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1 Introduction

De Finetti theorems give equivalences between exchangeable sequences of random processes and sequences generated by
drawing one experiment at random and then repeating it over and over. The main results of this paper are that both classical
and quantum de Finetti constructions have universal properties as categorical limits in particular categories. Additionally,
we show that exchangeability can be considered explicitly with products or implicitly using multisets. The categorical
concept that bridges these cases is the Radon probability monad: its Kleisli category is a category of probability kernels
and, from the perspective of categorical probability theory, a Markov category; whilst quantum state spaces live in its
category of Eilenberg-Moore algebras. Our de Finetti diagrams and their limits are situated in these two categories.

The categorical structure shows how de Finetti’s theorem allows us to pass from relatively simple structures, such as
sequences of probabilities and multisets, to more complex or conceptual spaces, such as spaces of measures (Theorem 3.1,
Theorem 3.2) and spaces of quantum states (Theorem 4.1). Thus de Finetti’s philosophical arguments [1] take an explicit
categorical form. In this way, our work begins a connection between axiomatic approaches to categorical probability
(e.g. [2, 3]), to quantum quantum probability (e.g. [11, 14, 8]), and categorical explorations of states and effects (e.g. [4,
15]). For further details, with a quantum focus, see [12].

2 The Radon Monad

The Radon monad R is a probability monad on CH, the category of compact Hausdorff spaces. Like all probability
monads, R takes an object X ∈ CH to an object, R(X), of measures on X . We are only interested in measures that
are compatible with compact subspaces of X , so we take the set of Radon measures on the Borel σ -algebra of X . It is
topologised such that it is again compact and Hausdroff (See [4] for details).

On morphisms, it acts by pushing forward measures by functions. The unit of the monad takes a point x∈X to the delta
distribution δx solely supported at x. The multiplication mult : R(R(X))→R(X) is marginalisation: for Φ ∈R(R(X))
and A ⊂ X Borel, mult(Φ)(A) =

∫
µ∈R(X) µ(A)dΦ(µ)

We recall that the Kleisli category of the Radon monad is a semi-cartesian monoidal category, i.e. a good classical
setting for categorical probability [2]. The Kleisli category can be thought of as the free algebras. The Eilenberg-Moore
category of all algebras for the Radon monad faithfully includes the state spaces of C*-algebras, and hence quantum
probability [4].

3 Two Classical de Finetti Theorems as Categorical Limits

Our first theorem shows that de Finetti characterizes R(X) as a limit of a diagram of projections and permutations in the
Kleisli category.

Exchangeability describes finite-permutation invariance of sequences of random processes. Let X be a measurable
space and let µ ∈R(Xn). For each permutation σ ∈ Sn, there is a homeomorphism

ησ : Xn → Xn (x1,x2, . . . ,xn) 7→ (xσ−1(1),xσ−1(2), . . . ,xσ−1(n)).
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2 Quantum de Finetti Theorems as Limits

µ is called symmetric if, for every permutation σ ∈Sn, we have that (ησ )∗µ = µ . A measure µ ∈R
(
XN) is exchangeable

if the measure it defines on Xn by projection is symmetric for all n ∈ N.
A classical de Finetti theorem tell us that exchangeable sequences of measures are in correspondence with measures

on independent and identically distributed sequences [1, 5].
Let Iinj be the category of the finite sets {1, . . . ,n} for n ∈ N and injections between them.

Theorem 3.1. In the Kleisli category of the Radon monad and for any X ∈ CH, the diagram
(
Iinj

)op → Kl (R) which
takes {1 . . .n} to Xn and each injection τ : {1 . . .n}→ {1 . . .m} to the Kleisli map ητ : Xm⇝ Xn given by ητ(x1, . . . ,xm) =
δ(xτ(1),xτ(2),...,xτ(n)) has limit R(X) with maps iidn : R(X)⇝ Xn given, for measurable A ⊂ Xn, by

iidn(µ)(A) = (µ ×·· ·×µ︸ ︷︷ ︸
n times

)(A).

Our second theorem gives an alternative view on the characterization of R(X) in terms of the limit of a chain of spaces
of multisets. The multisets M [n] (X) of order n with elements in X can be topologized as a coequalizer (equivalently
in Top or CH) of the maps Xσ : Xn → Xn for all σ ∈ Sn. The elements of M [n] (X) are formal sums ∑x∈X m(x) |x⟩ for
m : X → N, ∑x∈X m(x) = n and measures on M [n] (X) correspond with symmetric measures on Xn. We consider the
chain of continuous maps DDn : M [n+1] (X)→R(M [n] (X)) for n ∈N which takes a multiset given by m to a multiset
given by randomly dropping an element: ∑x∈supp(m)

1
n δm−1x , where 1x(x) = 1 and is 0 otherwise.

Theorem 3.2. Let X be a compact Hausdorff space. The limit of the diagram ω →Kl (R) which takes n to R(M [n] (X))
and n+1 → n to DDn is R(X). Further, this limit is reflected by the forgetful functor Em(R)→Kl (R).

This is inspired by the central result of [10], which shows a similar limit for X = 2. Possible extensions to Markov
categories are suggested by [9].

4 A Quantum de Finetti Theorem as a Categorical Limit
Em(R)

(C∗
CPU)

op

Classical
Probability
Kl (R)

Quantum
Channels

As shown in the Venn diagram, by moving to the algebras of the Radon monad
Em(R), we are able to include quantum and classical probability. An intermediate
region is C∗-algebras, their state spaces and completely positive maps, which are
recognised as providing a model for hybrid quantum-classical systems. It is helpful
to bear in mind all four categories: the uniting category of C∗-algebras and com-
pletely positive unital maps (C∗

CPU)
op has good monoidal structure, whereas other

categorical structures in Em(R) are more canonical for calculations and relate our results back to classical probability.x
The set of states, S (X ) :=C∗

CPU(X ,C), of a C∗-algebra X can be given a topology such that it forms a convex compact
Hausdorff space. Defining S = C∗

CPU(−,C) with this additional structure gives a functor from (C∗
CPU)

op to Em(R) (see
[4] for details).

Our main result in [12] is that the quantum analogue of De Finetti’s theorem [7, 6, 13] gives a universal property for
the space of states.
Theorem 4.1. Let X be a C∗-algebra. We define a diagram

(
Iinj

)op → (C∗
CPU)

op by taking {1, . . . ,n} to X⊗n and an
injection τ : {1, . . . ,n} ↪→{1, . . . ,m} to the map ητ : X⊗n →X⊗m given by taking A1⊗·· ·⊗An to the element B1⊗·· ·⊗Bm

with B j =

{
Ai if j = τ(i)
1 otherwise

. The limit of this diagram in (C∗
CPU)

op is C (S (X )).

X⊗0 X⊗1 X⊗2 X⊗3 · · ·

C (S (X ))

...

...
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