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We prove that the sequential and parallel composition rules for quantum
channels are sufficient to axiomatise quantum supermaps from first principles.
To do so we provide a simple definition of locally-applicable transformation,
which can be stated for arbitrary symmetric monoidal categories, and so for
arbitrary process theories and operational probabilistic theories. The defini-
tion can be rephrased in the language of category theory using the principle
of naturality, and can be given an intuitive diagrammatic representation in
terms of which all proofs are presented. In our main technical contribution we
use this diagrammatic representation to show that locally-applicable transfor-
mations on quantum channels are in one-to-one correspondence with deter-
ministic quantum supermaps. This alternative characterization of quantum
supermaps is proven to hold for supermaps on arbitrary convex subsets of
channels, including as a special case the supermaps on non-signalling chan-
nels used in the study of quantum causal structure. Since the definition may
be applied to arbitrary symmetric monoidal categories, it may be viewed as
a candidate definition for generalisation of supermaps to infinite dimensional
quantum information theory.

1 Introduction
Beyond the framework of standard quantum theory, in which states representing phys-
ical degrees of freedom incur changes over time, there is the framework of higher order
quantum theory [1–9], in which dynamics themselves are transformed by higher order op-
erations termed supermaps [1]. Quantum supermaps were originally defined to formalise
the notion of a higher order map S which may be applied to part of any bipartite process
ϕ, as in the following intuitive picture:

S ϕ .
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Such higher order maps were later generalised to act on constrained spaces, and were
applied in the study of quantum information to analyze protocols in which quantum
processes are treated as information-theoretic resources [10–25]. On top of providing a
framework for formalising such protocols, supermaps are broad enough to incorporate
higher order processes beyond those which can be interpreted as circuits with open holes
[2, 26–33], the canonical example of such a supermap being the quantum switch [34].
Acting on the space of non-signalling channels, the quantum switch uses a qubit to control
the order in which wires are joined, and is often interpreted as a superposition of causal
structures [34].

Switch

⊕
Switch

By being broad enough to incorporate examples such as the quantum switch, the su-
permap framework provides a way to study quantum causal structure as a resource in
quantum information processing protocols [13–18, 22–24, 35, 36], and furthermore finds
application in the study of quantum gravity. Indeed, the dependence of causal structure
on mass distribution in general relativity and the possibility to superpose mass distribu-
tions in quantum theory, suggests the possibility of naturally occurring non-classical, or
indefinite, causal structures [34, 37–47] such as those present in the quantum switch. To
formalise this intuition supermaps can be used to model global spacetime structures as
maps from interventions chosen in local quantum laboratories to probabilities [38].

Lab

spacetime
Lab .

In this context, supermaps are typically provided in the Choi representation, and are
referred to as process matrices [38]. This abstract approach to modeling global space-
time structures allows to study causal structures beyond those which are even switch-like.
These supermaps can sometimes break causal inequalities [38, 48–50], which are an ana-
logue of Bell inequalities for causal order.

The motivating picture of a supermap appears to only reference the possibility to
draw processes in quantum theory as boxes with multiple inputs and outputs, and yet,
current constructions and definitions of quantum supermaps [1, 7, 38] rely on additional
mathematical structures. These are typically structures of categories into which deter-
ministic quantum theories embed, such as compact closure/Choi-Jamiolkowski isomor-
phism [1, 7, 51] and convexity/coarse graining [38]. This suggests that supermaps are
in need of a more principled axiomatisation, so that the conceptual grounds on which
supermaps are understood match the formal grounds on which they are defined, and so
that the entire framework of higher order quantum theory may be more easily lifted to
arbitrary physical theories.

In this paper we provide such an axiomatisation, by building on the process-
theoretic/categorical approach to quantum theory [52–57] we discover that supermaps
can indeed be axiomatised purely at the process-theoretic level, that is, with respect to

2



symmetric monoidal structure [58]. From this result it follows that all of the operational
physical principles such as compatibility with coarse-graining, convex combinations,
linearity, and tensor extensions used in usual definitions of quantum supermaps can be
viewed as consequences a simple principle:

A supermap is the kind of thing that can be applied locally.

The formalization of local applicability of supermaps that we use as our axiom can be
understood in three consecutive steps. First, supermaps are functions on processes:

S ϕ .

Second, supermaps are equipped with extensions to functions on all bipartite processes:

S ϕ .

Third, localization is enforced by requiring that such functions commute with actions on
their extensions:

S ϕ

g

f

= S ϕ

g

f

.

We model these three principles for supermaps by a formal definition of locally-applicable
transformation. The definition can be stated in entirely diagrammatic terms, and this
diagrammatic phrasing is used throughout as a toolbox for proving our main theorem.

Theorem. Quantum supermaps, including those on signalling-constrained channels, are
in one-to-one correspondence with locally-applicable transformations.

This characterisation is additionally noted to apply in the context of classical infor-
mation theory. Given that supermaps are typically used to analyse causal structure, the
above result can be viewed as complementary to the viewpoint of the causal decomposi-
tion program [59–61], in which causal structure in quantum theory is understood in terms
of compositional structure. Indeed, we find that some of the very tools that are used to
study quantum causal structure could have been defined purely at the compositional level
all along.

Although we do not do so in the main text, many of the definitions and results can
be neatly phrased in the language of category theory [58]. First, the presented corre-
spondence between locally-applicable transformations and standard-definition quantum
supermaps is compositional, meaning that it can be phrased as an equivalence of cat-
egories [58]. Second, in the case of locally-well pointed theories such as quantum and
classical information theory, the definition of locally-applicable transformation is simply
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that of a natural transformation between functors. As a consequence of this observa-
tion our main theorem can be summarised concisely as a categorical characterisation of
supermaps on quantum theory:

Quantum supermaps are equivalent to natural transformations.

Specialised instances of such natural transformations can in fact already be observed as
playing a similar role to supermaps in the field of monoidal category theory, for instance
in the definition of a traced monoidal category [62,63] or similarly in the formalisation of
closed time-like curves [64] where such curves are even termed super-operators.

The results presented in this paper show that the rich field of higher order quantum
theory can be understood as the study of locally-applicable transformations in monoidal
category theory, applied to the specific instance of quantum theory. In the long term the
authors hope that the same viewpoint can be used to reconstruct all iterated layers of
higher order quantum theory [1, 6, 7, 38] with only appeal to variations on the principle
of formalisation of locality by naturality. We hope that this result furthermore allows for
easier generalisation of higher order quantum transformations to non-monoidal physical
frameworks. For instance the authors would like to see supermaps applied in decompo-
sitional approaches to physics [65, 66] and to algebraic quantum field theories [67] where
localizability of standard quantum transformations is of primary importance [68–71]. Ul-
timately, such generalisations would bring the recently developed higher-order approach
to the study of quantum causal structure closer to being applicable to theories of quantum
gravity, where such structures have been predicted to play a key role [37].

2 Preliminary Material
Here we review symmetric monoidal categories, an abstract model for theories with se-
quential and parallel composition, such as quantum circuits. We then review quantum
supermaps, presenting them in terms of the graphical language for compact closed cat-
egories which captures the essence of the Choi-Jamiolkowski isomorphism. Throughout
this paper we use purple-shaded boxes to represent standard quantum processes, and
white boxes to indicate parts of a diagram which should be interpreted as higher-order
maps to be applied to standard processes.

Symmetric Monoidal Categories To ease the following presentation we present sym-
metric monoidal categories which are “strict”, meaning that equalities between objects are
written in place of natural isomorphisms. For a formal treatment of non-strict symmetric
monoidal categories the reader is referred to [58], where it is noted that every symmetric
monoidal category is suitably equivalent to a strict one. We from now on omit use of the
word strict, leaving it as implicit for the remainder of the paper. Our working examples
of symmetric monoidal categories will be the categories QC,CP of quantum channels
and completely positive maps respectively. We use the term quantum channel to mean
completely positive trace-preserving map.

The first formal ingredient in the definition of a symmetric monoidal category C is
the specification of objects of C, which in quantum theory may be thought of as systems.
In symmetric monoidal categories objects can be drawn as wires, for instance we draw an
object A as:

A
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Objects of each of QC and CP are given by finite dimensional Hilbert spaces, which
are used to represent quantum degrees of freedom. The second formal ingredient of a
symmetric monoidal category is the assignment of a set C(A,B) to each pair A,B of
objects. The set C(A,B) will be referred to as the set of of morphisms, and the elements
f ∈ C(A,B) of this set are often denoted using the notation f : A → B. Morphisms in
symmetric monoidal categories can be drawn as boxes with input and output wires, used
to represent their input and output objects:

f

A

B

In QC the morphisms f : HA → HB are completely positive trace preserving maps
from L(HA) to L(HB). Similarly, in CP the morphisms are taken to be completely
positive maps. Symmetric monoidal categories are next equipped with two compatible
notions, sequential composition and parallel composition. Sequential composition of f :
A→ B and g : B → C can be denoted graphically by:

f

A

B

g

C

In quantum theory the sequential composition g◦f is typically interpreted as representing
a process g occurring some time after a process f . In QC and CP the composition rule
is inherited directly from the standard notion of sequential composition for linear maps.

Parallel composition addresses both objects and morphisms, for each pair of objects
A,B a new object can be assigned called A⊗ B, typically interpreted as placing A next
to B. For each pair of morphisms f : A → A′ and g : B → B′ one can assign a new
morphism f ⊗ g : A ⊗ B → A′ ⊗ B′ typically interpreted as the concurrent action of f
and g. Diagrammatically A⊗B can be represented by placing wire A next to wire B:

A B

further solidifying its interpretation as parallel composition. The expression f ⊗ g can
then be represented by the following diagram:

f ⊗ g := gf

which again displays concurrent action of f and g. In our working examples the parallel
composition of objects HA, HB is given by the standard tensor product HA⊗HB of finite
dimensional Hilbert spaces. A key feature of symmetric monoidal categories which allows
them a diagrammatic calculus is the interchange law

(f ◦ f ′)⊗ (g ◦ g′) = (f ⊗ g) ◦ (f ′ ⊗ g′)

which allows unambiguous interpretation of the following diagram:

f ′

A

B

f

C

g′

A′

B′

g

C ′
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In a monoidal category the parallel composition is required to be associative so that
(A⊗B)⊗ C = A⊗ (B ⊗ C), this is indeed true for the tensor product of Hilbert spaces
up to natural isomorphism HA ⊗ (HB ⊗ HC) ∼= (HA ⊗ HB) ⊗ HC as addressed in the
introductory remarks. A monoidal category furthermore comes equipped with a notion
of empty space given by an object I satisfying A ⊗ I = A = I ⊗ A, this object in our
motivating examples is given by the Hilbert space C satisfying HA ⊗ C ∼= HA

∼= C⊗HA

for every Hilbert space HA. Making use of the notion of empty space I, the morphisms
of type ρ : I → A are often interpreted states A. This is well motivated when I-wires
are omitted from diagrams so that morphisms of type I → A are drawn as having only
output wires:

ρ

A

Finally, a symmetric monoidal category comes equipped with a swap-morphism β : A ⊗
B ⇒ B ⊗A depicted by:

A

A B

B

satisfying a variety of natural properties [58]. In the course of this paper, we will need
to address two refined monoidal structures which supermaps are typically defined with
respect to, those monoidal structures which are additionally causal and those which are
additionally compact closed.

Causality: The Trace Channel A symmetric monoidal category is causal [52, 72] if
its unit object is terminal, meaning in concrete terms that for each A the set C(A, I) is
a singleton. In a causal symmetric monoidal category we typically represent the unique
effect of type A→ I using the discard symbol:

A

Our working example QC is a causal category, with the unique morphism of type HA → C
given by the trace quantum channel. When a category is causal a direction of time is
essentially fixed as propagating up the page. Indeed, with no way to vary between effects
of type C(A, I) then there is no way to send information in the opposite direction, from
the top of the page to the bottom.

Compact Closure: Channel-State Duality A symmetric monoidal category is com-
pact closed if it is equipped for each A with an object A∗ and morphisms ∪A : I → A∗⊗A
and ∩A : A⊗A∗ → I which amongst other natural conditions [52] satisfy (∩⊗id)◦(id⊗∪) =
id, graphically this reads as:

= .

When compact closure is present it offers significant flexibility by giving an internalised
way to connect input and output ports of circuit diagrams together. When compact
closure is not in some way present we find that we require a new externalised way to
reason about operating on and plugging-together processes. Our working example CP is
a compact closed category with HA

∗ given by the dual Hilbert space to HA and the cup
∪HA

: C → HA
∗ ⊗HA given by the maximally entangled Bell-state. Similarly the cap is

given by the maximally entangled Bell-effect. The Choi-isomorphism [51], which provides
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an identification between completely positive maps and positive operators, is given by
applying completely positive maps to Bell-states and so can be expressed graphically as:

f

A

B

←→ f

A

BA∗

.

Additive Structure The symmetric monoidal category CP is equipped with a notion
of closure under positive linear combination, for any pair ϕ0, ϕ1 ∈ CP(A,A′) of completely
positive maps and pair a0, a1 ∈ R+ of positive real numbers a new combined completely
positive linear map a0ϕ0+a1ϕ1 ∈ CP(A,A′) can be constructed. The symmetric monoidal
category QC inherits a more restricted form of closure from CP termed closure under
convex combinations, meaning that for any pair ϕ0, ϕ1 ∈ QC(A,A′) of quantum channels
and any probability p ∈ [0, 1] then the linear combination pϕ0 + (1− p)ϕ1 ∈ QC(A,A′) is
itself a quantum channel.

Constrained Spaces In this paper, beyond supermaps on entire channels, we will aim
to reconstruct supermaps which can be applied to channels satisfying signalling constraints
[73,74]. These quantum supermaps are the part of the higher-order toolbox typically used
to study quantum causal structure. Let us begin with a simple example of a signalling
constraint given by the specification of the set of bipartite one-way signaling channels, we
denote the statement that ϕ be a one-way signaling channel by:

Φ ∈ Esig

( )
The depicted graph indicates that ϕ may not transmit information from the bottom right
wire to the top left wire, this constraint is expressed concretely by the existence of a
channel ϕ′ satisfying the following equation:

ϕ = ϕ′

In general more complex signalling constraints can be encoded by relations [59, 75]. For
instance the statement

Φ ∈ Esig

( )
can be used to encode the statements

Φ = 1 and Φ = 2 .

A formal definition for arbitrary relations is given in [75]. Useful for our reconstruction
will be the observation that for any relation τ the set Esig(τ) of processes satisfying con-
straint τ has the convenient property of being closed under convex combinations. Another
convenient property of signaling constraints in quantum theory for our reconstruction is
their equivalence to localizability constraints, which we refer to here as pathing constraints
so as to not confuse with our main definition of local applicability. As an example of a
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pathing constraint, the one-way signalling condition in quantum theory is equivalent to
requiring the following decomposition:

Φ =
1

2

this decomposition abstracts the impossibility of signalling from the bottom right wire
to the top left wire by forbidding the existence of a vertically directed path between
them. Since in quantum theory pathing constraints are equivalent to signaling con-
straints [73], pathing constraints in quantum theory are also closed under convex combi-
nations. Pathing constraints come with the advantage however that they can be phrased
in arbitrary symmetric monoidal categories without reference to a prioritised effect or
time-direction. In intuitive terms pathing constraints abstract from causality to compo-
sitionality, as an example of a more complex pathing constraint consider the statement:

Φ ∈ Epath

( )
this is a concise encoding of the statement that ϕ can be decomposed in such a way as to
not provide a vertically directed path from the left-most input to the right-most output,
or vice-versa, I.E

Φ =
1

2
and Φ =

1

2

The equality Epath(τ) = Esig(τ) will allow us to reconstruct quantum supermaps on sig-
naling constraints as locally-applicable transformations applied to their corresponding
pathing constraints. Phrased in this way the quantum supermaps used to study quantum
causal structure, are recovered from entirely compositional definitions with no reference
to causality or chosen direction of the flow of time.

Extended Process Sets In this paper we will be often concerned with extending sets
of processes to auxiliary systems. For a channel to be treated as an extension of channels
from some set, one ought to expect that no internal local dynamics on the auxiliary
extended systems should be able to change that fact. Consequently we introduce the
following minimum requirement for extensions of a set K.

Definition 1. A family of sets KX,X′ ⊆ C(A ⊗ X,A′ ⊗ X ′) is an extension set for
K ⊆ C(A,A′) if KI,I′ = K and for every ϕ ∈ KX,X′, f : Y → X⊗E, and g : X ′⊗E → Y ′

then

Φ

g

f

∈ KY,Y ′

The examples we will make use of in the following text are those given by dilation
extension. The principle is to define, for any set K ⊆ C(A,A′) and pair X,X ′, the
extension by X,X ′ of K to be the set of all processes ϕ ∈ C(A ⊗X,A′ ⊗X ′) which are
stinespring dilations of processes of K.
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Definition 2. For each K ⊆ C(A,A′) and pair (X,X ′) the dilation extension by X,X ′

denoted dExtX,X′(K) is the subset of C(A⊗X,A′ ⊗X ′) given by:

Φ ∈ dExtX,X′ [K] ⇐⇒ ∀ρ, σ : Φ

σ

ρ

∈ K

Note that for the example K = C(A,A′) then the extension dExtX,X′(K) returns the
entire set of bipartite morphisms C(A ⊗X,A′ ⊗X ′). For a causal symmetric monoidal
category the extended set can be rephrased in the following way:

ϕ ∈ dExtX,X′ [K] ⇐⇒ ∀ρ : Φ

ρ

∈ K

Which is the form used in [34] to define extensions to subsets of quantum channels.
In the appendix we note that such extended channel sets can be viewed in categorical
language as functors into the category of sets. Whenever a subset K ⊆ QC(A,A′) is
closed under convex combinations then it follows that dExtX,X′(K) is closed under convex
combinations, we will from now on rephrase the statement that a set K be closed under
convex combinations as simply the statement that K be convex.

Quantum Supermaps: Standard Definition In this paper we use the category CP
of completely positive maps to express the definition of supermap, this is sufficient for
our purposes since the sets we choose to work with are internal [3, 34]. We follow the
presentation of [7] in which a completely positive linear map

S

B∗B′

A∗ A′

is informally interpreted as a diagram with a hole, a function which accepts a channels
of type A → A′ and returns a channel of type B → B′ by using compact closure or
Choi-Jamiolkowski isomorphism.

S

B

B′

A

A′

This notation puts us in a position to concisely phrase the standard definition method for
quantum supermaps.

Definition 3. Let C ⊆ P be an inclusion of a symmetric monoidal category C into a
compact closed category P and let K−,= and M−,= be extension sets for K ⊆ C(A,A′)
and M ⊆ C(B,B′) respectively. A P-supermap on C of type S : K−,= → M−,= is a
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morphism in P of type S : A∗ ⊗A′ → B∗ ⊗B′ such that for every ϕ ∈ KX,X′ then

S

B

B′

ϕ

X

X ′

∈ MX,X′

P-supermaps can be composed in sequence, with this sequential composition inherited
directly from P, in categorical terms this means that the P-supermaps define a category
Psup[C]. For brevity we will use the term “quantum supermap” for CP-supermap on
QC and denote CPsup[QC] by QS. Note that we are working with quantum supermaps
applied to arbitrary subsets here, including those which satisfy signalling constraints. For
the study of indefinite causal structure the most prevalent example is that of supermaps
on non-signalling channels and their dilation extensions:

Φ ∈ Esig

( )
Φ ∈ dextX,X′

[
Esig

( )]
The lack of communication between wires in such channels allows them to be com-

bined in a variety of ways without producing time-loops, so that the output may still be
guaranteed to be a deterministic channel. Quantum supermaps of type

dext−,=
[
Esig

( )]
→ C(A⊗−, Q⊗A⊗ =)

which have been the subject of considerable study are switches, which take channels and
by reference to a control state, plug them together in a combination of orders:

S

A

Q⊗A

ϕ

X

X ′

=

A

ϕ

X

X ′

A

Q

0

+

A

ϕ

X

X ′

A

Q

1

Note that when the above diagrams are drawn in the category CP they really represent
classical mixtures of causal orders, a supermap which exhibits a quantum superposition of
causal orders termed the quantum switch can be constructed in a similar way by including
interference terms.

Summary In quantum information theory, supermaps on quantum channels are de-
fined by using channel state duality (compact closure) of the theory of completely posi-
tive maps into which they embed. In this paper we ask the following: What can we say
when background compact closure cannot be assumed? In other words: Can supermaps
be characterized in terms of sequential and parallel composition alone?. We answer posi-
tively, showing that quantum supermaps could have been defined all along by an abstract
principle of local applicability (in category-theoretic language termed naturality). Af-
ter motivating and defining locally-applicable transformations on arbitrary symmetric
monoidal categories we show a one-to-one correspondence between them and quantum
supermaps when applied to the symmetric monoidal category of quantum channels.
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3 Formalisation of Local Applicability
Our goal is to find an axioms for quantum supermaps which can be applied to any
symmetric monoidal category. In this section we show how to so, by defining higher
order functions and requiring the existence of extensions for all auxiliary systems which
further commute with actions on those auxiliary systems. We begin by warming up to
the definition by observing a notion of local applicability present in monoidal categories,
such as standard quantum theory, which we plan to abstract to higher order functions.

Local Applicability in Standard Quantum Theory The category QC of quantum
channels is a symmetric monoidal category, one consequence of the parallel composition
rule f⊗g is that it gives a way to view any f : A→ A′ as locally applicable in an intuitive
sense. We discuss this locality principle in the monoidal setting and then comment on
how it can be abstracted to a statement about locality of functions built from such an f
on state sets. To begin, consider a channel f : A→ A′ from A to A′:

A

f

A′

Whenever A can be viewed as part of a larger system N = A⊗X then f can be locally
applied to N by using f ⊗ idX : N → A′ ⊗X

A

f

X

A′ X

.

Crucial to the interpretation of locality in f ⊗ idX is that f ⊗ idX commutes with all
actions on X, this follows in this case by the interchange law for monoidal categories
(f ⊗ idX′) ◦ (idA ⊗ g) = (idA′ ⊗ g) ◦ (f ⊗ idX):

A

f

X

A′ X ′

g
=

A

f

X

A′ X ′

g
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In other words, a general monoidal category gives a collection of morphisms, all of which
can be viewed as being locally applicable, in an informal sense.

A consequence of this local applicability is the possibility to construct from f a family
of functions on states l(f)X : C(I, A ⊗ X) → C(I, A′ ⊗ X) which exhibit the local
applicability of f . Explicitly, by using tensor extensions with the identity the function
l(f)X(ρAX) := (f ⊗ idX)(ρAX) can be defined for each X. The abstract functions l(f)X

which represent the action of f on states indeed inherit a notion of local applicability from
f . The functions l(f)X can be seen to leave the environment system X untouched in the
sense that the action of any g on X commutes with the application of the function l(f)X .
The above sentence is captured in formal terms by the equation l(f)X′(idA ⊗ g(ρAX)) =
(idA′ ⊗ g)(lX(ρAX)) which is guaranteed to hold for any g : X → X ′ since

l(f)X′(idA ⊗ g(ρAX)) =(f ⊗ idX′) ◦ (idA ⊗ g)(ρAX)
=(idA′ ⊗ g) ◦ (f ⊗ idX)(ρAX)
=(idA′ ⊗ g)(lX(ρAX))

We now give an axiom which re-characterises quantum supermaps by generalizing this
concept of local applicability of functions on states to local applicability of functions on
processes. The only instances of locally-applicable transformations on quantum chan-
nels will turn out to be those which are simulated by the standard-definition quantum
supermaps of [1]. We split the motivations for the definition of locally-applicable trans-
formation into three consecutive principles.

Principle 1: Supermaps are Functions on Processes The kind of picture usually
drawn with the aim of capturing diagrammatically the concept of a supermap from the
space of processes C(A,A′) to the space of processes C(B,B′) is some variation of the
following

S ϕ

As such our first step to characterising supermaps of type C(A,A′) → C(B,B′) is to
consider functions of the same type C(A,A′) → C(B,B′). More generally for K ⊆
C(A,A′) and M ⊆ C(B,B′) the first step is to consider functions S : K → M from the
set K to the set M .

Principle 2: Supermaps Can be Extended to Functions on All Bipartite Pro-
cesses When we say that we wish for the map S : C(A,A′) → C(B,B′) to be locally
applicable, we mean that we wish to formalise the following picture:

S ϕ

X

X ′

The next step toward such a formalisation is to specify for each X,X ′ the action of S
when applied to the A,A′ part of any morphism ϕ ∈ C(A⊗X,A′⊗X ′). Consequently we
say that a locally-applicable transformation must be equipped with a family of extended
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functions SXX′ : C(A ⊗ X,A′ ⊗ X ′) −→ C(B ⊗ X,B′ ⊗ X ′) for every X,X ′. For the
generalised case of supermaps of type S : K →M we instead require the specification of
a function SX,X′ : KX,X′ →MX,X′ for every X,X ′ with KX,X′ some extension set for K
and similarly for M . We now will need to find a way to enforce these extensions behave
as if they are applied locally. For readability we will from now on notate the action of
such a family of functions in the following way

SX,X′(ϕ) := SX,X′ ϕ

X

X ′

X ′

X

.

where the dotted lines express the idea that the wires they connect are to be interpreted
as auxiliary systems.

Principle 3: Supermaps Commute With Actions on Their Extensions A key
feature of a local operation is commutation with operations applied to auxiliary spaces, we
generalise this notion of locality to input-output operations, informally we aim to capture
the equivalence of the following two pictures:

S ϕ

g

f

= S ϕ

g

f

which can be formalised for functions on simple types C(A,A′) → C(B,B′) or on
generalised types K →M .

Definition 4 (locally-applicable transformations). Let K−,= and M−,= be extension sets,
a locally-applicable transformation of type S : K−,= −→ M−,= on a symmetric monoidal
category C is a family of functions SXX′ : KX,X′ → MX,X′ such that for every g :
X ′ ⊗ Z → Y ′, f : Y → X ⊗ Z, and ϕ : A⊗X → A′ ⊗X ′ then

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

The above definition is equivalent to the requirement of the following distinct rules of
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naturality

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

and dragging

SX,X′

Φ ψ =
SXY,X′Y ′

Φ ψ

where in the specific case of interest of the category QC of quantum channels, only the
first condition need actually be given, since for all causal ρ we have the following equation
by naturality:

SIXY,X′Y ′

Φ

ρ

ψ =

SX,Y ′X′

Φ ψ

ρ

and following further equations, again by naturality:

=
SXX′

Φ

ψ

ρ

=
SXX′

Φ
ψ

ρ

Which together entail box-dragging since quantum theory has enough causal states [7].
In the appendix we note that consequently locally-applicable transformations on QC can
be phrased in the language of category theory as natural transformations, motivating our
use of the word “naturality”. We further note that locally-applicable transformations
can be composed, given locally-applicable transformations S : K−,= → M−,= and T :
M−,= → N−,= one can construct the locally-applicable transformation (T ◦ S) : K−,= →
N−,= by defining for each X,X ′ the functions (S ◦ T )XX′(ϕ) = SXX′(TXX′(ϕ)). This
compositionality of locally-applicable transformations can be phrased in the language of
category theory by stating that they form a category, which we denote by lot[C].

4 Examples
We now consider a series of constructive examples of supermaps beginning with those
which can be guaranteed to exist on any symmetric monoidal category C.
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Example 1 (Combs). For every symmetric monoidal category C and pair of morphisms
a : A→ E ⊗B and b : E ⊗A′ → B′ one can define a locally-applicable transformation of
type C(A−, A′ =)→ C(B−, B′ =) by

SXX′

Φ := Φ

a

b

Indeed, note that:

SXX′ ϕ

g

f

= Φ

a

b

g

f

= Φ

a

b

g

f

= SY Y ′ ϕ

g

f

We from now on refer to such a locally-applicable transformation by comb[a, b] and
its components by comb[a, b]X,X′ , such combs form a subcategory of lot[C] which is iso-
morphism as a category to comb[C] as defined in [33]. This example can be generalised
to combs of type comb[a, b] : K−,= → M−,= which are those which furthermore satisfy
ϕ ∈ KX,X′ =⇒ comb(a, b)(ϕ) ∈ MX,X′ . These examples can be further generalised to
combs from categories into-which C embeds, as opposed to combs from C itself.

Example 2. For every pair C,D of symmetric monoidal categories with C ⊆ D one can
define the D-combs on C of type K →M to be the combs of D which preserve morphisms
of C. Formally, that is, the transformations of type comb[a, b] on D such that for all
ϕ ∈ KX,X′ then comb[a, b]X,X′(ϕ) ∈MX,X′.

For a compact closed category P with C ⊆ P the notions of P-supermap and P-comb
on C are equivalent. Through this equivalence, P-supermaps always give examples of
locally-applicable transformations.

Lemma 1. Let P be a compact closed category and C be a symmetric monoidal category,
there is a one-to-one correspondence between the P-combs on C and the P-supermaps on
C.
Proof. Let S be a P-comb on C of type K−,= →M−,= then one can construct

S

B∗B′

A∗ A′

:=
comb[a, b]A′,A

=
a

b

which indeed is a P-supermap since

S

ϕ =

a

b

Φ

= Φ

a

b

15



Instead let S be a P-supermap then one can construct the locally-applicable transforma-
tion

F(S)X,X′ :=
S

ϕ

b

a

These two constructions are furthermore inverse to each-other. The assignment is fur-
thermore a functor FP,C : Psup[C]→ lot[C] meaning in concrete terms that F preserves
composition and identities.

The above story and equivalence between supermaps made with combs or morphisms
with compact closure can be generalised to embeddings which are weak in the sense of
2-category theory, a discussion of this point is given in the appendix, where it is noted
that this generalisation allows to use the compact-closed category ∗Hilb [76] to define a
variety of locally-applicable transformations on sepU, the category of unitaries between
seperable Hilbert spaces.

Locally-applicable transformations in short state a bare-minimum requirement ex-
pected of quantum supermaps, satisfied by a variety of more familiar examples. A clear
difficulty in the definition of supermaps, is the variety of potential definition methods.
By using the unifying principle of a locally-applicable transformation, as a minimum re-
quirement for supermaps, we will in fact find that all possible definitions of supermaps on
finite dimensional quantum theory are equivalent by characterizing all locally-applicable
transformations on QC as quantum supermaps, by which we mean CP-supermaps on
QC.

5 Characterisation of Standard Quantum Supermaps
We now prove that locally-applicable transformations on finite dimensional quantum chan-
nels are equivalent to standard-definition quantum supermaps. We have already proven
that all quantum supermaps define locally-applicable transformations, so what remains is
to prove that this assignment can be inverted, that every locally-applicable transformation
defines quantum supermap. We begin by identifying a key feature of quantum theory,
the existence of control for convex sets. We then give our proof in three steps, prov-
ing inheritance of convex linearity for locally-applicable transformations on convex sets,
proving their unique extension to action on completely positive maps, and finally proving
their realisation in terms of standard quantum supermaps. We begin by addressing the
property of control.

Definition 5 (Control). A set K has control if for every pair ϕ0, ϕ1 ∈ dExtX,X′(K) there
exists Φ ∈ dExtX⊗Y,X′⊗Y ′(S) and a pair of states ρ0, ρ1 such that:

=ϕ

ρi

ϕi

Conveniently convex sets in QC are always controlled, in fact the existence of control
is equivalent to asking for closure under convex combinations.

Lemma 2. A set K ⊆ QC(A,A′) has control if and only if it is convex.
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Proof. We begin by showing that whenever K is convex it has control. Note that whenever
K is convex then dExtX,X′(K) is convex for every choice of X and X ′. Now choose a
pair of states ρ0, ρ1 ∈ QC(I, Y ) on an object Y which are distinguishable in the sense
that there exist effects e0, e1 ∈ CP(Y, I) satisfying ei ◦ ρj = δij and then construct the
following process Φ

ϕ := ϕ0 e0 + ϕ1 e1 ,

certainly by inserting ρ0, ρ1 into the rightmost wire the channels ϕ0, ϕ1 are recovered, what
remains is to show that Φ is in dExtX,X′(K). Indeed consider checking the reduction of
Φ given by applying an arbitrary state and effect of QC to its auxiliary wires, given that
QC is causal this is given by:

ϕ0 e0

ρ

+ ϕ1 e1

ρ

for some ρ. Now note that each of the post selected states is a normalised state equipped
with a probability, for instance:

e0

ρ
=

e0

ρ
× 1

e0

ρ

×
e0

ρ
= p(e0|ρ)× ρ|0

and similarly for e1. Since ϕ0, ϕ1 are elements of dExtX,X′(K) it then follows from the
above that the reduction of Φ is a convex combination of elements of K, explicitly the
application of arbitrary state and effect to Φ returns:

p(e0|ρ) ϕ0

ρ|0

+ p(e1|ρ) ϕ1

ρ|1

where p(e0|ρ) + p(e1|ρ) = 1. We now check the converse, that when K has control it
is convex. Indeed, for any ϕ0, ϕ1 ∈ K choose their control operation Φ ∈ dExtY,I(K).
Consider an arbitrary convex combination pϕ0 + (1 − p)ϕ1, this combination is given by
inserting σ := pρ0 + (1− p)ρ1 into the wire Y of Φ. Since Φ is in dExtY,I then insertion
of σ into Φ must return an element of K and so it follows that the convex combination
pϕ0 + (1− p)ϕ1 is an element of K.

This equivalence is noted to furthermore hold for classical information theory in the
appendix, by an identical proof method. We finish by stating a definition we will find
convenient to reference later.

Definition 6. The operational closure KCP of a set K ⊆ QC(A,A′) is given by the set
of all:

Φ
ρ

σ

where Φ ∈ dExtX,X′(K), ρ ∈ CP(I,X), and the effect σ ∈ CP(X ′, I) for some X,X ′.

The operational closure KCP of K represents the set of all operations onto which
locally-applicable transformations on K can be uniquely extended.
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5.1 Proof of main theorem
In this section we prove that the principle of local-applicability is sufficient to characterize
quantum supermaps. Concretely we show that for any locally-applicable transformation
S of type K → M with K,M convex on QC there exists a CP-supermap SQ of type
K → M which implements it. Note that we from now on identify a set K ⊆ QC(A,A′)
with is dilation extension dExt−,=(K) for convenience so that may refer to a supermap of
type dExt−,=(K)→ dExt−,=(M) as simply a supermap of type K →M . Formal meaning
of implementation is given by existence of some SQ such that S = FCP,QC(SQ) where
FCP,QC is the previously defined embedding from CP-supermaps into locally-applicable
transformations. We will note in passing that as a consequence we will have constructed
an equivalence of categories between quantum supermaps on signalling constraints and
locally-applicable transformations on pathing constraints, the latter definition is void of
any reference to compact closure, linearity, coarse-graining, or even causal structure. The
equivalence will in fact hold for all locally-applicable transformations K → M between
convex sets K,M whether or not they be associated to signalling constraints. We begin
by deriving convex linearity from locality in a general setting.

Lemma 3 (Convex linearity). Let K,M be convex, then every locally-applicable trans-
formation of type S : K →M on QC preserves convex combinations.

Proof. Consider a pair ϕi ∈ dExtX,X′(K) of channels, since K is convex it has control,
there exists Φ ∈ dExtX,X′(K) such that

=ϕ

ρi

ϕi

and so an arbitrary convex combination pϕo + (1− p)ϕ1 can be written as

pϕo + (1− p)ϕ1 = ϕ

ρp

With ρp := pρo + (1 − p)ρ1. Now writing p1 = (1 − p) then SX,X′(p0ϕ0 + p1ϕ1) is given
using naturality by:

SXX′

pϕo + (1− p)ϕ1 =
SXX′

ϕ

ρp

=
SXY,X′

ϕ

ρp

Then rewriting ρ in terms of ρ0, ρ1 gives

=

SXY,X′

ϕ

ρ0

po +

SXY,X′

ϕ

ρ1

p1 ,
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then using naturality again

=

SX,X′

ϕ

ρ0

p0 +

SX,X′

ϕ

ρ1

p1

and finally using the definition of control recovers the result

=
SXX′

ϕop0 +
SXX′

ϕ1p1 = p0SX,X′(ϕ0) + p1SX,X′(ϕ1)

and so SX,X′ is indeed convex linear.

We note that S consequently has a unique extension to the real-linear span of K. We
now show using this result that locally-applicable transformations on QC(A,A′) can be
uniquely extended to CP(A,A′), more generally for any set K the map S can be extended
to the operational closure KCP of K.

Lemma 4 (Extension to operational closure). Let K,M be convex, then every locally-
applicable transformation of type S : K →M on QC has a unique extension to a function
SCP : KCP →MCP.

Proof. We give a candidate definition and then show that it is well-posed, consider some
ϕ ∈ KCP, for this ϕ there exists Φ ∈ dExtX,X′(K) and ρ, σ such that:

ϕ = Φ
ρ

σ

With respect to this choice we can define

SCP

Φ

σ

ρ

:=
SXX′

Φ

ρ

σ

We now show that this definition is well-posed by showing that for any other choice of
Φ, ρ, σ the resulting outcome SCP(ϕ) would be the same. Indeed, let

Φ

ρ

σ

= Φ′

ρ′

σ′

then consider the process Σ defined by

Σ =
σ

0
+

σ

1

−
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where the output is taken to be at least 2-dimensional. A process Σ′ can be defined
similarly, note that both Σ,Σ′ are trace preserving and so are members of QC, meaning
that they can be slid along dotted wires. We now consider the result of applying them to
Φ,Φ′:

Φ
ρ

Σ

= Φ

ρ

0

σ

+ Φ

ρ

1

− Φ

ρ

1

σ

This in turn implies that

Φ
ρ

Σ

− Φ′

ρ′

Σ′

= Φ

ρ

1

− Φ′

ρ′

1′

and so then by linearity

SIX′

Φ
ρ

Σ

−

SIX′

Φ′

ρ′

Σ′

= Φ
ρ

1
SIX′

− Φ′

ρ′

1
SIX′

(1)

We begin by showing that σ, σ′ can be safely pulled across dotted wires maintaining
equality even though they are not quantum channels, Indeed consider the difference, and
express in terms of Σ,Σ′:

SIX

Φ

ρ

σ

−
SIX

Φ′

ρ′

σ′

=
SIX

Φ
ρ

0

Σ

−
SIX

Φ′

ρ′

0

Σ′

Now since Σ,Σ′ are quantum channels they can be pulled through dotted lines, after
which we use equation (1):

=

SIX′

Φ

ρ

Σ

0

−

SIX′

Φ′

ρ′

Σ′

0

= Φ

ρ

1
SIX′

0

− Φ′

ρ′

1
SIX′

0
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Now the preparation 1 : I → X ′ is a quantum channel it can be pulled back through
dotted wires, after which orthogonality implies that the difference has to be 0.

= Φ

ρ

SII

0

1

− Φ′

ρ′

SII

0

1

= 0

Since the difference is 0 then it follows that

SIX

Φ
ρ

σ

=
SIX

Φ′

ρ′

σ′

We can now consider the bottom side, which is easier to reason with since every ρ ∈
CP(I,X) is given by aη with η a state in QC(I,X). Indeed, using the extension of S to
R-linearity (and so to multiplication by scalar α) gives

SIX

Φ
ρ

σ

=
SIX′

Φ
η

σ

a

=
SIX′

Φ

η

σ

a

=
SXX′

Φ

ρ

σ

and similarly for the ϕ′, ρ′, σ′ we find

SIX

Φ′

ρ′

σ′

=
SXX′

Φ′

ρ′

σ′

All together then, using the seperate deductions made for ρ and σ gives

SXX′

Φ′

ρ′

σ′

=
SIX

Φ′

ρ′

σ′

=
SIX

Φ
ρ

σ

=
SXX′

Φ

ρ

σ

and so SCP is indeed well defined.
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The above is the key to our result, we now are ready to construct a candidate quan-
tum supermap for simulating the action of our locally-applicable transformation SX,X′

by tensor extension with identities on X,X ′. To do so we apply our locally-applicable
transformation S to the swap-morphism, the intuition being that the swap gives a way
to noiselessly extract information about the input behaviour of a higher order map, by
converting its input into a pair of lower-order objects.

Theorem 1 (Re-characterisation of supermaps). Let K,M be convex subsets of channels
of QC, there is a one-to-one correspondence between quantum supermaps of type K →M
and locally-applicable transformations of the same type.

Proof. Given a locally-applicable transformation S of type K → M on QC with K ⊆
QC(A,A′) and M ∈⊆ QC(B,B′) we define SQ : A∗ ⊗A′ → B∗ ⊗B′ by:

S

B∗B′

A∗ A′

:=

SA′,A

In other words we apply S to the swap in QC and then embed into CP so that we may
apply caps and cups. We now consider the application of arbitrary states and effects ρ, σ
in CP to the auxiliary wires, and use the tensor seperation property:

S

B

B′

ϕ

ρ

σ

=

SA′,A

Φ

σ

ρ

=

SA′,A

Φ

σ

ρ

We now use the well-posed definition of SCP and then use compact closure to replace the
cup and cap with the identity to give:

=

SCP

Φ

σ

ρ

=

SCP

Φ

σ

ρ

=
SXX′

Φ

ρ

σ

.
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Since this is true for all ρ, σ in CP it follows that:

S

ϕ =
SXX′

Φ

and so there indeed exists a quantum supermap of type SQ : K → M such that
FCP(SQ) = S where FCP is the previously defined embedding of CP-supermaps on QC
into locally-applicable transformations on QC.

Note that in QC the set Esig(τ) is convex and that furthermore Esig(τ) = Epath(τ). It
follows then that for arbitrary relations τ the locally-applicable transformations of type
Epath(τ)→ Epath(λ) characterize the quantum supermaps of type Esig(τ)→ Esig(λ). As a
stricter corollary the quantum supermaps on non-signalling channels, also referred to in
the literature as process matrices have been characterised from principles of composition-
ality, without reference to causality or preferred time direction. To phrase this concisely
we refer the morphisms in:

Epath

( )
,

as non-pathing morphisms and refer to supermaps and locally-applicable transformations
of type K → C(B,B′) for some B,B′ as being on the set K.

Corollary 1. There is a one-to-one correspondence between quantum supermaps on the
set of non-signalling channels and locally-applicable transformations on the set of non-
pathing channels.

Other example of convex sets of interest for which supermaps are now consequently
characterised in terms of locality are those convex sets which are specified by sectorial con-
straints [46,61,75,77] which find use in the phrasing of more complex instances of pathing
constraints [59] and in the analysis of fine-grained causal structures [45, 46]. Finally, we
comment that by denoting the restriction of the category CPsup[QC] to convex sets
by CPsup[QC]con := QScon and similarly denoting restriction of the category lot[C] to
convex sets by lot[C]con we can state the one-to-one correspondence in concise categorical
language.

Corollary 2. There is an equivalence of categories QScon
∼= lm[QC]con

This equivalence is confirmed by noting that the assignment FCP is functorial, sur-
jective on objects, and full and faithful by the one-to-one correspondence observed in
this section. In summary, quantum supermaps and equivalently process matrices, origi-
nally defined in terms of Choi-isomorphisms and probabilistic structure respectively, are
instances of a purely compositional definition of higher order mapping of quantum chan-
nels.

6 Multiparty Approach
In this section we generalise the definition of locally-applicable transformation to multi-
input transformations. Whilst we have technically already recovered the standard def-
inition supermaps on multiple parties using locally-applicable transformations on non-
signalling processes, the following approach has the advantage that it comes closer to
constructing for free (without characterization in the quantum setting) some key compo-
sitional features of quantum supermaps.
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Definition 7. A locally-applicable transformation of type K1
−,= . . .K

n
−,= −→ M−,= is a

family of functions

S
X′

1...X′
n

X1...Xn
: K1

X1,X′
1
. . .Kn

Xn,X′
n
−→MX1...Xn,X′

1...X′
n

satisfying:

S
X ′

1

X1

. . .

B

B′

ϕ1

g1

f1

X ′
n

Xn

ϕn

gn

fn

=
S

X ′
1

X1

. . .

B

B′

ϕ1

g1

f1

X ′
n

Xn

ϕn

gn

fn

This definition for supermaps with multiple inputs allows to more easily include im-
portant examples of supermaps on arbitrary symmetric monoidal categories, such as
combs [78] on general monoidal categories [33].

Example 3. Let C be a symmetric monoidal category, the locally-applicable trans-
formation comb[c1 . . . cn+1] of type comb[c1 . . . cn+1] : C(A1−, A′

1 =) . . .C(An−, A′
n =

) → C(B−, B =) is the family of functions of type comb[c1 . . . cn+1]X1...Xn,X′
1...X′

n
:

C(A1X1, A
′
1X

′
1) . . .C(AnXn, A

′
nX

′
n)→ C(BX1 . . . Xn, BX

′
1 . . . X

′
n) given by

ϕ1

c2

c1

ϕ2

c3

ϕn

cn

cn+1

These combs are essentially those defined in [33] up to simple re-labelling of mor-
phisms. Again, this definition can be extended to those combs of type comb(c1 . . . cn+1) :
K1

−,= . . .K
n
−,= −→ M−,= which are those combs such that for all ϕi ∈ Ki

Xi,X′
i
then

comb[c1 . . . cn+1]X1...Xn,X′
1...X′

n
(ϕ1 . . . ϕn) ∈ MX1...Xn,X′

1...X′
n
. This definition can further

be generalised to combs in D for any symmetric monoidal category D into which C is
included.

Example 4. Let C ⊆ D be an inclusion of symmetric monoidal categories and
Ki

−,=,M−,= be extendable sets of C, then the D-combs of type K1
−,= . . .K

n
−,= −→ M−,=

on C are those comb[d1 . . . dn+1] in D such that for any ϕi ∈ Ki
Xi,X′

i
then

comb[d1 . . . dn+1]X1...Xn,X′
1...X′

n
(ϕ1 . . . ϕn) ∈MX1...Xn,X′

1...X′
n

The standard definition approach to supermaps which uses compact closure or C-J
isomorphism can also be naturally phrased in multi-input terms.
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Example 5. Let C ⊆ P be an inclusion of a symmetric monoidal category C into a
compact closed category P, and let Ki

X,X′ ⊆ C(A⊗X,A′ ⊗X ′), a morphism

S

B∗B′

A∗
1 A′

1A∗
n A′

n

. . . . . .

in P is a P-supermap on C of type S : K1
−,= . . .K

n
−,= → M−,= if and only if for every

family ϕi ∈ KXi,X′
i

then

S

B′

. . .

B

ϕ1

X1

X ′
1

ϕn

. . .
X ′

n

X ′
n

. . .

. . .

. . .
∈ MX1⊗···⊗Xn,X′

1···⊗X′
n

By a proof method identical to that which is given in the singly-party case, for any
compact closed category P a one-to-one correspondence can be given between the mul-
tiparty P-combs and the multiparty P-supermaps on any symmetric monoidal category
C ⊆ P.

The advantage of the multi-input approach is that it freely recovers two key aspects of
the compositional semantics of supermaps, the first being that they may be composed via
nesting. Diagrammatically this nesting composition is given by taking S ◦ (T 1 . . . Tm)(ϕj

i )
to be

S
X1

1
′ ⊗ · · · ⊗X1

n
′

X1

. . .

B

B′

T 1 X1
1

′

X1
1

. . .

B1

B1′

X1
n

′

X1
n

X1
1 ⊗ · · · ⊗X1

n

ϕ1
1 ϕ1

n

Xm
1

′ ⊗ · · · ⊗Xm
n

′

Tm
Xm

1
′

Xm
1

. . .

Bm

Bm′

Xm
n

′

Xm
n

Xm
1 ⊗ · · · ⊗Xm

n

ϕm
1 ϕm

n

In category theoretic terms this nesting composition means that locally-applicable trans-
formations always define a multicategory, with objects given by extendable sets K−,=
and multi-morphisms of type K1

−,= . . .K
n
−,= → M−,= given by locally-applicable trans-

formations of the same type. This generalises the multi-categorical structures inherited
by monoidal structure of Caus[C] [7] and inherited from the polycategorical structure of
N -combs in [33]. The second key compositional feature of such supermaps is their en-
riched structure [8], there always exists locally-applicable transformations with multiple
inputs which simply compose their input processes in sequence, or in parallel. The former
appears as a locally-applicable transformation of type ◦ : C(A,B)C(B,C)→ C(A,C):

◦

A

C

ϕ1 ϕ2 :=

A

B

B

C

ϕ1 ϕ2

A

C
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the latter appears as a locally-applicable transformation of type C(A,A′)C(B,B′) →
C(A⊗B,A′ ⊗B′):

⊗

A

A′

ϕ1 ϕ2 :=

A

A′

B

B′

ϕ1 ϕ2

A

B′

B

B′

B

A′

.

We note here that at this level enrichment is in a multicategory rather than the more
standard setting of enrichment in a monoidal category [8].

Consequently, the multi-input approach has some structural advantages. Conve-
niently, the results on single-input locally-applicable transformations generalise to multi-
input locally applicable transformations by noting that when all but one input is filled,
what remains is a standard locally applicable transformation.

Corollary 3. let K1, . . . ,Kn,M be convex sets of morphisms of QC, there is a one-to-
one correspondence between CP-supermaps of type K1 . . .Kn →M and locally-applicable
transformations of the same type.
Proof. That CP-supermaps still give locally-applicable transformations follows
from multiple uses of the interchange law for symmetric monoidal categories.
What remains is to prove that every locally-applicable transformation is imple-
mented by a CP-supermap. Up to braiding the family of functions given by
S((−)ψ2 . . . ψn)X1,X′

1
(ψ1) := S(ψ1 . . . ψn)X1...Xn,X′

1...X′
n

is a locally-applicable trans-
formation with one-input, consequently we can use our main theorem to show that

S . . .

B

B′

ϕ1 ϕn

is equal to

S . . .

B

B′

ϕ1

ϕn

repeating this step for each consecutive input from 2 to n returns

S . . .

B

B′

ϕ1 ϕn
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which completes the proof.

The CP-supermaps of type C(A1, A
′
1)C(A2, A

′
2)→ C(B,B′) are in one to one corre-

spondence with CP-supermaps of type

Epath

( )
−→ C(B,B′)

which can be viewed as a consequence of linear distributivity of the Caus[C] construction
along with the fact that non-signalling channels are given by the double closure as defined
in [7] of the set of product channels. Consequently, the locally-applicable transformations
with multiple inputs give another way to characterize the supermaps on non-signalling
channels used to study indefinite causal structure. This time, the construction provides
for free some key compositional features of such supermaps.

7 Summary and Outlook
A definition of locally-applicable transformation is introduced which refers only to the
circuit-theoretic structure of deterministic quantum information theory. By being purely
compositional in nature it may be applied to arbitrary symmetric monoidal categories
and stated concisely in the language of category theory using the notion of a natural
transformation. When applied to quantum channels, including those equipped with sig-
nalling constraints, locally-applicable transformations are in one to one correspondence
with quantum supermaps, so provide a re-axiomatisation for supermaps in terms of the
principles of sequential composition, parallel composition, and locality.

The construction presented could in principle be a seed for a variety of new projects,
including comparison of its infinite iteration with the construction of higher order causal
categories, the free construction of various compositional features of quantum supermaps
[6–8], and characterisation of locally-applicable transformations on infinite dimensional
quantum theory. Less concretely and more broadly it is the authors hope that this
definition of supermap is closer to allowing for a suitable generalisation to more elaborate
notions of space and parallel composition [65,66,79] including but not limited to algebraic
quantum field theories [67], so that higher order quantum theories can be brought into
closer contact with theories of quantum gravity where supermaps are hoped to provide
insight by modelling of quantum causal structure [37].
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[14] L. M. Procopio, F. Delgado, M. Enŕıquez, N. Belabas, and J. A. Levenson,
“Communication Enhancement through Quantum Coherent Control of N Channels
in an Indefinite Causal-Order Scenario,” Entropy 21 no. 10, (10, 2019) 1012.
https://www.mdpi.com/1099-4300/21/10/1012.
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[35] M. Araújo, P. A. Guérin, and Ä. Baumeler, “Quantum computation with indefinite
causal structures,” Physical Review A 96 no. 5, (6, 2017) , arXiv:1706.09854v3
[quant-ph].

[36] D. Felce and V. Vedral, “Quantum Refrigeration with Indefinite Causal Order,”
Physical Review Letters 125 no. 7, (8, 2020) 070603, arXiv:2003.00794
[quant-ph].

[37] L. Hardy, “Towards Quantum Gravity: A Framework for Probabilistic Theories
with Non-Fixed Causal Structure,” Journal of Physics A: Mathematical and
Theoretical 40 no. 12, (8, 2006) 3081–3099, arXiv:gr-qc/0608043v1 [quant-ph].
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The identity box, can be diagrammatically represented as a wire. This notation has
the convenient property that it absorbs the structural equations of a category. There
is no graphical difference for instance between the diagram representing (f ◦ g) ◦ h and
the diagram representing f ◦ (g ◦ h). A functor F : C → D is a structure preserving
map between categories, formally it is an assignment of an object FA to each object A
along with for each pair A,B a function FAB : C(A,B) → D(FA,FB) which preserves
composition in the sense that F(f ◦ g) = F(f) ◦ F(g) and F(i) = i. Graphically a
functor can be represented by a surrounding box, which satisfies box-merging and identity
removal:

g

f
F

F
=

g

f
F

F
= .

A natural transformation η : F ⇒ G is for every object A a morphism ηA : FA → GA
such that for every f : A→ B then ηB ◦ F(f) = G(f) ◦ ηA. Graphically this reads as:

f
F

ηB

=
f

G

ηA

.

For any category C the (reverse) opposite category Cop can be defined in which
Cop(A,B) := C(B,A) with composition and identity inherited from C so that
f ◦opg := g◦f . Finally for any categories C,D the product category C×D can be defined
in which objects are given by pairs (A,B) and morphisms given by pairs of morphisms
(f, g) and composition rule inherited from C and D as (f, g) ◦ (f ′, g′) := (f ′ ◦ f, g′ ◦ g).

An example of a natural transformation of interest in this paper is given intuitively
by the following: a family of functions ηA,B : C(A,B) → C(A,B) which commute with
pre and post-composition by arbitrary processes, meaning that for all f : A′ → A and
g : B → B′:

ηA′,B′(g ◦ ϕ ◦ f) = g ◦ ηA,B(ϕ) ◦ f
In this paper we choose to represent such families graphically by introducing a function-
box notation. We represent ηA,B by

ηA,B ≈
ηA,B

A

A

B

B

ηA,B(ϕ) ≈
ηA,B

ϕ

The dotted wires are used to suggest the commutation condition satisfied by the family
ηA,B:

ηA′,B′

ϕ

f

g

=
ηA,B

ϕ

g

f
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Such a family of functions can be phrased as a natural transformation in the following way,
we begin with definition of the “hom functor” C(−,=) : Cop ×C → Set. The category
Cop × C has as objects pairs (A,B) of objects of C, for morphisms (A,B) → (A′, B′)
it has pairs (f : A′ → A, g : B → B′). A functor of type Cop × C → Set must send
each pair (A,B) to a set, indeed the functor C(−,=) is defined as sending the object
(A,B) to the set C(A,B). A functor of type Cop × C → Set must send each pair
(f : A′ → A, g : B → B′) to a function C(A,B)→ C(A′, B′). Indeed the functor C(−,=)
is defined by sending each pair (f, g) to the function

C(f, g) : C(A,B)→ C(A′, B′)
C(f, g)(ϕ) = g ◦ ϕ ◦ f

Indeed this is a functor since C(i, i)(ϕ) = ϕ and C(f ◦ f ′, g′ ◦ g)(ϕ) = g′ ◦ g ◦ ϕ ◦ f ◦
f ′ = C(f ′, g′)(C(f, g)(ϕ)) = (C(f ′, g′) ◦ C(f, g))(ϕ). A natural transformation of type
η : C(−,=) ⇒ C(−,=) is a family of functions ηA,B : C(A,B) → C(A,B) such that
ηA,B ◦C(f, g) = C(f, g) ◦ ηA,B, which when applied as functions reads ∀ϕ : ηA′,B′(g ◦ ϕ ◦
f) = g ◦ ηA,B(ϕ) ◦ f , our original commutativity condition.

B Phrasing of localizability as naturality
The previously introduced hom-functor C(−,=) can be generalised in monoidal categories
to a functor

C(A⊗−, A′⊗ =) : Cop ×C −→ SET
which assigns to each (X,X ′) the object C(A ⊗ X,A′ ⊗ X ′) and to each morphism f :
Y → X and each morphism g : X ′ → Y ′ the function

C(A⊗ f,A′ ⊗ g) : C(A⊗X,A′ ⊗X ′)→ C(A⊗ Y,A′ ⊗ Y ′)
C(A⊗ f,A′ ⊗ g) :: ϕ 7→ (i⊗ g) ◦ ϕ ◦ (i⊗ f)

This functor can be further generalised to a functor dExt(K)(−,=), which we now define.

Definition 8 (Extension functor). For every K ⊆ C(A,A′) in a symmetric monoidal
category C one can define a functor dExt(K)(−,=) : Cop ×C→ Set given by

• dExt(K)(X,X ′) := dExtX,X′(K)

• dExt(K)(f, g) : dExtX,X′(K)→ dExtY,Y ′(K) defined by

dExt(K)(f, g)(ϕ) := Φ

f

g

The functor C(A ⊗ −, A′⊗ =) can be defined as the special case given by
dExt(C(A,A′)). dExt is well defined, whenever ϕ ∈ dExtX,X′(S) then dExt(S)(f, g)(ϕ) ∈
dExtY,Y ′(S) since for each f, g and ρ, σ then

σ

ρ

Φ

f

g

= Φ

σ′

ρ′

∈ K
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since ϕ ∈ dExtX,X′(K). Furthermore the assignment dExt(S)(f, g) is functorial since

dExt(S)(f ′, g′)(dExt(S)(f, g)(ϕ)) = Φ

f

g

g′

f ′

= dExt(S)(f ◦ f ′, g′ ◦ g)(ϕ)

The definition of a locally-applicable transformation can be rephrased as the definition
of a natural transformation respect to this functor. A natural transformation S : C(A⊗
−, A′⊗ =) −→ C(B⊗−, B′⊗ =) will be any family of functions SXX′ making the following
diagram commute for all f, g:

C(A⊗X,A′ ⊗X ′) C(B ⊗X,B′ ⊗X ′)

C(A⊗ Y,A′ ⊗ Y ′) C(B ⊗ Y,B′ ⊗ Y ′)

SXX′

C(A⊗f,A′⊗g) C(B⊗f,B′⊗g)

SY Y ′

In other words such that SY,Y ′ ◦C(B⊗f,B′⊗g) = C(B⊗f,B′⊗g)◦SX,X′ . Evaluated on
processes ϕ, this condition reads SY,Y ′(C(B⊗f,B′⊗g)(ϕ)) = C(B⊗f,B′⊗g)(SX,X′(ϕ)),
which unpacking the definition of C(B ⊗ f,B′ ⊗ g) is precisely the sliding rule which
in the case of quantum theory entails the stricter notion of locally-applicable trans-
formation. This observation extends to general subsets, so that a locally-applicable
transformation of type S : K → M in QC is exactly a natural transformation of
type SX,X′ : dExtX,X′(K) → dExtX,X′(M). Locally applicable transformations of type
K1

−,= . . .K
n
−,= → M−,= on QC can similarly be phrased as natural transformations of

type
K1

−,= × · · · ×Kn
−,= →M−,=

where for any F : C1 → C2 and G : D1 → D2 the product functor F × G : C1 ×D1 →
C2 ×D2 is defined by F × G(c, d) = (F(c),G(d)) and similarly on morphisms.

C ∗Hilb Supermaps
We introduce functor box notation for weak symmetric monoidal functors. Whilst F(f)
will be notated as before, for a weak monoidal functor, functorality is only-up-to ismor-
phism so that we may write:

g

f
F

F
∼=

g

f
F

However, we will say that a functor is 2-faithful if

F(f) ∼= F(g) =⇒ f = g

The above allows us to generalise D-representable supermaps to a setting which allows
us to use compact closure when defining supermaps on infinite dimensional quantum
systems.
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Lemma 5. Let C be a symmetric monoidal 2-category with trivial 2-morphisms and D
be a symmetric monoidal 2-category with a weak 2-faithful symmetric monoidal 2-functor
G : C → D. Any comb[a, b] with a, b ∈ D such that for all ϕ ∈ dExtX,X′(K) there
exists ψ ∈ dExtX,X′(M) such that G(ψ) = comb[a, b]GXGX′(ϕ) defines a locally-applicable
transformation by taking SX,X′(ϕ) to be the unique ψ s.t G(ψ) = comb[a, b](ϕ). Such
a locally-applicable transformation is termed a G representable supermap on C of type
K →M .

Proof. Note that

F

SXX′ ϕ

g

f

=

F

ϕ

g

f

a

b

∼= ϕ

g

f

a

b

=

g

f

SXX′

Φ

and so

F

SXX′ ϕ

g

f

∼=

F

SXX′

Φ

g

f

which by 2-faithful-ness of F gives

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

This gives a way to construct and represent examples of supermaps on the category
of unitaries sepU ⊆ sepHilb by using the embedding of sepHilb into ∗Hilb [76].

Example 6. There is a 2-faithful weak symmetric monoidal 2-functor G : sepU →
∗Hilb given by composition of the embedding sepU ⊆ sepHilb and the truncation
functor trunc[−]w : sepHilb → ∗Hilb [76]. The induced supermaps are then termed
trunc[−] representable supermaps on C.
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One can straight-forwardly generalise the above construction to define G-representable
supermaps with multiple inputs, and so in particular define trunc[−] representable su-
permaps on sepU with multiple inputs to realise the structural maps of monoidal enrich-
ment, and furthermore infinite dimensional switches.

D Characterisation of Classical Supermaps
The proof methods presented in the main text can also be used to characterise supermaps
on finite dimensional classical information theory. We outline the story here, noting the
key features common to quantum classical information theory that were used in our proof.
First we must declare what would be aimed to be proven, and what we mean by classical
information theory. We define deterministic classical maps to be stochastic matrices, just
as with quantum channels it is easier to first state a compact closed category from which
they are constructed.

Definition 9 (Positive real matrices). The category Mat[R+] of positive real matrices is
given by taking as objects the positive integers Z+ and as morphisms of type f : n → m
the matrices of dimension n×m. Sequential composition is given by matrix multiplication
and identity morphism is given by the diagonal matrix of ones.

The category Mat[R+] is symmetric monoidal and furthermore compact closed.

Definition 10 (Stochastic maps). The category Stoch of stochastic maps is given by the
subcategory of Mat[R+] which contains only those matrices with column vectors which
sum to 1.

The category Stoch is symmetric monoidal and furthermore causal, the unique effect
of type n→ 1 is given by the row vector (1, . . . , 1). Using the inclusion Stoch ⊆Mat[R]
one can immediately define the Mat[R]-supermaps on Stoch. We will now observe that
these are precisely the locally-applicable transformations on Stoch. First, we adress the
equivalence between convexity and control.

Lemma 6. A subset K ∈ Stoch(A,A′) is convex if and only if it has control

Proof. All that was required to construct the proof was the existence of an object Y with
a pair of distinguishable states in the sense that ei ◦ ρj = δij and the possibility to take
positive sums. Sums are taken care of by Mat[R+] and Y may be taken to be 2. Indeed
one can define ρi : 1 → 2 by taking the kth component of the column vector ρi to be δik

and similarly for the effects ej : 2→ 1.

Lemma 7. Let K ∈ Stoch(A,A′) and M ∈ Stoch(B,B′) be convex subsets, then every
locally-applicable transformation S : K →M is convex linear.

Proof. Follows directly from equivalence between convexity and control.

We take the operational closure KMat[R+] of a set K ⊆Mat[R+] to be defined in the
equivalence way as for subsets M of QC, replacing the applying of effects from CP with
the applying of effects from Mat[R+]

Lemma 8. Every locally-applicable transformation S : K → M between convex sets in
Stoch extends to a function SMat[R+] : KMat[R+] →MMat[R+].
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Proof. The required elements of the proof are that Mat[R+] embeds into Mat[R] so that
subtractions can be defined, and that for every effect σ ∈ Mat[R+](A, I) there exists
λ ∈ R+ and σ′ ∈Mat[R+](A, I) such that λσ + σ′ = (1, . . . , 1) (The discard).

Lemma 9 (Tensor seperation). Every locally-applicable transformation of type S : K →
M on Stoch tensor seperates.

Proof. Follows since Mat[R+] has enough causal states.

Theorem 2. For K,M convex in Stoch there is a one-to-one correspondence between the
Mat[R+]-supermaps of type K →M on Stoch and the locally-applicable transformations
of type K →M on Stoch.

Proof. Here all that is required is compact closure of Mat[R+], and again that Mat[R+]
has enough causal states.

Again as a corollary of this theorem, the classical supermaps on non-signalling channels
are characterised as locally-applicable transformations on non-pathing channels in Stoch.
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