
Submitted to:

ACT 2022
© D. Kartsaklis, I. Fan, R. Yeung, T. Hoffmann, V. Kocijan, C. London, A. Pearson, R. Lorenz et al.

Quantum NLPwith lambeq

Dimitri Kartsaklis Ian Fan Richie Yeung Thomas Hoffmann Vid Kocijan

Charles London Anna Pearson Robin Lorenz Alexis Toumi

Giovanni de Felice Konstantinos Meichanetzidis Stephen Clark

Bob Coecke

Cambridge Quantum / Quantinuum
17 Beaumont Street, Oxford, OX1 2NA, UK

{firstname.lastname}@cambridgequantum.com

We present lambeq, the first high-level Python library for Quantum Natural Language Processing

(QNLP). The open-source toolkit offers classes to implement all stages of an experimental QNLP

pipeline, from text to string diagrams, tensor networks, and quantum circuits ready to be used on

quantum hardware. lambeq supports syntactic parsing, rewriting of string diagrams, ansatz manip-

ulation, and compositional models for preparing quantum-friendly representations of sentences. We

present the architecture and modules in detail, demonstrating usage with illustrative examples, as

well as testing the toolkit in practice with a simple NLP experiment to show that it is ready for use in

real-world quantum settings.

1 Introduction

Quantum Natural Language Processing (QNLP) is a rapidly-growing area of research that explores how

approaches to natural language tasks can utilise quantum phenomena, such as superposition, entangle-

ment and interference. Current NISQ1 computers allow researchers to run simple experiments on quan-

tum hardware [15, 12, 14], but it requires a lot of low-level work to prepare even simple QNLP models.

To facilitate easier preparation and execution of QNLP experiments, we have developed lambeq23,
an open-source, modular, extensible high-level Python library that provides the tools for implementing a

pipeline for experimental QNLP. lambeq is under active development, informed by real-world usage.

A high-level overview of a standard QNLP pipeline with lambeq is shown below:

encoding rewriting parame-
terisation

optimisa-
tionparsing

sentence syntax

tree

string

diagram

rewritten

string


diagram

quantum

circuit /


tensor net

task-specific

output

lambeq provides routines for each of the stages shown, allowing researchers to easily set up a QNLP

pipeline for any experiment. Modularity allows any of these stages to be replaced with a custom imple-

mentation that is more finely tuned to an experiment’s needs, whilst keeping the same high-level structure.

Finally, lambeq provides a training sub-package that encapsulates the entire pipeline.

In addition to being a library, lambeq also provides a web demo4 and a fully-featured command-line

interface, allowing lambeq to act as a standalone pregroup [11] parser5, the first of its kind.

1Noisy Intermediate-Scale Quantum
2The name is a tribute to mathematician Joachim Lambek (1922-2014), whose seminal work lay at the intersection of math-

ematics, logic, and linguistics [10].
3https://github.com/CQCL/lambeq
4https://qnlp.cambridgequantum.com/generate.html
5An example of this usage is shown in Appendix B.

https://en.wikipedia.org/wiki/Joachim_Lambek
https://github.com/CQCL/lambeq
https://qnlp.cambridgequantum.com/generate.html


2 Quantum NLP with lambeq

2 Parsing and encoding

This first step converts text into a string diagram, based on the graphical calculus for monoidal cate-

gories. The underlying data structures for these diagrams are handled by DisCoPy [4], a specialised

Python library for manipulating string diagrams. Though DisCoPy is powerful and intuitive to use, it is

cumbersome to define large diagrams and the many levels of abstractions which are commonly encoun-

tered in QNLP to represent text. Accordingly, lambeq defines several ways of easily transforming text

into string diagrams. One way is to combine the words in a simple left-to-right manner:

John gave Mary a flower〈S〉

Another way is to follow the syntactic structure of the sentence. A framework for doing this syntax-

guided interaction is DisCoCat6. The process involves parsing the sentence with a CCG7 parser, then

turning the resulting parse tree into a string diagram [21]:

n nr

John gave a flowerMary

s nl nl n nn nl

lambeq includes a state-of-the-art CCG parser, named Bobcat [1, 2], as well as a simple way to extend

the toolkit’s functionality to use external CCG parsers, such as depccg [22]. Furthermore, lambeq also

contains a class that provides string diagram conversions for the entire CCGBank corpus [8]8.

3 Rewriting

Some diagrams can be simplified by incorporating prior assumptions about word interactions. This is

helpful for reducing the resource usage of quantum computers when training. lambeq includes not only

routines for rewriting diagrams, but also a number of standard rewrite rules. For example, the preposi-

tional phrase rewrite rule can be used in the sentence “John walks in the park”, the original diagram of

which is the following:

n sr

John in the park

nrr nr s nn nls

walks

nlnr

This simplification expresses a prior assumption about the preposition “in”, namely that the subject

noun wires can be bridged by a cap (∩) in the underlying compact-closed monoidal structure, and then

“pulled out”:

6Distributional Compositional Categorical [3].
7Combinatory Categorial Grammar [19].
8CCGBank consists of 49,000 human-annotated CCG syntax trees, converted from the original Penn Treebank[13]



D. Kartsaklis, I. Fan, R. Yeung, T. Hoffmann, V. Kocijan, C. London, A. Pearson, R. Lorenz et al. 3

n sr

John in the park

nrr nr s nn nls

walks

nlnr n sr

John in the park

s nn nls

walks

nlnr⇒

This reduces the order of the preposition tensor by 2, lowering resource usage in both quantum circuits

and classical tensor networks.

4 Parameterisation

In this module, the symbolic string diagram is turned into a concrete quantum circuit for training, or a

tensor network for classical experiments. This is done by applying ansätze, which aremaps that determine

specific choices in the circuit or network, such as the number of qubits associated with each wire of the

string diagram. lambeq provides several ways for applying ansätze in quantum and classical cases. For

example, IQPAnsatz is a class that turns a string diagram into a standard IQP9 circuit.10

5 Optimisation and training

The outputs of the pipeline in lambeq can be chosen to work with a number of existing optimisation

libraries, including NumPy [6], PyTorch [16], JAX [5] and t|ket〉 [17], which interfaces with several

quantum hardware platforms. Furthermore, lambeq provides a training sub-package that can manage the

optimisation itself.

To demonstrate its capabilities, we train a model to classify simple sentences from the meaning clas-

sification dataset in [12] into two categories: Food or IT. We convert the 130 sentences from the dataset

into string diagrams, and then into quantum circuits using IQPAnsatz. We optimise using Simultaneous

Perturbation Stochastic Approximation [18]. We evaluate the model on qiskit’s [20] Aer simulator11,

using a noise model to best approximate real quantum hardware. The results show that the model is able

to converge to perfect accuracy:

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training set Development set

0 25 50 75 100 125 150
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 25 50 75 100 125 150
Iterations

Further details about this experiment, including parameterisation details and other pipelines, are avail-

able in [9], as well as further information about the lambeq package itself.

9Instantaneous Quantum Polynomial: a circuit which interleaves layers of Hadamard gates with diagonal unitaries [7].
10An example of a generated IQP circuit is shown in Appendix A.
11This is available through t|ket〉’s Python interface, pytket.



4 Quantum NLP with lambeq

References

[1] Stephen Clark (2021): Something Old, Something New: Grammar-based CCG Parsing with Transformer

Models, doi:10.48550/ARXIV.2109.10044.

[2] Stephen Clark & James R. Curran (2007): Wide-Coverage Efficient Statistical Parsing with CCG and Log-

Linear Models. Computational Linguistics 33(4), pp. 493–552, doi:10.1162/coli.2007.33.4.493.

[3] Bob Coecke, Mehrnoosh Sadrzadeh& Stephen Clark (2010): Mathematical Foundations for a Compositional

Distributional Model of Meaning. Linguistic Analysis 36, pp. 345–384, doi:10.48550/ARXIV.1003.4394.

[4] Giovanni de Felice, Alexis Toumi & Bob Coecke (2021): DisCoPy: Monoidal Categories in Python. Elec-

tronic Proceedings in Theoretical Computer Science 333, pp. 183–197, doi:10.4204/eptcs.333.13.

[5] Roy Frostig, Matthew Johnson & Chris Leary (2018): Compiling machine learning programs via high-level

tracing. Available at https://mlsys.org/Conferences/doc/2018/146.pdf.
[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cour-

napeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan

Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke & Travis E. Oliphant (2020): Array programming with NumPy. Nature 585(7825), pp.

357–362, doi:10.1038/s41586-020-2649-2.

[7] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, AramW. Harrow, Abhinav Kandala, Jerry M. Chow

& Jay M. Gambetta (2019): Supervised learning with quantum-enhanced feature spaces. Nature 567(7747),

pp. 209–212, doi:10.1038/s41586-019-0980-2.

[8] Julia Hockenmaier & Mark Steedman (2007): CCGbank: A Corpus of CCG Derivations and Depen-

dency Structures Extracted from the Penn Treebank. Computational Linguistics 33(3), p. 355–396,

doi:10.1162/coli.2007.33.3.355.

[9] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson, Robin Lorenz, Alexis Toumi, Giovanni de Felice,

Konstantinos Meichanetzidis, Stephen Clark & Bob Coecke (2021): lambeq: An Efficient High-Level Python

Library for Quantum NLP, doi:10.48550/ARXIV.2110.04236.

[10] Joachim Lambek (1958): The Mathematics of Sentence Structure. The American Mathematical Monthly

65(3), pp. 154–170, doi:10.1080/00029890.1958.11989160. Available at https://www.cs.cmu.edu/~fp/
courses/15816-f16/misc/Lambek58.pdf.

[11] Joachim Lambek (2008): From Word to Sentence: a computational algebraic approach to grammar. Poli-

metrica sas. Available at https://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf.
[12] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis & Bob Coecke

(2021): QNLP in Practice: Running Compositional Models of Meaning on a Quantum Computer,

doi:10.48550/ARXIV.2102.12846.

[13] Mitchell P. Marcus, Beatrice Santorini & Mary Ann Marcinkiewicz (1993): Building a Large Annotated

Corpus of English: The Penn Treebank. Computational Linguistics 19(2), p. 313–330. Available at https:
//aclanthology.org/J93-2004.

[14] Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni de Felice, Nicolò Chiappori, Alexis Toumi & Bob

Coecke (2021): Quantum Natural Language Processing on Near-Term Quantum Computers. Electronic

Proceedings in Theoretical Computer Science 340, pp. 213–229, doi:10.4204/eptcs.340.11.

[15] Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice & Bob Coecke (2020): Grammar-Aware

Question-Answering on Quantum Computers, doi:10.48550/ARXIV.2012.03756.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-

jie Bai & Soumith Chintala (2019): PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox & R. Gar-

http://dx.doi.org/10.48550/ARXIV.2109.10044
http://dx.doi.org/10.1162/coli.2007.33.4.493
http://dx.doi.org/10.48550/ARXIV.1003.4394
http://dx.doi.org/10.4204/eptcs.333.13
https://mlsys.org/Conferences/doc/2018/146.pdf
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-019-0980-2
http://dx.doi.org/10.1162/coli.2007.33.3.355
http://dx.doi.org/10.48550/ARXIV.2110.04236
http://dx.doi.org/10.1080/00029890.1958.11989160
https://www.cs.cmu.edu/~fp/courses/15816-f16/misc/Lambek58.pdf
https://www.cs.cmu.edu/~fp/courses/15816-f16/misc/Lambek58.pdf
https://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf
http://dx.doi.org/10.48550/ARXIV.2102.12846
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
http://dx.doi.org/10.4204/eptcs.340.11
http://dx.doi.org/10.48550/ARXIV.2012.03756


D. Kartsaklis, I. Fan, R. Yeung, T. Hoffmann, V. Kocijan, C. London, A. Pearson, R. Lorenz et al. 5

nett, editors: Advances in Neural Information Processing Systems 32, Curran Associates, Inc., pp.

8024–8035, doi:10.48550/ARXIV.1912.01703. Available at https://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[17] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington & Ross Duncan (2020):

t|ket〉: a retargetable compiler for NISQ devices. Quantum Science and Technology 6(1), p. 014003,

doi:10.1088/2058-9565/ab8e92. Available at https://doi.org/10.1088/2058-9565/ab8e92.

[18] J.C. Spall (1992): Multivariate stochastic approximation using a simultaneous perturbation gradient approx-

imation. IEEE Transactions on Automatic Control 37(3), pp. 332–341, doi:10.1109/9.119632.

[19] Mark Steedman (2001): The Syntactic Process. The MIT Press, doi:10.7551/mitpress/6591.001.0001.

[20] MatthewTreinish, JayM.Gambetta, SooluThomas, Paul Nation et al. (2021): Qiskit: AnOpen-source Frame-

work for Quantum Computing, doi:10.5281/zenodo.2573505.

[21] Richie Yeung & Dimitri Kartsaklis (2021): A CCG-Based Version of the DisCoCat Framework. In: Pro-

ceedings of the 2021 Workshop on Semantic Spaces at the Intersection of NLP, Physics, and Cognitive

Science (SemSpace), Association for Computational Linguistics, Groningen, The Netherlands, pp. 20–31,

doi:10.48550/ARXIV.2105.07720. Available at https://aclanthology.org/2021.semspace-1.3.

[22] Masashi Yoshikawa, Hiroshi Noji & Yuji Matsumoto (2017): A* CCG Parsing with a Supertag and Depen-

dency Factored Model. In: Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Vancouver, Canada, pp.

277–287, doi:10.18653/v1/P17-1026.

A IQPAnsatz

Quantum circuit for the sentence “John walks in the park” in qiskit format, where noun and sentence

types are assigned 1 qubit each:

B Command-Line Interface

An example of using the lambeq command-line interface as a standalone pregroup parser, to parse the

sentence “I don’t like green eggs and ham”:

http://dx.doi.org/10.48550/ARXIV.1912.01703
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
http://dx.doi.org/10.1109/9.119632
http://dx.doi.org/10.7551/mitpress/6591.001.0001
http://dx.doi.org/10.5281/zenodo.2573505
http://dx.doi.org/10.48550/ARXIV.2105.07720
https://aclanthology.org/2021.semspace-1.3
http://dx.doi.org/10.18653/v1/P17-1026


6 Quantum NLP with lambeq

> lambeq --tokenise "I don't like green eggs and ham"

I do n't like green eggs and ham

─ ─────────── ─────────────── ───────── ───── ──── ───────── ───

n n.r·s·s.l·n s.r·n.r.r·n.r·s n.r·s·n.l n·n.l n n.r·n·n.l n

│ │ │ │ ╰─╮─╯ │ │ │ │ │ ╰───╯ │ ╰─────╯ │ ╰────╯

│ │ │ │ ╭─╰─╮ │ │ │ │ │ │ │

│ │ │ ╰╮─╯ ╰─╮──╯ │ │ │ │ ╰─────────────╯

│ │ │ ╭╰─╮ ╭─╰──╮ │ │ │ │

│ │ ╰──╯ ╰─╮─╯ ╰─╮──╯ │ │ │

│ │ ╭─╰─╮ ╭─╰──╮ │ │ │

│ ╰────────╯ ╰─╮──╯ ╰╮─╯ │ │

│ ╭─╰──╮ ╭╰─╮ │ │

╰────────────────╯ ╰─╮──╯ ╰───╯ │

╭─╰──╮ │

│ ╰─────────╯

The pregroup parser converts the output of a CCG parser into a pregroup derivation [21], which is

displayed as a string diagram. The swaps in the diagram correspond to a feature of CCG that is not found

in standard pregroup derivations, that of cross-composition.


	Introduction
	Parsing and encoding
	Rewriting
	Parameterisation
	Optimisation and training
	IQP Ansatz
	Command-Line Interface

