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Value iteration is optic composition

Jules Hedges Riu Rodrı́guez Sakamoto

Dynamic programming is a class of algorithms used to compute optimal control policies for Markov
decision processes. Dynamic programming is ubiquitous in control theory, and is also the foundation
of reinforcement learning. In this paper, we show that value improvement, one of the main steps of
dynamic programming, can be naturally seen as composition in a category of optics, and intuitively,
the optimal value function is the limit of a chain of optic compositions. We illustrate this with three
classic examples: the gridworld, the inverted pendulum and the savings problem. This is a first step
towards a complete account of reinforcement learning in terms of parametrised optics.

1 Introduction

In this paper we describe basic concepts of dynamic programming in terms of categories of optics. The
class of models we consider are discrete-time Markov decision processes, aka. discrete-time controlled
Markov chains. There are classical methods of computing optimal control policies, underlying much
of both classical control theory and modern reinforcement learning, known collectively as dynamic pro-
gramming. These are based on two operations that can be interleaved in many different ways: value
improvement and policy improvement. The central idea of this paper is the slogan value improvement is
optic precomposition, or said differently, value improvement is a representable functor on optics.

Given a control problem with state space X , a value function V : X →R represents an estimate of the
long-run payoff of following a policy starting from any state, and can be equivalently represented as a
costate V :

(X
R
)
→ I in a category of optics. Every control policy π also induces an optic λ (π) :

(X
R
)
→
(X
R
)
.

The general idea is that the forwards pass of the optic is a morphism X → X describing the dynamics of
the Markov chain given the policy, and the backwards pass is a morphism X ⊗R→ R which given the
current state and the continuation payoff, describing the total payoff from all future stages, returns the
total payoff for the current stage given the policy, plus all future stages.

Given a policy π and a value function V :
(X
R
)
→ I, the costate

(X
R
) λ (π)−→

(X
R
) V−→ I is a closer approx-

imation of the value of π . This is called value improvement. Iterating this operation

. . .

(
X
R

)
λ (π)−→

(
X
R

)
λ (π)−→

(
X
R

)
V−→ I

converges efficiently to the true value function of the policy π .
Replacing π with a new policy that is optimal for its value function is called policy improvement. Re-

peating these steps is known as policy iteration, and converges to the optimal policy and value function.
Alternatively, instead of repeating value improvement until convergence before each step of policy

improvement, we can also alternate them, giving the composition of optics

. . .

(
X
R

)
λ (π2)−→

(
X
R

)
λ (π1)−→

(
X
R

)
V−→ I

where each policy πi is optimal for the value function to the right of it. This is known as value iteration,
and also converges to the optimal policy and value function. For an account of convergence properties of
these algorithms, classic textbooks are [32, Sec.6], [5, Ch.1].
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In this paper we illustrate this idea, using mixed optics to account for the categorical structure of
transitions in a Markov chain and the convex structure of expected payoffs, which typically form the
kleisli and Eilenberg-Moore categories of a probability monad. This paper is partially intended as an
introduction to dynamic programming for category theorists, focussing on illustrative examples rather
than on heavy theory.

1.1 Related work

The precursor of this paper was early work on value iteration using open games [21]. The idea originally
arose around 2016 during discussions of the first author with Viktor Winschel and Philipp Zahn. An early
version was planned as a section of [25] but cut partly for page limit reasons, and partly because the idea
was quite uninteresting until it was understood how to model stochastic transitions in open games [6] via
optics [33]. In this paper we have chosen to present the idea without any explicit use of open games, both
in order to clarify the essential idea and also to bring it closer to the more recent framework of categorical
cybernetics [14], which largely subsumes open games [10]. (Although, actually using this framework
properly is left for future work.)

A proof-of-concept implementation of value iteration with open games was done in 2019 by the
first author and Wolfram Barfuss1, implementing a model from [3] - a model of the social dilemma of
emissions cuts and climate collapse as a stochastic game, or jointly controlled MDP - and verifying it
against Barfuss’ Matlab implementation. A far more advanced implementation of reinforcement learning
using open games was developed recently by Philipp Zahn, currently closed-source, and was used for
the paper [15].

The most closely related work to ours is [26], which formulates MDPs in terms of F-lenses [35] of
the functor BiKl(C×−,∆(R×−))op, where C×− is the reader comonad and ∆(R×−) is a probability
monad over actions with their expected value. A MDP there is a lens from states and potential state
changes and rewards to the agents observation and input

( X
∆(X×R)

)
→
(O

I

)
. Our approach differs in two

ways. We firstly assume that the readout function is the identity, as we are not dealing with partial
observability [1]. Secondly, we specify a concrete structure of the backwards update map f ∗ : X × I→
∆(X×R), which allows us to rearrange the interface of this lens from policies to value functions. Doing
so opens up the possibility of composing these lenses sequentially, which is the heart of the dynamic
programming approach explored in this paper.

Another approach is to model MDPs as coalgebras from states to rewards and potential transitions,
as done by Feys et al. [16]. They observe that the Bellman optimality condition for value iteration is
a certain coalgebra-to-algebra morphism. We believe that this approach is orthogonal to ours, and both
could potentially be done simultaneously. We discuss this in the further work section.

A series of papers by Botta et al (for example [7]) formulates dynamic programming in dependent
type theory, accounting in a serious way for how different actions can be available in different states, a
complication that we ignore in this paper. It may be possible to unify these approaches using dependent
optics [8, 40].

Finally, [2] builds a category of signal flow diagrams, a widely used tool in control theory. Besides
the common application to control theory there is little connection to this paper. In particular, time is
implicit in their string diagrams, meaning their models have continuous time, whereas our approach is
inherently discrete time. Said another way, composition in their category is ‘space-like’ whereas ours is
‘time-like’ - their morphisms are (open) systems whereas ours are processes.

1Source currently available at https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/

OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs

https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs
https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs
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2 Dynamic programming

2.1 Markov Decision Processes

A Markov decision process (MDP) consists of a state space X , an action space A, a state transition
function f : X ×A→ X , and a utility or reward function U : X ×A→ R. The state transition function is
often taken to be stochastic, that is, to be given by probabilities f (x′ | x,a). In the stochastic case the utility
function can be taken without loss of generality to be an expected utility function. We imagine actions
to be chosen by an agent, who is trying to control the Markov chain with the objective of optimising the
long-run reward.

A policy for an MDP is a function π : X → A, which can also be taken to be either deterministic or
stochastic. The type of policies encodes the Markov property: the choice of action depends only on the
current state, and may not depend on any memory of past states.

Given an initial state x0 ∈ X , a policy π determines (possibly stochastically) a sequence of states

x0, x1 = f (x0,π(x0)), x2 = f (x1,π(x1)), . . .

The total payoff is given by an infinite geometric sum of individual payoffs for each transition:

Vπ(x0) =
∞

∑
k=0

β
kU(xk,π(xk)) (1)

where 0 < β < 1 is a fixed discount factor which balances the relevance of present and future payoffs.
(There are other methods of obtaining a single objective from an infinite sequence of transitions, such as
averaging, but we focus on discounting in this paper.) A key idea behind dynamic programming is that
this geometric sum can be equivalently written as a telescoping sum:

Vπ(x0) =U(x0,π(x0))+β (U(x1,π(x1))+β (U(x2,π(x2)+ · · ·)))

The control problem is to choose a policy π in order to maximise (the expected value of) Vπ(x0). In
terms of decision theory, we assume that the agent choosing the policy operates under rational behaviour.
Continuous and independent preferences of outcome implies by the von Neumann-Morgenstern expected
utility theorem that the utility function has as codomain the reals.

2.2 Deterministic dynamic programming

In dynamic programming, the agent’s objective of maximizing the overall utility can be divided into two
orthogonal goals: to determine the value of a given policy π (which we call the value improvement step),
and to determine the optimal policy π∗ (the policy improvement step). Bellman’s equation is used as an
update rule for both:

Value improvement: V ′(x) =U(x,π(x))+βV ( f (x,π(x))) (2)

Policy improvement: π
′(x) = argmax

a∈A
U(x,a)+βV ( f (x,a)) (3)

A Bellman optimality condition on the other hand determines the fixpoint of this update rule, and is met
when V ′ =V and π ′ = π respectively.

The update rule (2) is the discounted sum (1) where the stream of states is co-recursively fixed by the
policy π and transition function f . The co-recursive structure refers to the calculation of the utility of a
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state x, where one needs the utility of the next state, while in a recursive structure, x needs the previous
state, starting from an initial state as a base case.

Two classical algorithms use these two steps differently: Policy iteration iterates value improvement
until the current policy value is optimal before performing a policy improvement step, and value iteration
interleaves both steps one after another.

In policy iteration, a initial value function is chosen (usually V (x) = 0), and a randomly chosen policy
π is evaluated by (2) repeatedly until the value reaches a fixpoint, which is assured by the contraction
mapping [13]. Once V reaches (or in practice gets close to) a fixpoint V ′ = V or another convergence
condition, the policy improvement step (3) chooses a greedy policy as an improvement to π .

A q-function or state-action value function qπ : X×A→R describes the value of being in state x and
then taking action a, assuming that subsequent actions are taken by the policy π

qπ(x,a) =U(x,a)+βV ( f (x,a)) (4)

The policy improvement theorem [4] states that if a pair of deterministic policies π,π ′ : X → A satisfies
for all x ∈ X

qπ(x,π ′(x))≥Vπ(x)

then Vπ ′(x)≥Vπ(x) for all x ∈ X .
The optimal policy π∗, if it exists, is the policy which if followed from any state, generates the

maximum value. This is a Bellman optimality condition which fuses the two steps (2), (3):

Vπ∗(x) = max
a∈A

U(x,a)+βVπ∗( f (x,a)) (5)

Value iteration is a special policy iteration algorithm insofar it stops the update rule for value im-
provement to one step, by truncating the sum (1) to the first summand. Moreover, it introduces the value
improvement step implicitly in the policy improvement, which assigns a value to states

V ′(x) = max
a∈A

U(x,a)+βV ( f (x,a))

while the policy in each iteration is still recoverable as

π
′(x) = argmax

a∈A
U(x,a)+βV ( f (x,a))

2.3 Stochastic dynamic programming

Stochasticity can be introduced in different places in a MDP:

1. in the policy π : X → ∆A, where the probability of the policy π taking action a in a state x is now
notated π(a | x).

2. in the transition function f : X ×A→ ∆X and potentially the reward function U : X ×A→ ∆R
independently.

3. usually the reward is included inside the transition function f : X ×A→ ∆(X ×R), allowing cor-
related next states and rewards. This is relevant when the reward is morally from the next state,
rather than the current state and action. If the reward were truly from the current state and action,
the transition function can be decomposed into a function f : X×A→ ∆X×∆R.



Jules Hedges and Riu Rodrı́guez Sakamoto 5

In this section we assume for simplicity that ∆ is the finite support distribution monad, although the
equations in the following can be formulated for arbitrary distributions by replacing the sum with an
appropriate integral.

The policy value update rule (2) becomes stochastic, and adopts a slightly different form depending
on which part of the MDP is stochastic. For the cases 1. and 2.:

V ′(x) = ∑
a

π(a | x)(U(x,a)+βV ( f (x,a))) (6)

V ′(x) = ∑
r

U(r | x,a)r+∑
x′

f (x′ | x,a)βV (x′) (7)

In the most general case, that is 1. together with 3.:

V ′(x) = ∑
a∈A

π(a | x)∑
x′,r

f (x′,r | x,a)(r+βV (x′)) (8)

(Note that the sum over r is over the support of f (− | x,a), which we assume here to be finite, although
in general it can be replaced with an integral.)

The policy improvement theorem holds in the stochastic setting [38, Sec.4.2] by defining

qπ(s,π ′(s)) = ∑
a

σ(a | s)qπ(s,a)

2.4 Gridworld example

A classic example in reinforcement learning is the Gridworld environment, where an agent moves in the
four cardinal directions in a rectangular grid. States of this finite MDP correspond to the positions that
the agent can be in.

Assume that all transitions and policies are deterministic, and that the transition function prevents
the agent from moving outside the boundary. Suppose that the environment rewards 0 value for all states
except the top left corner, where the reward is 1 (see figure 1).

Starting with a policy which moves upwards in all states and a value function which rewards 1
only in the top left corner, a policy iteration algorithm would improve the value of the current policy
until converging to the optimal values in the leftmost column, before updating the policy, while a value
iteration algorithm would update the value function and also update the policy.

Take the finite set of positions as the state space X , and A = {←,→,↑,↓} as the action space.
This example can be made stochastic if we add stochastic policies like ε-greedy, where the action that

the agent takes is the one with maximum value with probability 1−ε and a random one with probability
ε . Another way is for the transition function to be stochastic, for example with a wind current that shifts
the next state to the right with some probability ε .

2.5 Inverted pendulum example

A task that illustrates a continuous state space MDP is the control of a pendulum balanced over a cart,
which can be described in continuous-time exactly by two non-linear differential equations [17, Example
2E]:

(M+m)ÿ+mLθ̈ cosθ −mLθ̇
2 sinθ = a

mLÿcosθ +mL2
θ̈ −mLgsinθ = 0
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1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
0 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
β 3 0 0 0

1 0 0 0
β 0 0 0
β 2 0 0 0
β 3 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

1 β β 2 0
β β 2 0 0
β 2 0 0 0
0 0 0 0

1 β β 2 β 3

β β 2 β 3 0
β 2 β 3 0 0
β 3 0 0 0

1 β β 2 β 3

β β 2 β 3 β 4

β 2 β 3 β 4 0
β 3 β 4 0 0

V V V
π

· · ·

π

V
π

V
π

V
π

V
· · ·

Figure 1: Difference between policy iteration (above) and value iteration (below). The numbers in the
cells are state values and the red arrows are the directions dictated by the policy at each stage. The arrows
between grids indicate what kind of update the algorithm does, either value improvement (V ) or policy
improvement (π). Notice how policy iteration performs value improvement three times before updating
the policy, whereas value iteration improves the value and the policy at each stage.

where M is the mass of the cart, m the mass of the pendulum, L the length of the pendulum, θ the
angle of the pendulum with respect to the upwards position, y the carts horizontal position, g the grav-
itational constant and a is our control function (usually denoted u). We rewrite the state variables as
x = [y, ẏ,θ , θ̇ ]>.

Sampling the trajectory of continuous-time dynamics d
dt x(t) = f (x(t)) by xk = x(k∆t), one can define

the discrete-time propagator F∆t by

F∆t(x(t)) = x(t)+
∫ t+∆t

t
f (x(τ))dτ

which allows to model the system with xk+1 = F∆t(xk).
A more common approach is to observe that the system of equations ẋ = A(x)+B(x)a with A and B

being non-linear functions of the state space, can be linearized near a (not necessarily stable) equilibrium
state, like the pendulum being in the upwards position. There we can assume certain approximations like
cosθ ≈ 1 and sinθ ≈ θ , as well as small velocities leading to negligible quadratic terms θ̇ 2 ≈ 0 and
ẏ2 ≈ 0. This linearization around a fixpoint allows for the expression ẋ = Ax(t)+Ba(t), where the matrix
A and vector B are constants given by

A =


0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

ML 0

 B =


0
1
M
0
− 1

ML


If we assume that the observation of the pendulum angle and cart position is discretized in time, an

a priori time-discretization of this model using Euler approximation follows xk+1 = xk +∆t(Axk +Bak),
with the same constants, where k indexes time steps. Therefore we can say that the time-discretized,
linearized model of the inverted pendulum over a cart follows a deterministic MDP for which a controller
u can be learned. We take the state space as R4 and the action space of the force exerted to the cart as R.
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The time-discretised formulation of this problem is more common in reinforcement learning settings
than in ‘classical’ control theory. In that case, a a common payoff function is to obtain one unit of reward
for each time step that the pendulum is maintained within a threshold of angles. The not linearized, not
time-discretized setting, which is more common in optimal control theory, allows the reward, which is
usually termed negatively as a cost function J, to have a much more flexible expression, in terms of time
spent towards the equilibrium, energy spent to control the device, etc.

J(x,a) =
∫

∞

0
C(x(t),a(t))dt

2.6 Savings problem example

The savings problem is one of the most important models in economics, modelling the dilemma between
saving and consumption of resources [29, part IV] (see also [37]). It is also mathematically closely
related to the problem of charging a battery, for example choosing when to draw electricity from a power
grid to raise the water level in a reservoir [31].

At each discrete time step k, an agent receives an income ik. They also have a bank balance xk, which
accumulates interest over time (this could also be, for example, an investment portfolio yielding returns).
At each time step the agent makes a choice of consumption, which means converting their income into
utility (or, more literally, things from which they derive utility). If the consumption in some stage is less
than their income then the difference is added to the bank balance, and if it is more than the difference
is taken from the bank balance. The dilemma is that the agent receives utility only from consumption,
but saving gives the possibility of higher consumption later due to interest. The optimal balance between
consumption and saving depends on the discount factor, which models the agent’s preference between
consumption now and consumption in the future.

In the most basic version of the model, all values can be taken as deterministic, and the income ik can
also be taken as constant. This basic model can be expanded in many ways, for example with forecasts
and uncertainty about income and interest rates. A straightforward extension, which we will consider in
this paper, is that income is normally distributed i∼N (µ,σ), independently in each time step.

We take the state space and action space both as X = A = [0,∞). Given the current bank balance
x and consumption decision a, the utility in the current stage is U(x,a) = min{a,x+ i}. (That is, the
agent’s consumption is capped by their current bank balance.) The state transition is given by f (x,a) =
max{(1+ γ)x−a+ i,0}, where γ is the interest rate.

3 Optics

In this section we recall material on categories of mixed optics, mostly taken from [11].

3.1 Categories of optics

Given a monoidal category M and a category C , an action of M on C is given by a functor • : M ×C →
C with coherence isomorphisms I •X ∼= X and (M⊗N)•X ∼= M • (N •X). C is called an M -actegory.

Given a pair of M -actegories C ,D , we can form the category of optics OpticC ,D . Its objects are
pairs

(X
X ′
)

where X is an object of C and X ′ is an object of D . Hom-sets are defined by the coend

OpticC ,D

((
X
X ′

)
,

(
Y
Y ′

))
=
∫ M:M

C (X ,M •Y )×D(M •Y ′,X ′)



8 Value iteration is optic composition

in the category Set. Such a morphism is called an optic, and consists of an equivalence class of triples
(M, f , f ′) where M is an object of M , f : X → M •Y in C and g : M •Y ′ → X ′ in D . We call M
the residual, f the forwards pass and f ′ the backwards pass, so we think of the residual as mediating
communication from the forward pass to the backward pass. Composition of optics works by taking the
monoidal product in M of the residuals.

A common example is a monoidal category M = C = D acting on itself by the monoidal product,
so

OpticC

((
X
X ′

)
,

(
Y
Y

))
=
∫ M:C

C (X ,M⊗Y )×C (M⊗Y ′,X ′)

This is the original definition of optics from [33]. If C is additionally cartesian monoidal then we can
eliminate the coend to produce concrete lenses:

∫ M:C
C (X ,M×Y )×C (M×Y ′,X ′)∼=

∫ M:C
C (X ,M)×C (X ,Y )×C (M×Y ′,X ′)

∼= C (X ,Y )×C (X×Y ′,X ′)

On the other hand, if C is monoidal closed then we can eliminate the coend in a different way to produce
linear lenses: ∫ M:C

C (X ,M⊗Y )×C (M⊗Y ′,X ′)∼=
∫ M:C

C (X ,M⊗Y )×C (M, [Y ′,X ′])

∼= C (X , [Y ′,X ′]⊗Y )

Both of these proofs use the ninja Yoneda lemma for coends [30].

Example 1. Let Set act on itself by cartesian product. Optics
(X

X ′
)
→
(Y

Y ′
)

in OpticSet can be written
equivalently as pairs of functions X → Y and X×Y ′→ X ′, or as a single function X → Y × (Y ′→ X ′).

Example 2. Let Euc be the category of Euclidean spaces and smooth functions, which is cartesian but
not cartesian closed. Optics

(X
X ′
)
→
(Y

Y ′
)

in OpticEuc can be written as pairs of smooth functions X → Y
and X×Y ′→ X ′.

Example 3. Let Mark be the category of sets and finite support Markov kernels, which is the kleisli
category of the finite support probability monad ∆ : Set→ Set. It is a prototypical example of a Markov
category [19], and it is neither cartesian monoidal nor monoidal closed. Optics

(X
X ′
)
→
(Y

Y ′
)

in OpticMark
can only be written as optics, it is not possible to eliminate the coend. This is the setting used for Bayesian
open games [6].

Example 4. Let Conv be the category of convex sets, which is the Eilenberg-Moore category of the
finite support probability monad [18]. A convex set can be thought of a set with an abstract expectation
operator E : ∆X→ X . Thus the functor ∆ : Mark→Conv given by X 7→ ∆(X) on objects is fully faithful.
Conv has finite products which are given by tupling in the usual way. Conv also has a closed structure:
the set of convex functions X → Y themselves form a convex set [X ,Y ] pointwise. However Conv is not
cartesian closed: instead there is a different monoidal product making it monoidal closed [36, section
2.2] (see also [28]). This monoidal product “classifies biconvex maps” in the same sense that the tensor
product of vector spaces classifies bilinear maps. The embedding ∆ : Mark→ Conv is strong monoidal
for this monoidal product, not for the cartesian product of convex sets.
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We can define an action of Mark on Conv, by M •X = ∆(M)⊗X [9, section 5.5]. Together with the
self-action of Mark, we get a category OpticMark,Conv given by

OpticMark,Conv

((
X
X ′

)
,

(
Y
Y ′

))
=
∫ M:Mark

Mark(X ,M⊗Y )×Conv(∆(M)⊗Y ′,X ′)

∼=
∫ M:Mark

Mark(X ,M⊗Y )×Conv(∆(M), [Y ′,X ′])

(This coend cannot be eliminated because the embedding ∆ : Mark→ Conv does not have a right ad-
joint.)

This category of optics will be very useful for Markov decision processes, where the forwards direc-
tion is a Markov kernel and the backwards direction is a function involving expectations.

3.2 Monoidal structure of optics

A category of optics OpticC ,D is itself (symmetric) monoidal, when C and D are (symmetric) monoidal
in a way that is compatible with the actions of M . The details of this have been recently worked out
in [9]. The monoidal product on objects of OpticC ,D is given by pairwise monoidal product. All of the
above examples are symmetric monoidal.

A monoidal category of optics comes equipped with a string diagram syntax [24]. This has directed
arrows representing the forwards and backwards passes, and right-to-left bending wires but not left-to-
right bending wires. The residual of the denoted optic can be read off from a diagram, as the monoidal
product of the wire labels of all right-to-left bending wires. For example, a typical optic (M, f , f ′) ∈
OpticC

((X
X ′
)
,
(Y

Y ′
))

is denoted by the diagram

f

f ′

X

X ′

Y

Y ′

M

These diagrams have only been properly formalised for a monoidal category acting on itself, so for
mixed optics we need to be very careful and are technically being informal.

Costates in monoidal categories of optics, that is optics
(X

X ′
)
→ I (where I =

(I
I

)
is the monoidal unit

of OpticC ,D ), are a central theme of this paper. When we have a monoidal category acting on itself,
costates in OpticC are given by

OpticC

((
X
X ′

)
, I
)
=
∫ M:C

C (X ,M⊗ I)×C (M⊗ I,X ′)∼= C (X ,X ′)

Thus costates in optics are functions. A different way of phrasing this is by defining a functor K :
Opticop

C → Set given on objects by K
(X

X ′
)
= C (X ,X ′), and then showing that K is representable [25].

We will generally treat this isomorphism as implicit, sometimes referring to costates as though they are
functions.

In the case of a cartesian monoidal category C , given a concrete lens f : X → Y , f ′ : X ×Y ′→ X ′

and a function k : Y → Y ′, the action of K gives us the function X → X ′ given by x 7→ f ′(x,k( f (x))).
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When we have M = C acting on both itself and on D (which includes all of the examples above)
then similarly

OpticC ,D

((
X
X ′

)
, I
)
=
∫ M:C

C (X ,M⊗ I)×D(M • I,X ′)∼= D(X • I,X ′)

4 Dynamic programming with optics

Given an MDP with state space X and action space A, we can convert it to an optic
(X⊗A

R
)
→
(X
R
)
. The

category of optics in which this lives can be ‘customised’ to some extent, and depends on the class of
MDPs that we are considering and how much typing information we choose to include. The definition
of this optic is given by the following string diagram:

U
+

×β

fX

A

R

X

R

To be clear, this diagram is not completely formal because we are making some assumptions about the
category of optics we work in. In general, we require the forwards category C to be a Markov category
(giving us copy morphisms ∆X and ∆A), and the backwards category D must have a suitable object R
together with morphisms ×β : R→ R and + : R⊗R→ R. Specific examples of interpretations of this
diagram will be explored below. When the forwards category acts on the backwards category, then the
forwards pass is a morphism g : X⊗A→ X⊗X⊗A in C where

g = ∆X⊗A # ( f ⊗ idX⊗A)

and the backwards pass is a morphism g′ : X • A •R → R in D encoding the function g′(x,a,r) =
EU(x,a)+β r. The resulting optic is given by λ = (X⊗A,g,g′) :

(X⊗A
R
)
→
(X
R
)

in OpticC ,D .
Given a policy π : X → A, we lift it to an optic π :

(X
R
)
→
(X⊗A

R
)
, by

X

R R

π A

X

Here we are also assuming that the forwards category has a copy morphisms ∆X (for example, because it
is a Markov category), and the backwards category has a suitable object of real numbers. The interpreta-
tion of this diagram is the optic (I,∆X # (idX ⊗π), idR).
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4.1 Discrete-space deterministic decision processes

Consider a deterministic decision process with a discrete set of states X , discrete and finite set of actions
A, transition function f : X ×A→ X , payoff function U : X ×A→ R and discount factor β ∈ (0,1).
We convert this into an optic λ = (X × A,g,g′) :

(X×A
R
)
→
(X
R
)

in OpticSet, whose forwards pass is
g(x,a) = (x,a, f (x,a)) and whose backwards pass is g′(x,a,r) =U(x,a)+β r.

Consider a dynamical system with the state space AX ×OpticSet

((X
R
)
, I
)

. Elements of this are pairs
(π,V ) of a policy π : X → A and a value function V : X → R. We can define two update steps:

Value improvement: (π,V ) 7→ (π,π #λ #V )

Policy improvement: (π,V ) 7→ (x 7→ argmax
a∈A

(λ #V )(x,a),V )

(We assume that argmax is canonically defined, for example because A is equipped with an enumeration
so that we can always choose the first maximiser.)

Unpacking and applying the isomorphism between costates in lenses and functions, a step of value
improvement replaces V with

V ′(x) =U(x,π(x))+βV ( f (x,π(x)))

and a step of policy improvement replaces π with

π
′(x) = argmax

a∈A
U(x,a)+βV ( f (x,a))

Iterating the value improvement step converges to a value function which is the optimal value function
for the current (not necessarily optimal) policy π . A fixpoint of alternating steps of value improvement
and policy improvement is a pair (π∗,V ∗) satisfying

V ∗(x) = max
a∈A

(λ #V ∗)(x,a) = max
a∈A

U(x,a)+βV ∗( f (x,a))

π
∗(x) = argmax

a∈A
(λ #V ∗)(x,a) = argmax

a∈A
U(x,a)+βV ∗( f (x,a))

Example 5 (Gridworld example). A policy of an agent in our version of Gridworld (Figure 1) is a func-
tion from the 4×4 set of states X = {1,2,3,4}2 that we index by (i, j) to the four-element set of actions
A = {←,→,↑,↓}, i.e. an element of AX . Initializing the value function V with the environments imme-
diate reward whose only non-zero value is V (0,0) = 1 (top-left corner) and the policy with a upwards
facing constant action π(i, j) = ↑ for all (i, j) ∈ X , a value improvement step would leave the policy
unchanged while updating V to π #λ #V , which differs with V only at (0,1) 7→ β .

If we instead perform a policy improvement step, the value function remains unchanged while the
new policy differs with π at (1,0) 7→ argmaxa∈A(λ # v)(1,0,a) =←.

4.2 Continuous-space deterministic decision processes

Example 6 (Inverted pendulum). A state of our time-discretized inverted pendulum on a cart consists of
[y, ẏ,θ , θ̇ ]> in the state space X =R4. The linearized transition function that sends xk to xk+1 = Axk+Bak
is a smooth map X → Y . The discretized cost J(x,a) = ∑

∞
k=0 β kC(x(k),a(k)) defines the backwards

smooth function X×A×R→ R which adds the cost at the kth time step C(x(k),a(k)) to the discounted
sum: (

x(k),a(k), ∑
j=k+1

β
jC(x( j),a( j))

)
7→ ∑

j=k
β

jC(x( j),a( j))
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These two maps form an optic λ :
(X×A

R
)
→
(X
R
)

in OpticEuc. Note that the cost function C is itself
typically not affine, but rather convex (intuitively, since the ‘good states’ that should minimise the cost
fall in the middle of the state space).

In conclusion, the two optics involved in this example are

λ =

(
f
J

)
:
(

X×A
R

)
→
(

X
R

)
f : X×A→ X

(x,a) 7→ Ax+Ba

J : X×A×R→ R
(x,a,r) 7→C(x,a)+β r

π =

(
π

p2

)
:
(

X
R

)
→
(

X×A
R

)
gr(π) : X → X×A

x 7→ (x,π(x))

p2 : X×R→ R
( ,r) 7→ r

This formalisation of the continuous state space misses however a practical problem. Let S be a con-
tinuous state space. In numerical implementations, policy improvement over S needs to map an action
to every point in the space. Two common approaches are to discretize the state space into a possibly
non-uniform grid, or to restrict the space of values to a family of parametrized functions [34, Sec.4.].
The discretization approach treats the continuous state space as a distribution over a simplicial com-
plex X obtained e.g. by triangulation, Euc(1,S) ≈Mark(I,X), where a continuous state gets mapped
to a distribution over the barycentric coordinates of the simplex. This effectively transforms the ini-
tial continuous-space deterministic decision process into a discrete-space MDP, modelling numerical
approximation errors as stochastic uncertainty.

4.3 Discrete-space Markov decision processes

Consider a Markov decision process with a discrete set of states X , discrete and finite set of actions A, a
transition Markov kernel f : X×A→ ∆(X), expected payoff function U : X×A→R and discount factor
β ∈ (0,1). We can write the transition function as conditional probabilities f (x′ | x,a).

We can convert this data into an optic λ :
(X⊗A

R
)
→
(X
R
)

in the category OpticMark,Conv given by
Mark acting on both itself and Conv. This optic is given concretely by (X⊗A,g,g′) where g : X⊗A→
X ⊗A⊗X in Mark is given by ∆X⊗A # ( f ⊗ idX⊗A), and g′ : ∆(X ⊗A)→ [R,R] in Conv is defined by
g′(α)(r) = EU(α)+β r, where α ∈ ∆(X ×A) is a joint distribution on states and actions. Alternatively,
we can note that the domain of g′ is free on the set X ×A (although it cannot be considered free on an
object of Mark), and define it as the linear extension of g′(x,a)(r) =U(x,a)+β r.

With this setup, value improvement (π,V ) 7→ (π,π #λ #V ) yields the value function

V ′(x) = Ea∼π(x)[U(x,a)+βV ( f (x,a))]

Alternating steps of value and policy improvement converge to the optimal policy π∗ and value function
V ∗, which maximises the expected value of the policy:

V ∗π∗(x0) = E
∞

∑
k=0

β
kU(xk,π

∗(xk))

Example 7 (Gridworld, continued). In a proper MDP, transition functions can be stochastic, and update
steps have to take expectations over values: value improvement maps (π,V ) 7→ (π,π #λ #V ) and policy
improvement maps (π,V ) 7→ (x 7→ argmaxa∈AE(λ #V )(x,a),V ). This model also accepts stochastic
policy improvement steps like ε-greedy, which is an ad hoc heuristic technique of balancing exploration
and exploitation in reinforcement learning [27, Sec.2], a problem which is known in control theory as
the identification-control conflict.
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4.4 Continuous-space Markov decision processes

For continuous-space MDPs we need a category of continuous Markov kernels. There are several possi-
bilities for this arising as the kleisli category of a monad, such as the Giry monad on measurable spaces
[22], the Radon monad on compact Hausdorff spaces [39] and the Kantorovich monad on complete met-
ric spaces [20]. However, control theorists typically work with more specific parametrised families of
distributions for computational reasons, the most common being normal distributions. We will work with
the category Gauss of Euclidean spaces and affine functions with Gaussian noise [19, section 6]. (This
is an example of a Markov category that does not arise as the kleisli category of a monad, because its
multiplication map would not be affine.) This works because the pushforward measure of a Gaussian
distribution along an affine function is still Gaussian, which fails for more general functions.
Example 8. We will formulate the savings problem with normally-distributed income. The inequality
constraints (namely that the balance cannot be negative and that the agent cannot consume more than their
current balance) introduce nonlinearities. We can deal with the latter by constraining the optimisation in
the policy improvement step, but the former threatens to take us outside the category Gauss and we must
allow the balance to possibly become negative for the purposes of this example.

Gauss is a Markov category that is not cartesian (the monoidal product is the cartesian product of
Euclidean spaces, which adds the dimensions), so it acts on itself by the monoidal product and we take
the category OpticGauss. We take the state and action spaces to be X = A = R. The transition function
f : R⊗R→ R is given by f (x,a) = (1+ γ)x−a+N (µ,σ), and the payoff function U : R⊗R→ R is
given by U(x,a) = a.

We modify the policy improvement step to be

Policy improvement: (π,V ) 7→ (x 7→ arg max
a∈A(x)

(λ #V )(x,a),V )

where A(x) is the set A(x) = {a ∈ R | 0 ≤ a ≤ x+ i}. This enforces that the agent cannot consume
negative amounts or consume more than their current balance - since the optimisation is done externally
to the category Gauss we can avoid one source of nonlinearity this way.

5 Q-learning

Consider a deterministic decision process corresponding to the optic λ :
(X×A

R
)
→
(X
R
)
. The dynamical

system with state space AX ×OpticSet

((X×A
R
)
, I
)

has elements (π,q) consisting of a state-action value
function q : X×A→ R as in (4) rather than a state-value function V : X → R.

We can define similar update steps

Value improvement: (π,q) 7→ (π,λ #π #q)

Policy improvement: (π,q) 7→
(

x 7→ argmax
a∈A

q(x,a),q
)

These can also be fused into a single step:

State-action value iteration: (π,q) 7→
(

x 7→ argmax
a∈A

q(x,a),λ #π #q
)

Observe that composition of the λ optic with π is flipped compared to the case seen in Section 4.1, as
we want an element of OpticSet

((X×A
R
)
,
(X×A

R
))

to compose with q.
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The advantage of learning state-action value functions X ⊗A→ R rather than state-value functions
X → R is that is gives a way to approximate argmaxa∈A(λ # π # q)(x,a) without making any use of λ ,
namely by instead using argmaxa∈A q(x,a). This leads to an effective method known as Q-learning for
computing optimal control policies even when the MDP is unknown, with only a single state transition
and payoff being sampled at each time-step. This is the essential difference between classical control
theory and reinforcement learning. The above method, despite learning a q-function, is not Q-learning
because it makes use of λ during value improvement.

Q-learning [23] is a sampling algorithm that approximates the state-action value iteration, usually by
a lookup table Q referred as Q-matrix. It treats the optic as a black box, having therefore no access to
the transition or rewards functions used in (4), and instead updates q by interacting with the environment
dynamics:

q′(x′,a) = (1−α)q(x,a)+α(r+β max
a′

q(x′,a′))

where α ∈ (0,1) is a weighting parameter. Note that both the new state x′ and the reward r are obtained
by interacting with the system, rather than looked ahead by x′ = f (x,a) and r = U(x,a). It falls in the
family of temporal difference algorithms.

6 Further work

At the end of the previous section, it can be seen that Q-learning is no longer essentially using the
structure of the category of optics, instead treating the Q-function as a mere function. We believe this
can be overcome using the framework of categorical cybernetics [14], leading to a fully optic-based
approach to reinforcement learning. By combining with other instantiations of the same framework, it is
hoped to encompass the zoo of modern variants of reinforcement learning that have achieved spectacular
success in many applications in the last few years. For example, deep Q-learning represents the Q-
function not as a matrix but as a deep neural network, trained by gradient descent, allowing much higher
dimensionality to be handled in practice. Deep learning is currently one of the main applications of
categorical cybernetics [12].

The proof that dynamic programming algorithms converge to the optimal policy and value function
typically proceed by noting that the set of all value functions form a complete ordered metric space and
that value improvement is a monotone contraction mapping. The metric structure is used to prove that
iteration converges to a unique fixpoint by the contraction mapping theorem, and then the order structure
is used to prove that this fixpoint is indeed optimal. Since value improvement is optic composition, these
facts would be a special case of the category of optics being enriched in the category of ordered metric
spaces and monotone contraction mappings. We do not currently know whether such an enrichment
is possible. Unlike costates, general optics have nontrivial forwards passes, so there are two possible
approaches: either ignore the forwards passes and defining a metric only in terms of the backwards
passes, or defining a metric also using the forwards passes, for example using the Kantorovich metric
between distributions. This would also be a reasonable place to unify our approach with the coalgebraic
approach with metric coinduction [16].

Finally, continuous time MDPs pose a serious challenge to any approach for which categorical com-
position is sequencing in time, since composition of two morphisms in a category appears to be inherently
discrete-time. (Open games are similarly unable to handle dynamic games with continuous time, such
as pursuit games.) A plausible approach to this is to associate an endomorphism in a category to every
real interval, by treating that interval of time as a single discrete time-step, and then requiring that all
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morphisms compose together correctly, similar to a sheaf condition. It is hoped that the Bellman-Jacobi-
Hamilton equation, a PDE that is the continuous time analogue of the discrete-time Bellman equation,
will simiarly arise as a fixpoint in this way. Exploring this systematically is important future work.
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