [ F(Al2)p(da).

where A € ¥y, with Xy the o-algebra of the measurable space Y.
Each random variable can be copied or marginalized over, for which there exists special
string-diagrammatic notation:

kTJ and I

We formally axiomatize the semantics of the resulting string diagram calculus in Defini-
tion 1 as the definition of a Markov category. This definition consists of a set of rules which
axiomatize the behaviour of Markov kernels.

Each flavour of probability has its own Markov category. There is a Markov category for
discrete probabilities (called FinStoch), one for Gaussian probability (Gauss), one for
probability theory on standard Borel spaces (BorelStoch), and one for probability theory
on arbitrary measurable spaces (Stoch). But there are also other Markov categories in
which the morphisms are not Markov kernels. These include the so-called free Markov
categories, which form our framework for causal structures which generalize DAGs. Rather
than Markov kernels, the morphisms in a free Markov category are the string diagrams
themselves, i.e. all "networks” that can be built by wiring together a set of boxes, similar to
how an electrical circuit is obtained by wiring together electrical components. In this way,
string diagrams constitute generalized causal models. In particular, we will see that string
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diagrams can represent arbitrary DAG causal models. Consider for example this DAG:

)
N\
™) ™) 1)
\@/

As a string diagram, this causal structure looks like this:

L

Each loose wire” represents a random variable where the wire’s name indicates the vari-
able’s name. Further, each variable has a corresponding type, a placeholder for the mea-
surable space in which the variable takes values. Unless necessary, we will not explicitly
mention the type of each variable.

In our setting, some wires are connected to an “output” representing a variable that is
“observed” rather than marginalized over, as indicated by the white dots. Note that every
variable then becomes an output in at most one way. In certain situations we consider
causal models where every wire is connected to an output. Throughout the paper, we call
such diagrams pure blooms (see Definition 7). Unless stated otherwise we will denote the
output by the name of the wire connected to the output. We will define certain operations,
like d-separations, only with respect to output wires which highlights that we cannot
address latent variables (i.e. wires that are not connected to an output) in general.

Causal models given by a DAG correspond to pure bloom string diagrams where each
box has precisely one output wire, and the input wires represent the parents of the node
in the DAG. The following table explains the relation between nodes in a DAG, boxes in
the string diagram and the corresponding conditional probability distribution.

2Note that we use the term “wire” as referring to an entire connected piece of circuitry, i.e. traversing a
black dot in the diagram does not leave the wire.
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DAG string diagram conditional distribution
5 1
E @ P(X|ABC)
8 /1N
z \/ o/
2 @ ;R P(XX|ABC)
g 71N
2 X P(XY|ABC)
=]
T

Using string diagrams themselves as generalized causal models allows us to go beyond
the DAG approach in several directions:

— String diagrams in Markov categories describe Markov kernels instead of just prob-
ability distributions. Therefore, the string diagram language allows for modeling
causal structures with inputs, such as

1)

This describes a causal structure in which the input variable at the bottom does
not have any particular distribution itself.

— Asindicated in the table, boxes in the string diagram can have more than a single
output wire. This allows for causal structures like

X Z1 Zy Y

=

which are not native to the DAG framework (see Example for a detailed
discussion of this structure).

— String diagrams allow for the use of identical boxes multiple times. In particular,
we can represent symmetric causal structures, for example,

X1 Xo Z X3 Xy
o o (0] (0]
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represents a causal structure in which one random variable with distribution
p causally influences four others with the additional constraint that the causal
mechanism must be the same for all four. Further, in this situation the types of the
variables X1, ..., X4 must be the same.

2.2. Causal compatibility for Markov categories. A distribution is compatible with a
causal model if it can be written as a composition in precisely the way specified by the
corresponding string diagram. In other words, every type W in the string diagram must
be mapped to a concrete measurable space F'W and every box f to a concrete Markov
kernel F'f.

In the category-theoretic language, this is captured in the following way [6]. A morphism
p in a concrete Markov category is compatible with a causal structure ¢ if and only if there
exists a Markov functor F' such that p = Fip. Intuitively, this functor acts in the following
way:

X Y
it 7 FA FC FB X zly'
F !
: ) !
[ \f
o FC VA
A

where p is the given morphism in a concrete Markov category and FreeMarkov the free
Markov category whose morphisms capture the causal models. Further X has type A, Y
has type B and Z has type C'. So if the original p takes input from a measurable space Z’
and outputs values in measurable spaces X', Z' and Y, then in particular the types must
match in the sense that F'A = X' etc.

2.3. Categorical d-separation. The notion of d-separation for DAGs is a criterion relating
conditional independence in causal models to the causal compatibility with a DAG. In
Section 6.1, we introduce a categorical notion of d-separation from a different perspective.
Although this notion looks different and much simpler than classical d-separation, we
prove that it coincides with the classical one when considering causal models on DAGs.
An output wire Z categorically d-separates the output X from output Y if X and YV
become disconnected upon marginalizing over all wires that are not involved in the d-
separation relation and removing the wire Z. Consider, for example, the DAG in Equation
(1). Z classically d-separates X from Y, as one can see based on the fact that the only
paths between X and Y are the collider X — W <« Y and the fork X « Z - Y. In the
corresponding string diagram, Equation (2), we witness categorical d-separation by first
marginalizing over W, then removing the Z wire, and finally observing that X and Y are
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disconnected, pictorially:
X Z . Y

.,
CUtZ

\V

On the other hand, X is not d—separated from Y by W and Z due to the collider X —
W < Y. In the string diagram this is apparent since upon removing the wires Z and W,

X Z W

k\a J o)

CutW,Z

V

X and Y are still connected.

2.4. d-separation and causal compatibility. For Bayesian networks, d-separation detects
conditional independences for any compatible probability distribution. In particular, if
two output wires X and Y are d-separated by the output wire Z, wehave X 1 Y | Z.

Conditional independence in Markov categories is defined string diagrammatically. A
probability distribution p on a product space X x Y x Z displays the conditional indepen-
dence X 1Y | Z if it can be written in the form

X 4 Y

X Z'Y j]

pv
This reflects the classical notion of conditional independence; in the situation of finite

probability distributions, it encodes the equation

P X=xY=yZ=2)=P(X=u2|Z=2)-P(Y=ylZ=2)-P(Z==2).

But also for Gaussian random variables as well as measures on standard Borel spaces,
one recovers the intuitive notions of conditional independence [9, Section 12]. Moreover,
the diagrammatic definition is even sufficient to derive the semigraphoid properties [9,
Lemma 12.5]. It also generalizes to a notion of conditional independence for morphisms
with inputs (see Definition 14).

In Section 6.2, we prove that the categorical d-separation criterion applies to generalized
causal models in Markov categories. For this reason, we define a notion of conditional
independence which applies to arbitrary Markov kernels (Definition 14). We first prove
the soundness of the d-separation, namely, if Z categorically d-separates X from Y, then
X 1Y | Z (Corollary 25). Second, we prove the completeness of d-separation for causal
compatibility: if a Markov kernel satisfies the global Markov property for a causal structure
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(i.e. every d-separated triple shows conditional independence), then the Markov kernel is
compatible with the structure (see Theorem 27 for the precise assumptions and also the
equivalence with the local Markov property).

A central assumption for the proof is the existence of conditionals (see Definition 11).
Intuitively it says that the outputs of any morphism f can be generated successively
while having access to all prior information. Conditionals exist in discrete probability,
measure-theoretic probability on standard Borel spaces and in Gaussian probability, and
this facilitates the application of our results to all of these cases, where the second case
includes continuous random variables.

3. GS-MONOIDAL AND M ARKOV CATEGORIES

In the following, we recall the definitions of Markov categories and gs-monoidal cate-
gories. Markov categories are the basic structure modeling different flavors of probability,
including discrete random variables, Gaussian random variables, continuous random
variables on standard Borel spaces, or random variables on arbitrary measurable spaces.
We assume some familiarity with symmetric monoidal categories and string diagrams.

The notion of gs-monoidal categories goes back to Gadducci’s thesis [ 11, Definition 3.9]
and an associated paper by Corradini and Gadducci [5]. There, it was considered with a
different motivation in the context of term graphs and term graph rewriting.

Definition 1 (gs-monoidal category [11] and Markov category [9]).

(i) A gs-monoidal category C is a symmetric monoidal category with monoidal unit I
equipped with a commutative comonoid structure for every object X e C given by a counit
delx : X — I and a comultiplication copyy : X — X ® X. In the string diagrammatic
notation, these operations are depicted as

delX = copyx = \TJ

They are required to satisfy the commutative comonoid equations, diagrammatically given

Y U] S e

and to be compatible with the monoidal structure, i.e.
A B A B A®B A®B

T T kTJ'J _ LTJ (4)
A®B A B A B A®B
as well as
o L I I L
- R ©)
T L. J T L. J

(ii) A gs-monoidal category is called a Markov category if del is in addition natural, i.e. if
for all morphisms f,

= (6)
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We refer to [ 10, Remark 2.2] for more details on the multifarious history of these notions.
When considering morphisms with multiple outputs, we often denote the collective inputs
and outputs as sets instead of tensor products. For example, we write

X Y W
]
A B C 1%
where V = {A,B,C} and W = {X,Y}. Modulo some abuse of notation, the order of the
inputs and outputs is irrelevant since we can always permute the wires, and therefore it is
enough to consider V and W as sets rather than lists or totally ordered sets.
The most important examples of Markov categories for probability theory are the fol-

lowing:

(a) FinStoch is the Markov category of finite stochastic maps. The objects are finite
sets X, morphisms p: I - X are probability distributions and general morphisms
f X — Y are stochastic matrices.

(b) Stoch is the Markov category of arbitrary Markov kernels on measurable spaces.
The objects are measurable spaces, morphisms p : I - X are probability measures,
and general morphisms f : X — Y are measurable Markov kernels.

(c) BorelStoch is given by Stoch restricted to standard Borel spaces as objects.

(d) Gauss is the Markov category of Gaussian probability distributions. The objects
are the spaces R", morphisms p : I - R" are Gaussian probability measures and
general morphisms f : R" - R™ can be understood as stochastic maps

x> Ax+¢&

where A is any real m x n matrix and ¢ is Gaussian noise. Gauss is a (non-full)
subcategory of BorelStoch.

In each case, composition, the symmetric monoidal structure and the Markov category
structure are the obvious ones. For more details and further examples we refer to [9].
In our context, gs-monoidal categories that are not Markov categories play more of an
auxiliary role which we will detail below.

4. FREE MARKOV CATEGORIES AND GENERALIZED CAUSAL MODELS

Causal models are a framework for studying and modeling dependencies between
random variables. In this section, we introduce such a framework in the language of
Markov categories. We therefore investigate causal relationships independently of the
particular notion of probability behind it (discrete, measure-theoretic, Gaussian, etc).

Free Markov categories are the tailored notion for these purposes. These categories
contain precisely all blueprints for causal networks that can be built from a bunch of given
causal mechanisms. A morphism in this category is then what we call a generalized causal
model.

The remainder of this section explains this in technical detail based on the formalism of
free gs-monoidal categories and free Markov categories from [10]". This part is structured
as follows: In Section 4.1, we introduce the category of hypergraphs. In Section 4.2 we
use hypergraphs to define gs-monoidal string diagrams, free gs-monoidal categories,

3t is also possible to instantiate all of our definitions and results in a “possibilistic rather than probabilistic
setting. While this would be interesting e.g. in the context of non-determinism in computer science, the focus
of the present work is on the probabilistic case.

4Another very similar construction of free gs-monoidal categories has been given independently in [16].
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and subsequently free Markov categories. In Section 4.3 we introduce generalized causal
models and causal compatibility of morphisms in arbitrary Markov categories.

4.1. The category of hypergraphs. A gs-monoidal string diagram, and therefore also
a generalized causal model is defined as a hypergraph with extra structure. To define
the relevant notion of hypergraph following [ 1], let first I be the category defined in the
following way:

(i) The set of objects is given by {(k,¢) | k,¢ e N} u {x}.

(ii) Besides the identity morphisms, for every (k,¢) there are k + ¢ different morphisms

iny,...,ing,outy,...,outy: (k,£) > *,

and no other morphisms.

It is not necessary to specify a composition rule in I, since no compositions except the
trivial ones can be formed.

Definition 2. A functor G : I — Set is called a hypergraph. Accordingly, we define the functor
category

Hyp = Set!
to be the category of hypergraphs.

Intuitively, the functor G characterizes our common interpretation of (directed) hyper-
graphs in the following way:

(i) W(G) = G(~) is the set of vertices, which we will call wires.
(ii) Bie(G) = G((k,¥)) is the set of hyperedges, which we will call boxes, with k inputs
and / outputs.
(iii) G(in;) specifies the ith input wire of every box.
(iv) G(out;) specifies the jth output wire of every box.
While the set of wires and boxes of a hypergraph may be infinite, the number of inputs
and outputs of a box is always finite. We present a pictorial representation of a hypergraph
in Figure 1.

E

C:
Y\

Ficure 1. Pictorial representation of a hypergraph with wire set
{A,B,C, D, E} and box set { f, g, h,m,n}. For example, the box f has one
input incident to the wire B and two outputs both incident to the wire A.
The wire E is not incident to any box.

Given a box b € By, ¢(G) and a wire A € W(G), we define

in(b,A) =|{j e {1,...,£} :in;(b) = A}
out(b, A) = {ie{1,...,k} : out;(b) = A}|.

Y
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Thus in(b, A) and out(b, A) counts the number of incoming or outgoing wires of type A in
the box b. We also define the sets of inputs and outputs as

in(b) = {in;(b) :i e {1,...,0}},
out(d) = {outi(b) tied{l,..., k}},
where repeated wires are counted only once.
Next, we analyze the morphisms in Hyp. Since Hyp is a functor category, a morphism

a: F' — G is precisely a natural transformation « : F' = G. Such a natural transformation
is fully determined by its components

a, :W(F)->W(G) and gy By (F) = By (G)  forallk, £ eN

satisfying naturality, i.e. commutativity of all diagrams of the form

in; out;
By (F) —— W(F) By (F) —— W(F)
[e774 677N Qg p (€970
J/ ini l J/ OUtj J/
By o(G) —— W(G) By o(G) — W(G).

In other words, every natural transformation is a structure-preserving map between hy-
pergraphs, i.e. if box f is incident to wire A in its ith input in the hypergraph F), then the
same applies to their images with respect to « in the hypergraph G.

A hypergraph can contain an infinite set of wires and boxes. In the following we mainly
restrict to finite hypergraphs, i.e. functors G : I - Set where W (G) and

B(G) = 1 Bre(G).
k,leN

are finite sets. We denote the corresponding full subcategory of Hyp by FinHyp.

4.2. gs-monoidal string diagrams and free Markov categories. The pictorial represen-
tation of hypergraphs indicates their use for modeling causal structures in a categorical
framework. In this subsection, we use hypergraphs in order to construct free Markov
categories generated by a fixed hypergraph X. These are Markov categories in which the
morphisms are string diagrams formed out of the boxes in ¥, or equivalently generalized
causal models.

However, three apparent problems make hypergraphs not directly applicable to repre-
sent string diagrams:

(1) General hypergraphs might contain loops, for example in the sense that an output
wire of a box may directly feed back as an input.

(2) While the splitting of a wire into two represents the copying of values and makes
sense in any Markov category, the merging of wires as in Figure | does not make
sense.

(3) A hypergraph in itself does not include any information about which wires are
inputs or outputs of the overall diagram.

We resolve these issues by restricting to acyclic and left monogamous hypergraphs and by
representing gs-monoidal string diagrams by cospans thereof:

Definition 3. Let X be a hypergraph. A gs-monoidal string diagram for X is a cospan in the
slice category FinHyp/% of the form

QVGXE
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1 2 3 .
1 2 TAz A
Ay . As
a\ [ -

; (7] [%]

By ko—/ B, Cl

FiGURe 2. An example and two non-examples of gs-monoidal string dia-
grams where X is the hypergraph from Figure 1. The hypergraph mor-
phisms to ¥ are given by mapping the wires A; to A in both examples as
well as mapping the boxes labelled f; to the f in X.

satisfying that:
(i) Gisacyclic, i.e. there is no family of wires Ay, ..., Ax_1 € W(G) and boxes fo, ..., fr-1 €
B(G) such that

in(fi,A;) 21 and out(fi, Ais1) 21,

where the subscripts are modulo k.
(ii) G is left monogamous, i.e. for every wire W € W (G') we have
p W)+ > out(f,W) <1
feE(G)
By abuse of notation, we also write G for the underlying hypergraph of the object G in FinHyp/%,
and we write type : G — X for the morphism that makes it into an object of FinHyp/3.

In this definition, the discrete hypergraph n is defined to have W(n) = {1,...,n} and
contains no boxes. Thus the morphism p : n — G simply equips some wires with labels
from 1,...,n, thereby telling us which wires of G are input wires of the overall diagram
and in which order. The other cospan leg ¢ : m — G similarly encodes the m output wires.

Pictorially, an acyclic hypergraph does not contain a family of wires which form a loop.
Further, left monogamy requires that every wire in the hypergraph arises as either a
global input or as an output of a box in precisely one way, ensuring that no “merging” of
wires occurs. See Figure 2 for an illustration of all of this. The hypergraph morphisms
type : G — ¥ are given by mapping the wires A; to A in both examples as well as mapping
the two distinct boxes f; to the only morphism f in 3, etc. The first and second hypergraphs
are acyclic, while the third one is not. The first and third hypergraphs are left monogamous,
while the second one is not since A, is an output of two boxes. Finally, we have n = 0 in
the first two cases, so that the left cospan leg p is trivial, while the right leg ¢ maps each
number 7 to the ith overall output wire as counted from left to right.

The notion of gs-monoidal string diagram is the main ingredient for constructing a
gs-monoidal category whose morphisms are freely generated by the wires and boxes in a
fixed hypergraph X. Indeed we can now define the category FreeGSy: as follows:

(i) Objects are all hypergraph morphisms o : n — X for n € N, or equivalently finite
sequences of wires in X.

(ii) Morphisms are the isomorphism classes of gs-monoidal string diagrams.
Composition in FreeGSy; is defined by a pushout which which coincides with the way
of stacking and connecting up drawings of string diagrams. The gs-monoidal structure
likewise corresponds to the obvious operations in terms of string diagrams. We refer
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to [10] for details. In the following, we will not distinguish between a gs-monoidal string
diagram and its isomorphism class.

FreeGSy is typically not a Markov category. For example, the first step in the following
simplification does not hold since the (cospans of) hypergraphs are not isomorphic, while
the second equation does hold:

@ L ] * ._J k. = (7)
In the following, we define the free Markov category FreeMarkovs, by taking a quotient

of FreeGSy, which enforces Equation (6), so that also the first equation above becomes
true.

Definition 4. Let

G
0= V X (8)

be a gs-monoidal string diagram.

(i) A box b e B(G) is called eliminable if each output of b gets discarded, i.e. if for every
W e W(Q) such that out(b, W) > 0 we have
(a) ¢ (W) =0.
(b) in(b/, W) =0 for every box b’ € B(G).
(if) ¢ is called normalized if it contains no eliminable boxes.

Every gs-monoidal string diagram has a normalized version obtained by iteratively
applying the rule of Equation (6) to any eliminable box. Since every diagram is finite, this
procedure terminates after finitely many steps, and we reach the normalized version. In
addition, this diagram is unique since the order of elimination does not matter.

The free Markov category FreeMarkovy, is now defined just as FreeGSy;, but with
morphisms restricted to the normalized gs-monoidal string diagrams. The composition of
morphisms is then defined as composition in FreeGSy; followed by normalization since
the composition of two normalized diagrams need not be normalized. See [10] for details.

o = \ H /
is not normalized, since the output of b gets discarded. Applying Equation (6), also the
output of ¢ get discarded. Therefore the normalization of ¢ is

norm(yp) = % %

Example 5. The morphism
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In general, normalizing a gs-monoidal string diagram defines a strict gs-monoidal
functor

norm : FreeGSy. - FreeMarkovsy,
that is identity-on-objects.

4.3. Causal models and causal compatibility. We now introduce the notion of a gener-
alized causal model and define when a morphism in a Markov category is considered
compatible with a generalized causal model.

Definition 6 ([ 10, Definition 7.1]). Given a hypergraph ¥, a generalized causal model is a
normalized gs-monoidal string diagram (8) over ¥ such that q is injective.

Intuitively, a generalized causal model is a morphism in FreeMarkovy, where the
injectivity of ¢ ensures that each wire is connected to at most one output. This lets us
identify the global inputs and outputs with the wires in W (G) (see Notation 9). In the
traditional terminology of random variables, the injectivity of ¢ guarantees that different
outputs correspond to different variables. Figure 3 shows examples of generalized causal
models.

One relevant subclass of generalized causal models are pure blooms. These morphisms
represent causal models in which all variables are observed, i.e. every wire is an output in
exactly one way, such as in Figure 3(C).

Definition 7 ([10]). Let o be a generalized causal model represented by a gs-monoidal string

diagram
G
N
n m

Then  is called pure bloom if q is a bijection on wires.

o WU

(a) Non-example of a gener-  (B) The Bell scenario. (c) The instrumental scenario
alized causal model. with every variable being ob-
served.

Ficure 3. (Non-)Examples of generalized causal models. While (B), (C) are
generalized causal models, the string diagram (A) is not since the output
wire of g is connected to two global outputs. Concerning Definition 7, the
generalized causal model (B) is not a pure bloom since the output of A is not
connected to a global output. The generalized causal model (C) is a pure
bloom without inputs. For a further analysis of (C) regarding d-separation,
see Example . In all three examples, we have ¥ = G and assume type
to be the identity map for simplicity.
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For an example of a pure bloom morphism we refer to Figure 3. We will show that the
soundness of the d-separation criterion holds for arbitrary generalized causal models (see
Corollary 25) while the completeness holds for pure bloom morphisms (see Theorem 27).

To define causal compatibility, we make the following assumption for the rest of the
paper for convenience:

Assumption 8. Throughout, C is a strict Markov category.

Although most examples like FinStoch, BorelStoch or Stoch already fail strictness,
this does not exclude these examples since we can always work with a strictification
instead [9, Theorem 10.17], which satisfies Assumption 8. On the other hand, our free
Markov categories FreeMarkovy already satisfy this condition “on the nose”. In any case,
Assumption & is a useful convenience that holds without loss of generality.

Notation 9. For the rest of the paper, we will assume that ¢ is a generalized causal model with

G
¢ = P N
n/ m

which becomes a cospan in FinHyp/% through type : G - .
We identity inputs and outputs with the wires they map to under p and q and refer to them as
such. In particular, we define

in(p) =p(n) € W(p) ©)
out(ip) = q(m) € W(e) (10)
for the set of all input /output wires. If v is a pure bloom morphism, then out(p) = W ().

Note that ¢ is a morphism
v Qtype(p(i)) — Qtype(q(s))
i=1 j=1

in FreeMarkovy.

In the following, we present the notion of causal compatibility for a generalized causal
model ¢. Intuitively, a morphism f in any Markov category C is compatible with ¢ if we
can plug in a morphism from C into every box in B(X) in such a way that the composite
is exactly f, and such that the global input and output wires of ¢ correspond to a given
tensor factorization of the domain and codomain of f:

Definition 10 (Compatibility). For ¥ a hypergraph, let © be a generalized causal model as in
(9). Let further

[ QWi > QV]
i=1 j=1

be a morphism in any Markov category C satisfying Assumption 8, equipped with a fixed tensor
decomposition of its domain and codomain as indicated.

We call f compatible with ¢ if there exists a strict Markov functor’ F' : FreeMarkovsy, — C
such that:

(i) We have
Wi = F(type(p(i))).  Vj=F(type(a(y))) (11)
for all input indices i = 1,...,n and output indices j =1, ... k.
(ii) f=F(p).

Si.e. a strict symmetric monoidal functor which preserves the comonoid structure.
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This generalizes the functorial definition of causal model as first studied by Fong [6].

Note that the functor F' must assign to every wire type (i.e., wire in ¥) a corresponding
object in the category C. This implies that wires in W (G) with identical types must map to
the same object in C. For example, one may consider a situation in which f is a probability
distribution with no inputs and all output variables are real-valued. In this case, we would
have Vj' =R for all j, and one may want to consider a causal model ¢ in which all wires
are likewise of the same type.

Similarly, the hypergraph morphism type : G — X assigns to each box in G a specific
“type” box in ¥. This means that under F, any two boxes with the same type must map to
the same morphism in C. This is why generalized causal models in our sense can naturally
incorporate the condition that several causal mechanism must be the same, namely when
one chooses the types in a way which enforces this.

In the following, we denote for every wire X € W(G) in ¢ the corresponding object
F(type(X)) in C by X’. Similarly, for every set of wires W ¢ W (G) in ¢, we denote the
corresponding multiset of wires in C by WW'. For the rest of the paper, we will associate this
multiset with the corresponding tensor product in C obtained by tensoring its elements,
where we ignore the question of how to order the factors.

5. CONDITIONALS AND CONDITIONAL INDEPENDENCE

5.1. Existence of conditionals. To use the d-separation criterion to detect causal compati-
bility, we need in addition the existence of conditionals. This notion has been studied in
categorical terms in [3] in a special case, where the authors call it admitting disintegration,
and subsequently in [9] in general. In the following, we briefly review the definition
following [9, Section 11].

Definition 11. Let C be a Markov category. We say that C has conditionals if for every morphism
f:A—> X®Y, there is a morphism f|, such that

X Y
ka

-
A

Examples of categories having conditionals are FinStoch, Gauss as well as BorelStoch.
In contrast, Stoch does not have conditionals (see [9, Examples 11.6-11.8] and references
therein).

5.2. Conditional independence. A second ingredient of the d-separation criterion is the
definition of conditional independence. The following definition has been introduced
in several works (see for example [3, Section 6] or [4] in a different setup) and shown
to satisfy the well-known semigraphoid properties. In addition, [9] shows that it is still
meaningful to define conditional independence in the absence of conditionals.
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Definition 12. A morphism f:1 - X ® Z® Y in C displays the conditional independence
X LY | Z if it can be written as

x 2y x 2

%

In other words, X 1 ) | Z holds if f is compatible with the generalized causal model
which corresponds to the string diagram on the right-hand side (where all boxes are of
distinct type, and we leave labels off for simplicity).

Remark 13. The conditional independence X 1 () | Z is equivalent to the existence of the
conditional T Therefore, if C has conditionals, then every state r satisfies X' L 0 | Z for
every tensor factorization of its codomain X ® Z. A

As we have already done in the previous definition, we write X', ), ... for arbitrary lists
of objects in C. We also allow for implicit reordering of these lists—effectively identifying
these lists with multisets—and omit mention of the relevant compositions of f by swap
morphisms.” This allows us to talk about conditional independence with respect to any
tripartition of the tensor factors in the codomain of any state f.

With this in mind, we now introduce a notion of conditional independence for mor-
phisms with inputs. This notion is the key ingredient of the d-separation criterion for pure
bloom causal models presented in Section 6.2, and it is the categorical generalization of
the transitional conditional independence introduced recently by Forré [7, Definition 3.1]".

Definition 14. A morphism f: A - X ® Y ® Z in C displays the conditional independence
X L Y| Z if there exists a factorization of the form

zZ y x 2y

A A

Remark 15. Note that the above definition of conditional independence is not symmetric,
ie. X 1 Y| Z does not necessarily imply J L X' | Z. If C has conditionals then X L Y | Z

rewrites to
x 2y x 2y x 2y
*-f % SES
T
A A A

which highlights the asymmetry. Moreover, if A is trivial, then the conditional indepen-
dence coincides with Definition

60f course, these kinds of bookkeeping mechanisms are also present in the traditional notation of probability
distributions and measures, though rarely made explicit in that context.
Note that Forré’s definition has the roles of X and swapped.
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Due to the asymmetry, the outputs in X might contain information about the inputs
A which cannot be retrieved just from the outputs in Z. On the other hand, the outputs
in ) are generated using only the information from the outputs in Z. The local Markov
property that we will use in Definition 26 explicitly highlights this asymmetry: the output
of a box (corresponding to V) is independent of its non-descendants (X') given its inputs
(Z). Every global input is non-descendant to any box; however, not every global input
wire is directly an input of the box itself. A

6. DECIDING CAUSAL COMPATIBILITY WITH d-SEPARATION

The main goal of this section is to prove that the d-separation criterion [ 18, Section 1.2.3]
correctly detects causal compatibility not just in discrete probability but in all Markov
categories with conditionals. To this end, we introduce a categorical notion of d-separation
phrased in terms of connectedness of the gs-monoidal string diagram representing the
causal model. We then show that this notion coincides with the classical notion of d-
separation whenever the latter applies.

This part is structured as follows. In Section 6.1, we introduce the categorical notion
of d-separation on generalized causal models. Moreover, we show in Proposition 21 that
this notion coincides with the classical notion of d-separation for all those generalized
causal models that correspond to DAGs. In Section 6.2, we first show that d-separation
implies conditional independences for compatible morphisms in Markov categories with
conditionals. We then show in Theorem 27 that d-separation fully characterizes causal
compatibility.

6.1. Categorical d-separation. For a gs-monoidal string diagram

G
p= N
ﬂ/ m

and a set of output wires Z ¢ out(y), we define a new gs-monoidal string diagram Cutz (¢)
obtained by removing the wires in Z in the following sense. Its underlying hypergraph
H is such that the set of boxes is the same, B(H) = B(G), while the set of wires is
W(H) =W(G) \ Z. Each box has the same input and output wires as before, expect in
that those in Z are simply removed, which lowers the arities of the boxes correspondingly.
We also remove all occurrences of wires in Z from the global inputs and outputs, and this
results in a gs-monoidal string diagram

H
Cuz(p)= 7 N
n' m'

Note that Cutz(y) is generally not a morphism in FreeMarkovs, anymore since it is not
normalized. However, it can be understood as a morphism in FreeGSy. Example 18 will
present a few examples.

We next introduce some notation for paths of wires.
Definition 16. Let ¢ be a gs-monoidal string diagram in FreeGSs..

(i) An undirected path between two wires X,Y € W (G) is a sequence of wires

X:W17W27"'7Wn7 Wn+1:Y
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together with a sequence of boxes b1, . .., b, € B(G) such that
in(bz-,Wi)+out(bi,I/Vi) >1 and in(bi,Wi+1)+out(bi,Wi+1) >1.

If there exists an undirected path between X and Y, then we write X - Y.
(if) For two wires A, B € W(G), we write A — B if there exists a box b € B(G)) such that

in(b,A)=1 and out(b,B) =1. (12)

(iii) For two wires A,B ¢ W(G), we write A — B if there exists a sequence of wires
Wi,..., W, e W(Q) such that

A-W; - ... > W, - B. (13)

Thus, an undirected path in ¢ may traverse a box not just from input or output or vice
versa, but also from input to input or output to output.

The intuitive idea behind the following definition of d-separation, as already briefly
discussed at [ 10, Remark 7.2], was communicated to us by Rob Spekkens.

Definition 17 (Categorical d-separation). Let ¢ be a generalized causal model. For three disjoint
sets of output wires X,Y, Z ¢ out(y), we say that Z d-separates X and ) if

Cutz(pxy,z)
has no undirected path between any output in X and any output in .

Here, ¢y = norm(delyye o) denotes the marginal on W ¢ out() in FreeMarkovsy. The
absence of an undirected path as in the definition manifests itself in the string diagrams
simply as topological disconnectedness.

Example 18. The following examples constitute the basic components of ”classical” d-
separation and illustrate the simplicity of categorical d-separation. In all cases, the unla-
beled boxes denote distinct generators, i.e. distinct boxes in the generating hypergraph 3.

(i) Fork: consider the morphism

Y

L

V

by

V

Then Z d-separates X from Y, since

Cutz(p) =

has disconnected X and Y.
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(ii) Chain: consider the morphism

has disconnected X and Y.
(iii) Collider: consider the morphism

X W Z Y

\

Then Z does not d-separate X from Y, since we have

\g / \
VAV, VAV,
Cutz(px,zy) = v v

Y

and therefore

21
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which still contains an undirected path X - Y. The same reasoning applies when
Z={W}or Z={W,Z}. However, if Z = (), then

X o o Y
@ X Y
exy = \ [ ] - T
which has disconnected X and Y. Therefore () d-separates X and Y.
(iv) Consider the morphism

(p = ®

V

The normalized marginal ¢ x y, 7 is given by
X ZY

o

X Z Y W
A

Yxy,z = *

Voo

which again shows that Z d-separates X from Y/, since cutting Z makes X and Y’
disconnected. A

In order to define the classical notion of d-separation, we note that every gs-monoidal
string diagram has an underlying DAG, given by using wires as nodes and taking the
edges to be — as in Definition 16. We use the term DAG path to refer to an undirected path
in this DAG, i.e. to a sequence of wires connected by boxes from input to output or vice
versa (but not from input to input or output to output). We also define the ancestor wires
of a given set of wires as

An(X)={U e W(G):3X € X such that U - X}.
and the set of descendant wires as
Dec(X) ={U e W(G) : 3X € X such that X - U}.

Note that X ¢ An(X), Dec(X'). To state the following classical definition [ 18, Definition
1.2.3] in our language, we restrict further to those generalized causal models that are
determined by their underlying DAGs. In a causal structure as represented by a DAG, it is
(implicitly) assumed that every node or variable has its own causal mechanism associated
with it; in our framework, this means that every box has exactly one output. Moreover,
DAGs have no global inputs which implies in our framework that in(y) = 0.

Definition 19 (Classical d-separation). Let ¢ be a pure bloom causal model with in(¢) = 0 and
such that every box has exactly one output. Then:

(a) A DAG path p in ¢ is called d-separated by a set of wires Z C out(¢) if:
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(i) p contains a chain W — Z — U or a fork W « Z — U for some Z € Z.
(ii) p contains a collider W — M « U where M ¢ An(Z).
(b) X is d-separated from Y by Z if every DAG path between every X € X and 'Y € ) is
d-separated by Z.

We will now prove the equivalence of categorical d-separation with classical d-separation
for the class of causal models on which the latter is defined. This requires some preparation.

Lemma 20. Let o be a pure bloom causal model, b € B(G) a box in ¢ and W ¢ out(y) a subset of
its wires. The following statements are equivalent:

(i) out(b) nAn(W) = 0.
(if) b gets discarded in ¢y = norm(delyye o ).

Proof. = (1): To prove the contrapositive, assume 34 € out(b) such that A ¢ An(W).
Then there is a path A - W with W € W. Since W is still an overall output that does not
get discarded, this path is still valid in delyye o . Therefore b remains in norm(delyye o ).
= (11): Consider the set Dec(out(b)). By assumption, we have that Dec(out(b)) N
An(W) = 0. We show that the box b gets discarded in norm(delpec(out(s)) © ¢), which is
enough because of W¢ 2 Dec(out(b)). By definition of Dec(out(b)), there exists a final box
bsuch that out(b) ¢ Dec(out(b)). This shows that b gets discarded in norm(deIDec(out(i))) o).
Define ¢ = norm(deIDec(ou t(b)) © ¢). Repeating the above procedure with @, we arrive
after finite number of steps at b itself being a final box. Since it is then eliminable after
composing with delpec(out()), it indeed no longer appears in the normalization. 0

We can now show the promised equivalence result between categorical d-separation
and classical d-separation in the cases where ¢ represents a causal structure given by a
DAG, i.e. in(p) = 0 and every box has a single output.

Proposition 21. Both concepts of d-separation coincide on pure bloom causal models p with
in(y) = 0 and in which every box has exactly one output.

Proof. To make the proof more intuitive, we introduce the term d-connected as the negation
of d-separated (in either version).

We start by showing that classical d-connectedness implies categorical d-connectedness.
Let p be a DAG path between some X ¢ X and some Y € ) which witnesses that Z makes
X and )Y be d-connected in the classical sense, which means that the following hold:

(i) For every chain W — M — U or fork W < M — U in p, we have M ¢ Z.
(ii) For every collider W — M « U in p, we have M € An(Z).

For simplicity, we also assume without loss of generality that p contains only one wire
twice from & and ) each, say X and Y respectively. Then this p can also be interpreted as
an undirected path in ¢, but generally not in ¢ = Cutz(¢x,y, z), since it may traverse
wires that are not in pcut. However, we now show that there still is an undirected path p’
between X and Y in ¢cu. By the above assumption (i), if p contains a wire Z € Z, then it
has to arise from a collider U - Z « W in p. Removing wire Z from p still defines a valid

8As defined in [10], a final box is one whose outputs are global outputs of ¢ without further copy or
discard. Such a box always exists since ¢ is pure bloom and normalized (compare [10, Lemma 4.6]).
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undirected path between X and Y/, pictorially:

US W:U%%W
IT IT

We prove that the path p’ obtained by removing all wires in Z from p like this is an
undirected path in ., which implies categorical d-connectedness. To this end, it only
remains to show that each wire in p’ is an existing wire in ¢, which we do as follows:

(i) X and Y themselves are still in eyt

(ii) Every Z € Z in p is part of a collider U — Z < W as above, so that U, W € An(Z).
This implies that U and W survive in px y z by Lemma

(iii) Since U and W are themselves either the middle node in a chain or fork or the start
or end of p, we have U,W ¢ Z. This implies U,W € An(Z) \ Z, and therefore U
and W survive also in ¢cyt.

(iv) For every chain W — M — U in p, if U survives in ¢qut, then so does M (since it
survives in gy y z and M ¢ Z).

(v) For every fork W < M — U in p, if U or W survives in ¢qut, then so does M (since
it survivesin px y z and M ¢ Z).

Since the wires in p' are exactly those of p minus some of the colliders, we can start with the
first two observations and then apply the latter two repeatedly on any segment bounded
by colliders or the starting node X or the final node Y in order to conclude that all wires
in p’ are present in (. This concludes one direction of the proof.

The converse direction of showing that categorical d-connectedness implies classical
d-connectedness works similarly. Let p be an undirected path between X e X and Y € Y
in pqut. We assume without loss of generality that all wires in p are distinct and that X
and Y are the only elements of X and ) in p. Furthermore, we also assume without loss
of generality that p is of the form

X« A-B-»Y, (14)

where no wire that is in between A and B is in An(X’) or An()), or equivalently that
every wire in p that is in An(X) is directly reached from X by output-to-input traversals
in p, and similarly for all wires in An()’). This property can be achieved by taking every
wire in p in An(X’) for which this is not the case and replacing the path from X to it by a
sequence of output-to-input traversals, and similarly for every wire in An()’). Note that
this replacement may involve changing the starting and ending wires X and Y as well. In
order to turn p into a DAG path p’ that witnesses classical d-separation, we need to remove
all direct input-to-input traversals of a box in p; direct output-to-output traversals cannot
occur due to the assumption that every box has exactly one output. We can hence simply
add to p the unique output wire of every box that has an input-to-input traversal in p, and
we obtain a valid DAG path p'.

It remains to verify the conditions on chains, forks and colliders. Clearly p’ does not
contain any chain W — Z — U or fork W < Z - U with Z € Z, since such a configuration
cannot occur in p to begin with. For a collider W — M <« U, the unique box which outputs
M must be contained in px y z, and therefore be in An(X u) u Z) by Lemma 20. However,
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M being in An(X') or An()) violates the assumption that p is of the form (14). Therefore
M has to be in An(Z), showing the collider condition (ii). O

We record one more observation on categorical d-separation for further use below.

Lemma 22. Let ¢ be a pure bloom causal model and X,Y, Z < out(y) a partition of all output
wires such that Z categorically d-separates X and ). Then every box b € B(G) in ¢ satisfies at
least one of the cases:

(i) in(b),out(b) c X u Z.
(it) in(b),out(b) c YU Z.

Proof. 1f there exist Y € Ynout(b) and X € X' nout(b), then these wires are still in the output
of bin gyt and this contradicts the assumed disconnectedness of ¢yt with respect to X and
Y. Since X, Y, Z form a partition, this shows that either out(b) € X' u Z or out(b) c Y U Z.

Proving out(b) € X U Z = in(b) € X U Z and out(b) € YU Z = in(b) € Y u Z works
similarly, and this then proves the statement. O

Pictorially, Lemma 22 shows that if Z d-separates & and ), then every box b in ¢ is of
the form

Xo Zo Vo 29
or
X1 Z N Z

where X; c X, YV, c Y, Z;,c Z.

6.2. Causal compatibility. In the following, we show that d-separation implies conditional
independence for any generalized causal model. We first prove this result for a partition
of wires in a pure bloom causal model in Lemma 23. We then refine it to any disjoint
collection of wires in Corollary 25 in any generalized causal model. Finally, we show in
Theorem 27 that d-separation fully characterizes causal compatibility for pure bloom causal
models in all Markov categories with conditionals.

Throughout, we also use the following convenient notation: If a morphism f in C is
compatible with a causal model ¢ in the sense of Definition 10, then we refer to the wires
of ¢ to indicate conditional independence instead of the objects in the tensor factorization
of f. In other words, instead of writing X’ 1 J'| Z’, we simply write X 1 Y | Z. Here, each
W' = F(type(W)) is the object in C associated to the wire W by the causal model functor
F (see Definition 10).

Lemma 23. Let C be a strict Markov category with conditionals, and let o be a pure bloom causal
model. Further, let X,), Z c out(y) be a partition of wires in ¢ such that in(p) € X U Z and X
and Y are d-separated by Z.

If a morphism f in C is compatible with o, then X 1. Y | Z (as in Definition 14).

Proof. Choose a total ordering of all boxes b1, ...,b;_1 € B(G) and a chain of sets of wires
in out(y),

in(p) =W) c...c Wy =out(yp),
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such that W, = out(b;) uW; and An(W;) = W,. Note that there is a factorization

in(v)

in FreeMarkovy,, where 7; is again a pure bloom and 7, is an identity morphism. The
existence of such a chain of sets follows easily by induction on the number of boxes based
on the existence of a final box.

Then for every i € {1,...,k}, we show the existence of a decomposition
i)'
(XnWi) (ZoWi) | Fw) YWy

.
_ <

Since W, = 0, setting i = k proves the desired statement.
We prove this stronger claim by induction on 4. The start of the induction at i = 1 is
trivial since 7 is the identity and therefore

ovr)’

(XnWy)  (ZnWy)

in(¢)’

since Yn W, = Ynin(¢p) = (. For the induction step, we prove the statement at i+1. Since ¢ is
pure bloom and since An(Wj.1) = Wj.1, we can peel off the box b; with W;,; = out(b;) uW;

1t is also worth noting that for causal models which correspond do DAGs, this statement amounts to the
standard fact that every DAG can be refined to a total order.
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from 1);, so as to achieve the decomposition

( +1)I
out(bi)'
F(tiv1)
L/'.
(Xow)  (Zow;) F) | (Ynwy)

o[- T,

(16)

- \

in(p)’
where we have used the induction assumption to obtain a decomposition as in the lower
half, and the dashed wires indicate that only some of them may be present, since the inputs
of b; are an unspecified subset of W,.
By Lemma 22 we have to distinguish two cases:
(i) in(b;),out(b;) € X u Z. Then, the third dashed wire in the above decomposition of
f is not needed, and we can merge F'(b;) with h;, which shows the statement.
(ii) in(b;),out(b;) € Y u Z. Then, the first dashed wire in the above decomposition of
f is not needed, and we consider the morphism

(ZnW;) nwy) (out(b;) N Z)" (out(b;))nY)’

(Z N WZ)’

which is part of that decomposition. By the existence of conditionals, we can
rewrite g in the form

(ZQVC gﬁl | (ZOVC E/]VM)
(ZmWi)’ (ZnW;)

where both lower boxes can be refined with internal structure consisting of carrying
(ZnW;)" forward on a separate wire, but this internal structure is not relevant
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for the remainder of the proof. Substituting this form of g into Equation (16), i.e.
replacing the morphism k; there with the right box here and merging the lower
box here with h; there, proves the induction step. O

We now aim at generalizing Lemma 23 to all generalized causal models and to arbitrary
disjoint sets X', ) and Z which do not necessarily partition the set of all wires.

Lemma 24. Let ¢ be a generalized causal model and X, ), Z € out(y) a tripartition of output
wires in @ such that in(p) € X U Z and such that Z categorically d-separates X and Y. Then there
exists a tripartition of wires X 2 X, 2 Y, Z in the pure bloom version ©pyre.pioom of ¢ such that

Z d-separates X and Y N Ppure-bloom
Proof. With @cut = Cutz(@pure-bloom ), define
X={Ueout(pen) : IX e X: X ~U in oy} 2 X
to be the connected component of X" in @cyut, and
Y = out(@pure-bloom) N (X U Z) 2 V.

By definition, X,Y, Z form a tripartition of wires in ppyureploom- Moreover, X and ) are
categorically d-separated by Z since any path in Cut z (pure-bloom ) is @ valid path in Cut z ()
and vice versa. ]

Corollary 25. Let C be a strict Markov category with conditionals, and let o be a generalized
causal model.”" Further, let X,),Z < out(yp) be disjoint sets of output wires in ¢ such that
in(p) € X u Zand X and Y are d-separated by Z. If f is compatible with o, then X 1LY | Z.

In this following statement, we use another standard convention: when the disjoint sets
X, Y, Z do not partition the set of wires of ¢, then the conditional independence X 1 YV | Z
is to be understood as Definition 14 applied to the corresponding marginal fx y» z/ rather
than to f itself.

Proof. We prove this statement by reducing it to the case of pure bloom causal models
treated in Lemma

Consider the restricted causal model ¥ := ¢ x y z and its compatible morphism g = F'(v)
obtained from the compatibility of f with ¢, which is a marginal of f. By the definition
of categorical d-separation, Z d-separates & and Y also in ¢. Let pure bloom be the pure
bloom version of 9. Since g is compatible with 1), we can extend g to a pure bloom version

Ypure-bloom = F ('(/)pure-bloom)

of which g is a marginal.
By Lemma 24, for ¥pure bloom there is a tripartition of output wires X 2 X, 2 Y, Z
such that Z d-separates X and ). Since C has conditionals, Lemma 23 provides us with a

10The pure-bloom version @pure-bloom is obtained by copying each wire so to make it into an output. It is
part of the bloom-circuitry factorization of [10].
Hin this situation ¢ does not need to be pure bloom.
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decomposition of the form

Ypure-bloom =

in(p)’

By marginalizing over X'NX, Y \Y in Jpure-bloom, We obtain the desired conditional
independence for the marginal fx: yr z:. O

Note that this result includes the soundness of the classical d-separation criterion in the
classical case of discrete random variables in Bayesian networks “, which is obtained upon
restricting to pure bloom causal models with in(¢) = 0, the Markov category FinStoch,
and every box having precisely one output, since then conditional independence reduces
to Definition 12 by Remark

Definition 26. Let ¢ be a generalized causal model and f a morphism in a strict Markov category
C. Then we say that f satisfies:

(i) the global Markov property with respect to  if for every three disjoint sets of outputs
X,Y, Z cout(yp) within(p) c X U Z:

X and Y are categorically d-separated by Zinp =— X L)Y |Zinf.
(if) the local Markov property with respect to  if for every box b in p, we have
Dec(out(b))“ N in(b) L out(b) |in(b) in f.

Theorem 27. Suppose that we are given the following:

o C is a strict Markov category with conditionals.

e  is a pure bloom causal model over a hypergraph ¥ such that the boxes in ¢ have distinct
types in 3.

o [:®L W] > ®]L, V] isamorphismin C.

Then the following statements are equivalent:

(i) f is compatible with the causal model .
(if) f satisfies the global Markov property.
(iii) f satisfies the local Markov property.

Proof. == (i1): The global Markov property is precisely the statement of Corollary
= : This follows from the fact that Dec(out(b))¢ and out(b) are d-separated
by in(b), and in(¢) < Dec(out(b))¢, which makes the global Markov property specialize to
the local one.
= (/): We prove this statement by induction over the number of boxes k = |B(G))|.
The case k = 1 is trivial. For the step from & to k + 1, let b be a final box in ¢, which means

12560 [21] for the original proof and [18, Theorem 1.2.5(i)] for a textbook account.
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that Dec(out(b)) = out(b). Then, ¢ factorizes as

in(b) out(db)

| ¥

S

in(p)

where v is another causal model satisfying all of our assumptions, and no box in ¢ has the
same type in X as b does.

In order to construct a functor F as in Definition 10, note first that it must satisfy (11),
which already lets us write the domain of f as in(y)’, and similarly for the codomain. Since
[ satisfies the local Markov property with respect to b, we can decompose f by Definition
as

in(b)'  out(b)’

out(d)’

= gi (17)

/

in(p)

in(p)’

By induction hypothesis, we have that g is compatible with v since g satisfies the local
Markov properties specified by 1. Since the box b appears only once in ¢, we can freely
define the action of the functor F on b as F'(b) := h. Then, we obtain

in(b)"  out(b)’ in(b)"  out(d)’

g ¥)

F(

in(p)’ in(¢)’

where we use in the first step Equation (17) and in the last the fact that F' is a Markov
functor. n

Remark 28. (i) Note that we have used the assumption that C has conditionals only
for the implication (/) == (7). Therefore, for an arbitrary strict Markov category,
the global as well as the local Markov property is a sufficient condition for the
compatibility of a morphism with a generalized causal model (satisfying our
assumptions). However, these Markov properties require implicitly the existence
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of certain conditionals. Consider for example the generalized causal model
X M Y

where all boxes are of distinct types. Choosing X = {M},Y =0and Z = {X,Y},
a morphism f satisfying the global Markov property displays in particular the
conditional independence {M} 1 0 | Z, pictorially:

zZ X

fiz

v

This shows that the conditional f| exists, and this recovers the box that outputs
M (up to almost sure equality).

(ii) Theorem 27 shows that d-separation correctly detects causal compatibility for the
Markov categories FinStoch, Gauss or BorelStoch. For the Markov category
Stoch, which does not have conditionals, the global and local Markov properties
are at least sufficient for the compatibility, since our proof of these implications
has not used conditionals.

(iii) Note that Theorem 27 only applies to causal models where each box appears
at most once in the model (which in particular implies that ¢ has no nontrivial
symmetries). However, the implication (/) = applies to arbitrary pure
bloom causal models as proven in Lemma 23. A

Example 29. We now present two examples which go beyond the classical d-separation
criterion. In (i) we will study a causal structure which does not arise from a DAG, while in
(ii) we study a DAG causal structure with continuous variables.

(i) Let ¢ be the causal structure

X Z1 Zy Y

) 7

and let C be a strict Markov category with conditionals. By Theorem 27, a mor-
phism¢: I - X'® Z] ® Z; ® Y’ in C is compatible with this structure if and only if
it satisfies

XJ_{KZQ}|Z1 and YJ_{X,Zl}’ZQ
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For a general class of examples, consider X' = Z and Y’ = Z{ and any morphism
in C of the form

We claim that such a distribution is compatible with ¢ if and only if there exist
morphisms d and d’ such that

Ty .

where s is the first marginal of r, and similarly d': Zj — Zj satisfies the same equa-
tions the other way around. Here, the second equation states that the morphism d
is s-a.s. deterministic [9, Definition 13.11], and similarly for d'.

Indeed, assuming compatibility we have that

At
¢

which shows the first equality in Equation (18). For the second equality we have

| km A\
v ¥

Proving the existence of d’ works analogously by interchanging the roles of X and
Y as well as Z; and Z5.
Conversely, we have

T B A

where we have used the assumption that d is s-a.s. deterministic in the second
equation. Repeating this calculation interchanging the roles of Z; and Z; as well
as X and Y shows the statement.

Zy 7y
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(ii) Consider the instrumental scenario, given by the DAG

This has been previously studied mainly in the context of DAGs with latent vari-

ables [17, 2]. For our analysis we assume each variable to be observed, which
means that the causal structure reads string-diagrammatically as

.
VARV,

There are two non-trivial d-separations:

(a) Between X and B by {4, A},

(b) Between X and A.
Therefore, Theorem 27 implies that a distribution P on a four-fold tensor product
object in a Markov category with conditionals is compatible with ¢ if and only if
X 1 B|A,Aand X 1 A. In BorelStoch, this means that P is compatible with ¢ if
and only if

P(X eFE|,AecEy,Be E3, A€ Ey)
= [, JL Pxiaa(X € Bila.)) Praa(B € Bsla. ) Pas(da,d))
and
P(XeFE,AeEy)=P(X eE)-P(AcEy)

where E; are measurable sets in the Borel o-algebras of the spaces X', A’, B" and
A

For simplicity, assume that all random variables take values in R and are ab-
solutely continuous, i.e. there exists a density f: X' x A" x B x A" - [0, 00) such
that

P(XEEl,AEEQ,BEEg,AEE4)= f(a;,a,b,)\)d:cdadbd)\
E1xEoxE3xEy
The causal compatibility now amounts to the following two conditions:
(a) X LA ie
fxa(@,A) = fx () - fa(A) (20)
where a.e. means almost everywhere with respect to the Lebesgue measure
on R.

(b) X L B| A,A, ie.

f(xv a,b, )‘) = fX|A,A(x7 a, )‘) ’ fA,A(av A) ’ fB|A,A(b7 a, )‘)7 (21)
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where the conditional densities are defined implicitly by

faxalalz,A) - fx a(z,A) = fx an(z,a,\) ae.
Combining Eq. (20) and Eq. (21) results in

f(z,a,0,A) = fa(N) - fx (@) - faxala, 2, A) - fplan(b,a,A)  ae.

which is the usual factorization condition for compatibility with the causal structure
in (19). A

Question 30. Can Theorem 27 be extended to more general causal models? In particular, what
about allowing the same box to appear several times in ¢?
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