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In this work we show how FibLang, a category-theoretic framework concerned with
the interplay between language and meaning, can be used to describe vocabulary
acquisition, that is the process with which a speaker 𝑝 acquires new vocabulary (through
experience or interaction).

We model two different kinds of vocabulary acquisition, which we call ‘by example’
and ‘by paraphrasis’. The former captures the idea of acquiring the meaning of a word
by being shown a witness representing that word, as in ‘understanding what a cat is,
by looking at a cat’. The latter captures the idea of acquiring meaning by listening to
some other speaker rephrasing the word with others already known to the learner.

We provide a category-theoretic model for vocabulary acquisition by paraphrasis
based on the construction of free promonads. We draw parallels between our work
and Wittgenstein’s dynamical approach to language, commonly known as ’language
games’.

1 Introduction

Language has always been characterised as a distinctive, exclusive feature of human beings,
yet children are not born fluent in any language at all. Along the history of human thought,
this apparent discrepancy has promptly led to philosophical speculation on the innateness of
language [22], which was subsequently replaced with a more cautious theory of innateness
of syntactic structures [5]. On the other hand, empiricists such as J. Locke [21] argued that
the human mind had to be thought of as a tabula rasa.

Either way, these heterogeneous philosophical stances share the necessity of formalising
a common process: language acquisition, i.e. the process in which proficiency in a language
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increases with time or solicitation.1 Although years of debate in linguistics have not come to
a definite resolution yet, the transformationalist orientation of Chomsky has received severe
criticism in the 20th century with the growing development of linguistic philosophy and with
the renewed interest in L. Wittgenstein’s ideas.

In particular, Chomsky’s model of language acquisition has been accused of being
overly reductionist and mechanical [27], as opposed to Wittgenstein’s dynamic theory that
embraces context as a fundamental aspect of meaning analysis [32, 31].

In this latter perspective, syntax and semantics must interact and reciprocally influence
each other during communication, a process also referred to as a language game [4]. More
precisely, language games can serve as a tool to untie the problems of context-dependency
and ambiguity regarding words with multiple semantic interpretations.

The recently developed FibLang framework [13] takes a stab at tackling the enticing
and deep problem of language, offering a category-theoretic framework concerned with
describing the interplay between meaning and structure in natural language. As a theory,
FibLang relies on fibered categories [16, 23, 30, 28]; the main idea underlying FibLang is
characterizing linguistic meaning as fibered over grammar.

Here we argue that Wittgenstein’s perspective hints at a fibrational formalisation of
language acquisition. We will substantiate our hypothesis by formalising vocabulary acqui-
sition in FibLang and show how the context-dependency and semantic ambiguity aspects
underlying language games are organically embraced in our categorical description.

Since our fibrational approach to language acquisition naturally encodes agency, it is
out-of-the-box compatible with applications to learning tasks in natural language processing
(NLP). In this sense, it also enriches the static perspective of DisCoCat [6], which by the
way, has also been recently revised using tools from categorical game theory applied to
language games in [14].

In point of fact, in more recent years, a different framework, named DisCoCirc, has been
adopted to allow for a dynamic flow between syntax and semantics [7]. Implementation
aspects regarding quantum computers suggested this switch and, as a side-effect, it provides
stronger foundations to the philosophical stance of FibLang.

Structure of the paper. In section 2, we will recall the basic definitions of FibLang.
We will then provide our description of vocabulary acquisition by example in section 3.
Subsequently, we will define the tool of explanations in section 4, and will use them to
define vocabulary acquisition by paraphrasis in section 5. Finally, at the end of section 5,
we provide a construction (cf. Construction 5.3) with which to show how our formalisation

1Here and in the rest of paper we will be referring to first language acquisition only: although similarities
have been pointed out concerning second language acquisition, such as the silent period [9], several substantial
differences separate the two processes [15]. For instance, there is evidence that the learner’s first language slows
the development of acquisitional sequences predicted by the Natural Order Hypothesis [17, 25]. Additionally,
according to the Critical Period Hypothesis, after puberty, lateralisation is accomplished, and reduced plasticity
of the brain can compromise the fluent acquisition of a second language [2].
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of vocabulary acquisition can be used to enrich grammar by appropriately acknowledging
semantic interrelations.

2 Rappels of FibLang

FibLang was introduced in [13]. The main idea behind FibLang is that whereas it is
reasonable to believe that language has at least some degree of compositionality, especially
when describing grammar, it becomes much more difficult to substantiate this posture in
describing meaning. Indeed, compositional – and especially cognitive – models of meaning
such as Gärdenfors’ [11] are prone to criticism on multiple fronts, not last the fact that a
truly universal model of meaning is very difficult to define because of cultural and cognitive
differences between speakers.

To circumvent these problems FibLang focuses on describing the interplay between
meaning and structure in abstract terms in a way that is agnostic to the particular model one
chooses to represent either. This vision is reified in the main idea being that a speaker 𝑝 of

a language L is a fibration
[

E𝑝

𝑝 ↓
L

]
over L.

Here, borrowing from Lambek, L represents a ‘language category’ while E 𝑝, called
the total category of the fibration, represents a ‘semantics category’ for the speaker 𝑝. This
semantics category could be thought of as any sort of cognitive or distributional model of
meaning for the language in question: this is to say that we are not particularly attached to
any specific model but rather aim at the highest possible generality.

To arrive at this idea, the starting point in [13] constitutes the most general and yet
reasonable assumption one could make, namely there is some structure-preserving map
from what a speaker means to what a speaker says. Formally, this directly translates to
modelling speakers as simple functors between categories. From this, multiple reasons are
stated that lead to believe that the language category L should be treated as something that
can be explicitly modelled and studied, while E 𝑝 should be treated as a black box. Then, it
is shown how every functor can be factorised into a fibration via Theorem 2.4, obtaining a
more workable definition of a speaker from the very abstract one we started from.
Definition 2.1 (fibration). A contravariant functor 𝑝 : E→C is a fibration if, for every object
𝐸 in E and every morphism 𝑓 : 𝑝𝐸 → 𝐶 in C, there exists a unique morphism ℎ : 𝐸 → 𝐸 ′

such that 𝑝ℎ = 𝑓 . Functors that are fibrations will be always denoted using vertical notation,

as in
[

E
𝑝 ↓
L

]
.

Notation 2.2. The domain of a fibration
[

E
𝑝 ↓
L

]
is usually called the total category of the

fibration, and its codomain is the base category. Given any functor 𝑝 we can define the fibre
of 𝑝 over an object 𝐶 ∈ C, i.e. the subcategory E𝐶 = { 𝑓 : 𝐸 → 𝐸 ′ | 𝑝 𝑓 = 1𝐶} ⊆ E.

Intuitively, a fibration is a functor 𝑝 : E → C that realises the category E as a ‘covering’
of C, in such a way that morphisms in C can be lifted to E, to induce functions between the
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fibres in E. We have represented an elementary example of fibration in the following figure.
The gray rectangles are the fibres of the fibration.

C

E

𝐴 𝐵 𝐶
𝑓 𝑔

E𝐴

𝐴0

𝐴1

𝐴2

E𝐵

𝐵1

𝐵0

E𝐶

𝐶0

𝐶1

𝑝

A fundamental result in the theory of fibrations that we will often use is that fibrations over
a category L are equivalent to functors out of L, with codomain the category of sets and
functions. More details on the construction, and a full explanation of its usefulness for
FibLang, can be found in [13, A.6]; a classical reference is [16].

Theorem 2.3. There is a category DFib/L of fibrations over a given L, where a map

ℎ :
[

E𝑝

𝑝 ↓
L

]
→

[
E𝑞

𝑞 ↓
L

]
is a functor ℎ : E 𝑝 →E𝑞 such that 𝑞 · ℎ = 𝑝.

There is an equivalence of categories:

∇− : DFib/L � [L,Set] :
∫
− (2.1)

where at the right-hand side we have the category of all functors L → Set and natural trans-
formations thereof. The functor

∫
− is often called the category of elements construction,

or in its most general form the Grothendieck constuction.

Theorem 2.3 is also instrumental in pointing out how FibLang– which postulates an
approach going from meaning to language – can be made compatible with traditional
models of meaning such as DisCoCat – which postulate an approach going from language
to meaning2. Many conceptual reasons are given in [13] to prefer the meaning-to-language
approach, but Theorem 2.3 shows how the two are faces of the same medal.

As we remarked above, FibLang relies on some machinery to turn a model for speakers
consisting of simple functors into a model consisting of fibrations. The main theorem
allowing us to do so is the following:

Theorem 2.4 ([29, Theorem 3]). Any functor 𝑝 : D 𝑝 →L can be written as a composition

of functors D 𝑝 𝑠−→ E 𝑝
𝑝♯

−−→ L, such that 𝑝♯ is a fibration.

We will make heavy use of Theorem 2.4 in the following sections to model language
acquisition.

2In the particular case of DisCoCat it would be more proper to say that the chosen approach is from grammar
to semantics. The apparent dissonance is resolved by taking into account the agnostic approach of FibLang.
The language category L can be purely grammatical, employing for instance a Lambek’s pregroup [19] as in
DisCoCat, or more expressive. Similarly, the meaning category E 𝑝 for a speaker 𝑝 could be purely semantical
– for instance, a distributional model or a conceptual space [11] – or more expressive.
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3 Vocabulary acquisition by direct example

Vocabulary acquisition denotes the act of acquiring meanings for a word previously unknown
[24]. In this work, we aim to describe two main modes of vocabulary acquisition. In this
section, we focus on vocabulary acquisition by direct example: this is the easiest method
of language acquisition that we can describe and a commonly used method in children’s
education and monolingual fieldwork [10, 26]: it simply works by pointing at something and
saying the word one is referring to. This process of language acquisition, as Wittgenstein
explains in [33], can serve as a primitive example of a language game.

Example 3.1. Consider the following dialogue:

alice: Look, a cat!
bob: A what?
[Alice points to a cat]

alice: That, a cat!
bob: Oh!

What happened in that ‘Oh!’ can be mathematically modelled as a colimit in the fibrations
that represent Alice and Bob.

Definition 3.2 (Vocabulary acquisition by language example). Consider two speakers
[

E𝑝

𝑝 ↓
L

]
and

[
E𝑞

𝑞 ↓
L

]
, which we will call teacher and learner, respectively.

Suppose that, for some 𝐿 ∈ L – called the linguistic element to learn3 – we have that
E 𝑝

𝐿
≠ ∅ and E𝑞

𝐿
= ∅. Fix a subset 𝑆 ⊆ E 𝑝

𝐿
, called an example for 𝐿. Then we can define a

new category F 𝑞 as follows:

obj(F 𝑞) := obj(E𝑞) ⊔ 𝑆
hom(F 𝑞) := hom(E𝑞)

and a functor 𝑇 : F 𝑞 → L agreeing with
[

E𝑞

𝑞 ↓
L

]
on every fibre 𝐿′ ≠ 𝐿, and sending every

object of 𝑆 to 𝐿. Relying on Theorem 2.4, the new fibration modelling the speaker 𝑞 after
learning 𝐿 is the factorization 𝑞 such that:

𝑇 =
(
F 𝑞 𝑠 // E �̃� �̃� // // L

)
.

Let us unpack this definition. We consider two speakers 𝑝, 𝑞 of the same language L.
Speaker 𝑞 does not know the meaning of a given linguistic element which corresponds to an

3We will use the wording linguistic elements referring to words, entire sentences or something else, depending
on the model we chose for L, without committing to a particular choice. More formally, a linguistic element is
the (possibly nonfull) subcategory of L spanned by a certain choice of objects.
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object 𝐿 ∈ L –which is why we call 𝑞 learner. The fibre E𝐿 in E is the empty set, as 𝐿 has
no meaning for 𝑞. On the other hand, speaker 𝑝 has some model of meaning for 𝐿 –which
is why we call 𝑝 teacher, and we assume the fibre E 𝑝

𝐿
to be not empty.

If 𝑝 points out an instance of 𝐿 to 𝑞, as in Example 3.1, it is reasonable to assume that the
instance in question is itself part of the fibre E 𝑝

𝐿
, as 𝑝 recognises the example as an instance

of the concept 𝐿. So we postulate that the example identifies a subset 𝑆 ⊆ E 𝑝

𝐿
. While

following along with the example, 𝑞 incorporates the set 𝑆 as a fibre over 𝐿 by extending its
meaning.

On the intuitive side, there is no reason to claim that forcefully adding a scattered set of
notions to the ones previously mastered by a speaker is enough to let 𝑞 ‘understand’ that said
set of notions defines a new language term. Instead, to attain this level of understanding, 𝑞
has to build meaningful relations between the new term 𝐿 and all the others they master, in
concordance with all the pre-existing relations between general terms.

On the mathematical side, there is no reason why the functor obtained by forcefully
adding a nonempty fibre to a previously empty one shall remain a fibration; to be such, we
must let the new fibre interact well with the environment, in concordance with the hom-sets
L(𝑋, 𝐿) and L(𝐿,𝑌 ). This is why we consider the comprehensive factorisation of 𝑇 and
take into consideration only 𝑞 instead of the whole 𝑇 .
Example 3.3 (A language game). Consider the following language game borrowed from
Wittgenstein’s Philosophical Investigations [33]: a builder 𝐴 asks his assistant 𝐵 to pass
him the stones with which they are building, in the order 𝐴 calls them out. In this situation,
let us imagine that the language they use consists of only four words: block, pillar, slab,
beam.

This language game can be interpreted as a particular case of vocabulary acquisition by
example. The builder 𝐴, when requesting a slab, specifies the linguistic element slab that
he wants to learn. On the other hand, the teacher 𝐵 associates the right stone to the word
slab and hands it over to 𝐴. This way, the fibre of 𝐴 over the word slab is no longer empty
since 𝐴 has incorporated as part of its meaning the stone received by 𝐵.

Crucially, in the construction of Definition 3.2 we suppose that 𝑞 has no meaning at all
for the word 𝐿. What if this is not the case? More generally, we can model a vocabulary
acquisition between two speakers that share some prior knowledge of 𝐿 as a pushout, but this
will render necessary the introduction of some compatibility conditions. Indeed, consider
the following diagram:

E𝑞

𝐿

𝑢!
//

_�

��

𝑆

��

� � // E 𝑝

𝐿

��
E𝑞 //

𝑞 ++

F𝐿

��

E 𝑝

𝑝ss{𝐿}

(3.1)
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The arrow marked as 𝑢! always exists whenever E𝑞

𝐿
is the empty set because of the universal

property of initial objects. Whenever E𝑞

𝐿
is not empty, the arrow 𝑢! will have to be explicitly

instantiated. This must be understood as: the meaning that 𝑞 has for 𝐿 must be compatible
with the subset 𝑆 that constitutes the meaning of the example for 𝑝. In simpler words, the
example 𝑝 is making must make sense for 𝑞.

4 Explanations

Our task for the remainder of this work is about modelling vocabulary acquisition by
paraphrasis, which denotes the task of explaining a word by describing it with language, as
it happens in a dictionary. To do so, we first need to model what an explanation is.

In stark contrast with works that are exclusively based on syntax, FibLang can describe
linguistic constructions that have meaning for a given speaker despite their ungrammaticality.
For example, it is a fact of life that often one can understand the meaning of unsound
sentences, such as in ‘I hungry now’: this is because every proficient speaker can interpolate
what is missing in the message they receive by analysing its context, in order to build a
grammatical sentence. For that matter, this is precisely how Wittgenstein’s language games
unravel in disambiguating a sentence.

On the other hand, there are perfectly grammatical sentences, such as the famous ‘Dogs
dogs dog dog dogs’ (cf. [1]) that are grammatical (since ‘dog’ is both a verb and a noun in
English) but have no meaning when they are translated to any other speaker out of context.
This tension stems from the fact that acceptability –i.e. the fact that a sentence has a meaning
and grammaticality –the fact that a sentence is formed in observance of some generation
rules do not fully overlap (cf. [20]).

As such, leveraging a grammar-based approach to infer meaning in semantics, as in the
case of DisCoCat, is going to miss something –an important part, we say. By contrast,
the fibrational approach of FibLang allows more fine-grained bookkeeping: grammaticality
is completely encapsulated in the category L modelling language, whereas acceptability
comes into play in the following definitions:

Definition 4.1 (Finite category, finite diagram). A finite category is a category A having a
finite set of morphisms. A finite diagram valued in L is a functor A →L whose domain is
a finite category.

Definition 4.2 (Explanation). Consider a speaker
[

E𝑝

𝑝 ↓
L

]
. Fix moreover an object 𝐿 of L.

An explanation for 𝐿 according 𝑝 is a finite diagram 𝐷𝐿 : A →L such that the limit �̂� of
the diagram

A 𝐷𝐿 // L ∇𝑝 // Set (4.1)

is a subset of the fibre E 𝑝

𝐿
(Here ∇− is the functor of Theorem 2.3). If �̂� = E 𝑝

𝐿
, we call the

explanation exact.
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Here, the functor 𝐷𝐿 is picking a collection of linguistic elements in the language
intending to describe 𝐿. The finiteness requirement for A stems from the obvious fact
that a linguistic sentence is always made of a finite number of words. The linguistic
elements picked by 𝐷𝐿 are then sent to the sets of sections sitting over them under 𝑝,
in accordance with Theorem 2.3. In postulating that 𝑝 ‘knows’ how to make sense of
some given complex concept 𝐿 ∈ L by breaking it down into some atomic constituents, it
becomes reasonable to assume that the combination of these atomic meanings – that is, the
limit �̂� – must itself be a concept representing 𝐿, and thus be a subset of the fibre over
it. In light of this interpretation, an exact explanation is a selection of linguistic elements
describing the fibre over 𝐿 completely, that is, an explanation that more than any other,
conveys exactly all the nuances that the meaning of 𝐿 can assume according to the speaker.

𝛼
𝛽

𝛾

A

L

evil
black

feline

Set

∇𝑝 (evil)

∇𝑝 (black)

∇𝑝 (feline)

�̂� ⊆ ∇𝑝cat

𝐷cat

∇𝑝

Figure 1: An explanation of the word ‘cat’ as a black, evil
feline: The limit of a certain diagram of elements having
values in the fibres over concepts like ‘black’, ‘evil’, and
‘feline’ is required to be in the fiber over ‘cat’.

Remark 4.3 (Acceptability
vs. grammaticality). As we
remarked at the beginning of
this section, a remarkable fea-
ture of Definition 4.2 is that
explanations can be ungram-
matical, as they evaluate the
acceptability and not gram-
maticality. For instance, if L
is a pregroup [19], the func-
tor 𝐷𝐿 can specify a bunch of
elements that possibly do not
reduce to a sentence type.

Remark 4.4 (On the na-
ture of explanations). Expla-
nations are engineered to be
far from unique: there may be many functors 𝐷𝐿 , with different domains, satisfying the
property of Definition 4.2. This conforms to the idea that the same concept 𝐿 can be ex-
plained in different ways (the same object can be the limit of many different diagrams) by
different people, at different moments in time, in different cultures, in different communica-
tion settings.

Interestingly, for every object 𝐿 ∈ L, there is always an exact explanation for it by
choosing A to be the terminal category and 𝐷𝐿 to be the functor picking 𝐿 ∈ L; This
explanation is tautological, as it affirms in essence that the meaning of the word ‘cat’ is
‘cat’.
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5 Vocabulary acquisition by paraphrasis

As remarked in the opening of section 4, by vocabulary acquisition by paraphrasis we
denote the mechanism by which we give meaning to things using linguistic explanation.
This is the method of language acquisition commonly used in books and papers like this
one, in conversations with a blind man about cathedrals, and pretty much everywhere 𝑝
needs to convey the meaning of something they know to a 𝑞 who does not.
Example 5.1. Consider the following dialogue:

alice: I adopted a cat!
bob: A what?
alice: You know, a cat: one of those felines.
bob: Oh, you mean, like a tiger?
alice: No: a cat is smaller and it comes in various colours, not only stripes.
Mine is black.

bob: Oh, maybe I see. A cat is like. . . a lynx.
alice: Well, almost; black cats are cursed.
bob: Ah, now I see.

Bob still has probably never seen a real cat when the dialogue ends, and he would have
trouble recognizing one. Still, he can get a rough idea of ‘a cat’ by mixing concepts for
which he already had a model of meaning.

Mathematically, what we would like to do is proceed as we did in Definition 3.2, by
incorporating an explanation as in Definition 4.2 into the fibration of the learning speaker.
In short, our strategy is the following:

• 𝑝 has an explanation 𝐷𝐿 : A →L of some word 𝐿;

• 𝑝 shares A with 𝑞. This represents the act of 𝑝 uttering the explanation to 𝑞;

• 𝑞 computes the limit of the diagram A 𝐷𝐿−−→ L
∇𝑞−−→ Set;

• 𝑞 includes this limit in their own fibre over 𝐿.
Difficulties arise in the last point. The problem we face is that an explanation is a limit, and as
such, a particular kind of cone in Set is composed not only of objects but also of morphisms.
Unfortunately, including the whole cone in the total category of a fibration sometimes entails
the impossibility of defining the functor 𝑇 : F 𝑞 →L as we did in Definition 3.2.
Example 5.2. To see a practical example, consider the explanation as in Figure 1. Here, the
cone legs are morphisms in Set connecting concepts signifying different nouns (for example,
from ‘cat’ to ‘feline’). If L is a Lambek pregroup, the only morphisms are reductions, so
there are no morphisms between nouns in L. Thus in including the whole cone in F 𝑞, we
could not define the functor𝑇 on the cone legs. This is related to our previous considerations
about grammaticality and acceptability: pregroups only represent grammatical connections
and fail to see conceptual relatedness. Consequently, although pregroup grammars have been
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enriched to identify differently worded sentences in [8], the added relations are exquisitely
grammatical and cannot account for context.

One possible solution to this problem would be to consider only the limit itself and
proceed as in Definition 3.2. However, in doing so, we would miss the big opportunity of
adding meaning while being mindful of the context in which this meaning lives.

Another –more stimulating– solution considers Wittgenstein’s approach to language,
which we briefly summarized in the introduction, and leverages the interplay between
grammar and semantics. The main idea here is to use semantics data - i.e. the limiting
cone - to enrich the grammar with new morphisms. Going back to Example 5.2, this means
adding new morphisms to the pregroup grammar L that do not represent reductions but
some sort of ‘semantic connection’ between words.

To add new morphisms to a category, we highlight the following procedure. Recall that
there is an adjunction

( ) 𝛿 : Set // Quivoo : ( )0 (5.1)

sending every quiver 𝑄 to the set 𝑄0 of its vertexes, and every set 𝑋 to the ‘discrete quiver’
𝑋 𝛿 with no edges, and an adjunction

𝐹 : Quiv // Catoo :𝑈 (5.2)

sending every quiver 𝑄 to the free category 𝐹𝑄 generated by it, and every category C to its
underlying quiver𝑈C.

The following construction is a recipe to add the set of edges 𝐸 of a quiver𝑄 to a (small)
category C and form a category out of it when C and 𝑄 have the same set of vertices.
Regarding a category as a monad in the bicategory of spans, the following Construction 5.3
consists of a particular instance of a free-monoid construction in a decent enough monoidal
category (cf. [18]).

Construction 5.3 (FP construction). Let C be a category, and 𝑄 : 𝐸 ⇒𝐶0 a quiver over the
same set 𝐶0 of objects of C.4

• consider the underlying quiver𝑈C of C;

• compute the pushout
𝐶 𝛿

0
//

��

𝑄

��
𝑈C // 𝑈C +𝐶 𝛿

0
𝑄

(5.3)

in the category Quiv of quivers;

4The notation is slightly overloaded here because we denote 𝑄0 the set of vertices of a quiver and 𝐶0 the set
of objects of the underlying quiver of a category C. This confusion is harmless.
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• Applying the free category functor 𝐹 : Quiv → Cat, the square remains a pushout, so
we have a pushout

𝐹𝐶 𝛿
0

//

��

𝐹𝑄

��
𝐹𝑈C // 𝐹𝑈C +𝐹𝐶 𝛿

0
𝐹𝑄

(5.4)

in Cat;
• compose with the counit 𝜖 of the adjunction 𝐹 ⊣𝑈 above:

𝐹𝑈C +𝐹𝐶 𝛿
0
𝐹𝑄 // C +𝐹𝐶 𝛿

0
𝐹𝑄 (5.5)

The category C ≀𝑄 is the FP collage of 𝑄,C.

𝐶 𝛿
0 𝐴

𝐶𝐵

𝐷

𝑈𝐶
𝐴

𝐶𝐵

𝐷

𝑄
𝐴

𝐶
𝐵

𝐷

𝐴

𝐶
𝐵

𝐷 𝐹𝑈C +𝐹𝐶 𝛿
0
𝐹𝑄

C ≀𝑄

𝜖𝐶 +𝐹𝐶 𝛿
0

1𝐹𝑄

𝐹

Figure 2: A graphical description of C ≀𝑄, with the pushout of quivers made explicit.

Remark 5.4. Note that there exists a canonical functor

𝐾 : C // C +𝐹𝑄 // C ≀𝑄 (5.6)

given by the coproduct embedding followed by the projection on the quotient realising the
pushout C ≀𝑄; note that by construction this functor is the identity on objects, so it is induced
in a canonical way by a monad 𝔮 : C � // C on C in the category of profunctors, and 𝐾
corresponds to the free functor into the Kleisli category of 𝔮.
Remark 5.5. A more general construction for C ≀𝑄 is then the following: fix a monad 𝔮

as above, and consider its Kleisli object C̄; the free part of the Kleisli adjunction yields an
identity on objects functor C → C̄. Given 𝔮, it can be highly complicated to describe its
Kleisli category; what makes this construction combinatorially tamer is that the structure
we are adding through the quiver 𝑄 is free.

Now we finally have all the needed tools to define vocabulary acquisition via paraphrasis
satisfactorily.
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Definition 5.6 (Vocabulary acquisition by paraphrasis). Consider two speakers
[

E𝑝

𝑝 ↓
L

]
and[

E𝑞

𝑞 ↓
L

]
, which we will call teacher and learner, respectively.

Suppose that, for some 𝐿 ∈ L – called the linguistic element to learn – we have that
E 𝑝

𝐿
≠ ∅ and E𝑞

𝐿
= ∅. Let 𝐷𝐿 : A → L be an explanation of 𝐿 according to 𝑝. Define the

category F 𝑞 as L ≀𝑄, where 𝑄 is the image of𝑈 (𝐷𝐿).
Now define a functor 𝑇 : F 𝑞 → Set by mapping 𝐿 to �̂�𝑞 and every other 𝐿′ to ∇𝑞 (𝐿′).

On morphisms, 𝑇 agrees with ∇𝑞 wherever the latter is defined and maps the newly added
edges of 𝑄 to the legs of the limit �̂�𝑞.

Using Theorem 2.3, the new fibration modelling 𝑞 after learning 𝐿 is
∫
𝑇 .

This definition is a bit terse and needs some unpacking, so let us piggyback to Exam-
ple 5.1. In our situation, 𝑝 knows at least partly what a ‘cat’ (the object 𝐶) is, because the
fibre E 𝑝

𝐶
is not empty. We postulate that 𝑝 can explain this concept in words, that is, 𝑝 can

define a functor 𝐷𝐶 picking a bunch of linguistic elements in the language that mean ‘cat’ to
𝑝 since, by Definition 4.2, the limit �̂� 𝑝 of ∇𝑝 ◦𝐷𝐶 is a subset of ∇𝑝𝐶, which corresponds
exactly to E 𝑝

𝐶
via Theorem 2.3.

The teacher 𝑝 would like to ‘transmit’ �̂� 𝑝 to 𝑞, but this is not possible since, unless we
postulate either of them is from the planet Vulcan, the only way 𝑝 and 𝑞 have to communicate
is through the language L. Still, 𝑝 can utter the explanation and thus share the functor 𝐷𝐶

with 𝑞. Notice how, at this stage, 𝐷𝐶 is most likely not an explanation for 𝑞 as ∇𝑞𝐶 = E𝑞

𝐶

is empty by definition.
In any case, 𝑞 can calculate the limit �̂�𝑞 of ∇𝑞 ◦𝐷𝐶 . The limits �̂�𝑞 and �̂� 𝑝 will, in

general, be different, as the same explanation makes sense to different speakers in different
ways. Notice that whereas �̂� 𝑝 is always non empty as 𝐷𝐶 is defined to be an explanation for
𝑝, �̂�𝑞 can be empty. This happens when 𝑞 is not able to successfully combine the meanings
of the words in the explanation 𝐷𝐶 : the explanation does not make sense to 𝑞. Interestingly,
this is the case for the tautological explanation of Remark 4.4, which captures perfectly the
meaning of 𝐶 for 𝑝, but means absolutely nothing to 𝑞.

Whenever �̂�𝑞 is not empty, this is nothing more than a combination of concepts that
𝑞 already knows, as illustrated in Figure 1. 𝑞 includes this composition of concepts in the
fibre over 𝐿, while the morphisms from the limit to its atomic constituents are included as
morphisms between the fibres. In this procedure, the underlying language category for 𝑞
changes, as we now have a fibration over the category F 𝑞, which is obtained by adding new
morphisms to the language category L. This is not a bug but a feature: in learning the
meaning of a new concept, the speaker 𝑞 also learns new ways to turn words and sentences
into others.
Remark 5.7. The language game in Example 3.3 is taken up and debated later in [33] with a
question: should we interpret the request ‘Slab!’ as a word or a sentence? In the latter case,
the sentence ‘Slab!’ should be understood as a shortening of the sentence ‘Bring me a slab!’.
Concerning this sentence, we can consider the roles as inverted with respect to Example 3.3:
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the builder makes a request, and the assistant can use Definition 5.6 to build a meaning for
the sentence ‘Bring me a slab!’. Hopefully, this meaning will include things contextually
relevant to the situation, allowing the assistant to identify the slab and fulfil the builder’s
request correctly.

Yet, this does not answer Wittgenstein’s question, namely how we manage to go from
‘Slab!’ to ‘Bring me a slab!’. Wittgenstein argues that the reason behind this semantic
identification is the fact that these two sentences admit the same contextual use: there is
no need for an explicit explanation, as context is directly responsible of disambiguating this
sentence.

...But what is context mathematically? This is quite a thorny question. One possible
solution to model context in our framework is using stronger models for the language category
L. In many examples, L is taken to be a pregroup, which corresponds to a context-free
grammar in the sense of Chomsky [3]. We could instead make use of models of grammar
that are context-sensitive, allowing for a finer degree of context management. In theory, we
could have grammars where ‘Slab!’ can be reduced to ‘Bring me a slab!’ in a given context,
and proceed as specified in Remark 5.7.

Yet, if there is something that Definition 5.6 taught us, it is that the process of acquiring
vocabulary can result in enriching language with semantic meaning. Following the same
idea, we could start with a model of L that is context-free, such as a pregroup, and grad-
ually adding ‘context-sensitive’ morphisms that we borrow from the semantics, exactly as
in Definition 5.6. Going back to Remark 5.7, the reduction from ‘Slab!’ to ‘Bring me a
slab!’ would be added to L as a result of a language game previously played.

This last consideration hints at the fact that we shall be able to define disambiguation,
and more in general communication, fibrationally. This is a broad topic, and a current matter
of investigation.

6 Conclusion and future work

In this work, we used the framework provided by FibLang to take a first stab at describing
vocabulary acquisition mathematically. In particular, we defined the concept of explanation
to define, in turn, vocabulary acquisition by paraphrasis. A clear direction of future work
is to use Definition 4.2 as the building block for a more general theory of communication:
intuitively, speakers communicate in a game-theoretic fashion, exchanging explanations and
using them to build meanings until they reach some kind of fixed point, at which providing
further explanations does not result in building further meaning. This broader picture would
fully capture Wittgenstein’s ideas regarding language games, and we consider it an ambitious
goal. With respect to this, a conjecture we are currently working on is to show how the
bidirectional, game-theoretic nature of interactions between two speakers naturally suggests
the use of self-dual categorical structures.

On a more practical standpoint, we would like to investigate a possible replacement
of the limit in Definition 4.2 and in Definition 5.6 with something more linguistically
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sound: it is true that limits are universal constructions in category theory, and, as such, are
mathematically well-behaved. Yet, in strictly applied contexts it may be useful to experiment
with alternative definitions: for instance, considering a model of meaning where concepts
in the fibers are images may be a sensible choice to experiment with machine-learning
algorithms that merge images together [12].
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