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In many applications of category theory it is useful to reason about “negative information”. For ex-
ample, in planning problems, providing an optimal solution is the same as giving a feasible solution
(the “positive” information) together with a proof of the fact that there cannot be feasible solutions
better than the one given (the “negative” information). We model negative information by introducing
the concept of “norphisms”, as opposed to the positive information of morphisms. A “nategory” is a
category that has “Nom”-sets in addition to hom-sets, and specifies the compatibility rules between
norphisms and morphisms. With this setup we can choose to work in “coherent” “subnategories”:
subcategories that describe a potential instantiation of the world in which all morphisms and nor-
phisms are compatible. We derive the composition rules for norphisms in a coherent subnategory;
we show that norphisms do not compose by themselves, but rather they need to use morphisms as cat-
alysts. We have two distinct rules of the type morphism+norphism→ norphism. We then show that
those complex rules for norphism inference are actually as natural as the ones for morphisms, from
the perspective of enriched category theory. Every small category is enriched over P = ⟨Set, ×, 1⟩.
We show that we can derive the machinery of norphisms by considering an enrichment over a certain
monoidal category called PN (for “positive”/“negative”) of which PN0 = ⟨Set, ×, 1⟩× ⟨Setop, +, /0⟩
is a submonoidal category. In summary, we show that an alternative to considering negative informa-
tion using logic on top of the categorical formalization is to “categorify” the negative information,
obtaining negative arrows that live at the same level as the positive arrows, and that the new inference
rules are born of the same substance from the perspective of enriched category theory.

1 Introduction

1.1 Manipulation of negative information is important in applications of category theory

Our background is in robotics and systems theory. In our fields, we have found that category theory can
describe well a lot of the structures in our problems, but something is missing: we often find ourselves in
the position of reasoning and writing algorithms that manipulate “negative information”, but we do not
know what is an appropriate categorical concept for it. We give some examples.

Robot motion planning can be formalized as the problem of finding a trajectory through an envi-
ronment, respecting some constraint (e.g., avoiding obstacles). One can think of the robot configuration
manifold M as a category where the objects are elements of the tangent bundle and the morphisms are the
feasible paths according to the problem constraints. The output of planning problems has an intuitive rep-
resentation in category theory, if the problem is feasible. A path planning algorithm is given two objects
and must compute a morphism as a solution. A motion planning algorithm would compute a trajectory,
which could be seen as a functor F from the manifold [0,T ] to M with F(0) =A and F(T ) =B. However,
if the problem is infeasible–if no morphisms between two points can be found—if the algorithm must
present a certificate of infeasibility–what is the equivalent concept in category theory?
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In many cases, the problems are not binary (either a solution exists or not, either a proposition is true
or not) but we care about the performance of solutions. For example, consider the case of the weighted
shortest path problem in dynamic programming. The problem is to find a path through a graph that
minimizes the sum of the weights of the edges on the path. In robotics, this can be used for planning
problems, where the weights could represent the time, the distance, or the energy required by a robot to
traverse an edge, and the nodes are either regions of space or, more generally, joint states of the world and
environment. Proving that a path is optimal means producing the path together with a proof that there
are no shorter paths. This is called a “certificate of optimality” and like certificates of infeasibility is
negative information as it consists in negating the existence of a certain class of paths. Interestingly, one
can see algorithms such as Dijkstra’s algorithm as constructing both positive and negative information at
the same time, such that when a path is finally found, we are sure that there are no shorter ones [2].

In some cases, the negative information is a first-class citizen which is critical to the efficiency.
Algorithms such as A* require the definition of heuristic functions, which is negative information: they
provide a lower bound on the cost of a path between two points. And better heuristics make the algorithm
faster. Again, we ask, what could be the categorical counterpart of heuristics?

In co-design [3, 1], a morphism F→ R describes what functionality can be achieved with which
resources. They are characterized as boolean profunctors, that is, monotone functions Fop × R→ Bool.
The negative information would be a “nesign” problem that characterizes an impossibility. For example,
if F = R = Energy, we expect that in this universe we cannot find a realizable morphism d that satisfies
d(2J,1J) (obtaining 2 Joules from 1 Joule). The dual information would be a function F × Rop→ Bool.
Is this a morphism? In which category does it live?

1.2 Our approach: “Categorification” of negative information

We briefly describe our thought process in finding a formalization for dealing with negative information.
One approach could have been to build structure on top of a category, at a higher level, using logic.

We eschew this approach because of the belief that we should find a duality between positive and negative
information that puts them “at the same level”, but on the opposite sides of a mirror.

Our approach has been one in the spirit of “categorification”: representing the negative information
with a concrete structure for which to find axioms and inference rules.

An early influence in our thinking was the paper of Shulman about “proofs and refutations” [5].
What follows is a simplified explanation of one of the concepts of the paper. Consider a category where
objects are propositions and morphisms X → Y are propositions X ⇒ Y (with the particular case of
X ≃⊤→ X). We can then consider the type P(X → Y ) of proofs and the type R(X → Y ) of refutations,
which correspond to positive and negative information. According to intuitionist logic, P(X → Y ) =
(P(X)→ P(Y ))× (R(Y )→ R(X)): a proof of X ⇒ Y is a way to convert a proof of X into a proof of Y
together with a way to convert a refutation of Y into a refutation of X .

In that paper, proofs and refutations, positive and negative information, are treated at the same level
but not symmetrically—proof and refutations have different semantics, and P and R map products and
coproducts (∨, ∧) to different linear logic operators. This led to the idea that negative information should
be at the same level of positive information: if positive information is represented by morphisms, then
also the negative information should be described as “negative arrows” between objects, which we called
norphisms (for negative morphisms).

We also realized that the positive/negative information duality we are looking for is richer than the
structure of proofs/refutations in logic. In (classical/intuitionistic) logic, one expects the existence of
either a proof of a proposition A, a refutation of A, or neither, but not both. Instead, in our formaliza-
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tion, norphisms are a more general notion, which can coexist with morphisms and give complementary
information, as in the planning examples in the introduction.

An initial idea was to consider for each category a “twin” category, whose morphisms would be the
norphisms we were looking for to represent the negative information; however, this idea failed. By the
end of the paper, it will be clear that positive/negative information cannot be decoupled, because negative
information cannot be composed independently. The norphisms cannot be morphisms in an auxiliary
category associated to the original category because the inference rules are fundamentally different.
In the end, we will show that morphisms and norphisms are “twins” in the sense that they are both born
of the same enrichment structure.

1.3 Plan of the paper

This paper follows an inductive exposition. We consider some categories and work out what is “negative
information” in each case, and what are inference rules that we expect to hold. By the end of the paper,
we show that all the particular notions can be subsumed into saying that the category is PN-enriched.

This paper is divided in two parts. In the first part we provide the motivation and several examples
of representing negative information with “norphism” structure. In Section 2 we consider the case
of a thin category. In this simple setting we can already show that norphisms compose differently from
morphisms, and that we need two composition formulas for them. In Section 3 we define the concept of
a “nategory”. This is a category with additional structure: a set of norphisms and a compatibility relation
between morphisms and norphisms. We define “coherent subnategories” as subcategories that “do not
contain any contradiction” between morphisms and norphisms. We work out the generic formulas for
obtaining the norphisms. In Section 4 and Section 5 we discuss the categories Berg and DP, which have
non-trivial norphism structure, in which norphisms and morphisms are not exclusive, as in the case of a
thin category.

In the second part our goal is to provide an elegant way to think of norphisms and their com-
position by using enriched category theory. By doing so, we show that the additional structure of
norphisms and their composition rules which may appear “funky” is not an arbitrary structure, but rather
it is as “natural” as the positive information of morphisms. In Section 6 we recall the notion of enrich-
ment, and that “any small category” is “enriched” in P = ⟨Set, ×, 1⟩. In Section 7 we show how, for the
thin category case, the norphism composition rules can be derived by considering enrichment in a cate-
gory PN0 = ⟨Set, ×, 1⟩× ⟨Setop, +, /0⟩, of which P is a submonoidal category. In Section 8 we define a
category PN, and in Section 9 we show how the general case of norphisms can be derived by considering
enrichment in PN. PN is a generalization, as PN0 is a submonoidal category of PN; however, PN does
not factorize as PN0 does.

2 The trivial case: thin categories

To build an intuition about norphisms, we look at the case of “thin” categories, in which each hom-set
contains at most one morphism. Thin categories are essentially pre-orders. To aid the interpretation, one
can think of a pre-order as defining a reachability relation, in which a morphism X→Y represents “I can
reach Y from X”. Or, we can think of morphisms as (proof-irrelevant) implications: X → Y represents
“I can prove Y from X”. In a thin category, negative information is limited to indicate the refutation of
positive information. Therefore, a norphism n : X 99K Y is equivalent to “There are no morphisms from
X to Y ”. Particularly, this means “I cannot reach Y from X” or “I cannot prove Y from X”.
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We will later see that, in general, norphisms are not necessarily mutually exclusive with morphisms,
and that the thin category case is a trivial case. Still, this example is sufficient to get us started to
appreciate how morphisms and norphisms compose differently. The composition rule for morphisms
reads: f : X → Y g : Y → Z .

( f #g) : X → Z (1)
By mimicking what one does for categories, one could start with two norphisms n : X 99KY and m : Y 99K
Z and expect to be able to say something about a norphism X 99K Z, with a composition rule of the form:

n : X 99K Y m : Y 99K Z .
??? : X 99K Z (2)

However, norphisms do not compose this way. In fact, one can derive the following rule:
o : X 99K Z Y : ObC .

(n : X 99K Y )∨ (m : Y 99K Z) (3)
This rule is “the dual” of Equation (1) in the same sense as these two axioms are dual:

⊤ ,
X → X

X 99K X ,
⊥ (4)

that is, in the sense of switching orders and negating the propositions.
The expression in Equation (3) means that if there is no morphism X → Z, it is because, for every

possible intermediate Y , there cannot be a morphism X→Y or Y → Z. Note that composition goes in the
“opposite” direction meaning that from one norphism, we get some information about the existence of
one or two in a pair. The composition is not constructive: from the “∨”, we do not know which side we
can create. Indeed, this composition highlights the asymmetry between morphisms and norphisms: mor-
phisms compose constructively by themselves (i.e., without taking into account norphisms); norphisms,
instead, do not “compose”, but rather “decompose” by themselves. To construct norphisms, we need to
start from a norphism and a morphism that acts as a “catalyst”.

Let’s see what we mean in the case of a thin category. When interpreting the situation as a graph, if
there is a norphism n : X 99KY , it means that for any Y , the path X→Y → Z must be interrupted in either
part. What we cannot have, is a contradiction. Indeed, if we know that morphisms f : X→Y and g : Y →
Z exist, then their composition f #g : X → Z must exist, and therefore no norphism n : X 99K Z can exist.
This observation can be turned around in a constructive way. Starting from a morphism f : X → Y and
a norphism n : X 99K Z (i.e., morphisms and norphisms with the same source), we can infer a norphism
f n : Y 99K Z (i.e., there cannot be a morphism Y 99K Z):

Z

Y

X f

n

Z

Y

X

f n

f

n=⇒ Y
f←X

n
99K Z .

Y
f n
99K Z

(5)

Symmetrically, starting from a morphism g : Y → Z and a norphism n : X 99K Z (i.e., morphisms and
norphisms with the same target), we can infer a norphism n f : X 99K Y :

Z

Y

X

g

n

Z

Y

X

g

n g
n=⇒ X

n
99K Z

g←Y .

X
n g
99K Y

(6)

Note that the new norphism is pointing in the “same direction” as the starting one, meaning that
either source or target are preserved.



Censi, Frazzoli, Lorand, Zardini 5

3 Describing negative information: nategories and coherence

In this section we start making the notion of norphisms more precise, by concretely defining the addi-
tional structure which a category must have.
Definition 1 (Nategory). A small nategory C is a small category with the following additional structure.
For each pair of objects X ,Y ∈ ObC, in addition to the set of morphisms HomC(X ;Y ), we also specify:

• A set of norphisms NomC(X ;Y ). We write n : X 99K Y to say that a norphism belongs to that set.
• A compatibility relation between the two sets:

RX ,Y : HomC(X ;Y )→Rel NomC(X ;Y ), (7)

where ( f RX ,Y n) means that f : X → Y is “compatible” with norphism n : X 99K Y .
Definition 2. A subnategory D of C is a nategory D that is a subcategory of C in the usual sense, and
for which NomD(X ;Y )⊆ NomC(X ;Y ).
Definition 3 (Coherent subnategory). A subnategory D of C is coherent if all morphisms and norphisms
are compatible:

f : HomD(X ;Y ) n : NomD(X ;Y ) .
f (RX ,Y )n (8)

The interpretation is as follows. The ambient category C describes all morphisms and norphisms and
their compatibility rules. A coherent subnategory is a particular instantiation of the world in which some
things are possible, some impossible, and the consequences are coherent.
Example 4. Every category C is a coherent subnategory of itself, with NomC(X ;Y ) = /0 and RX ,Y = /0.
Example 5. For any category C, let NomC(X ;Y ) = {•} and RX ,Y = /0. In this case, the element • is a
witness for “HomC(X ;Y ) is empty”. In fact, if • ∈ NomC(X ;Y ), then because of RX ,Y there cannot exist
any morphism. Vice versa, if there is a morphism f ∈ HomC(X ;Y ), then NomC(X ;Y ) must be empty.

In the general case, we do not expect morphisms and norphisms to be exclusive. Indeed, they are
both useful as characterizing different types of information.

3.1 Inference rules for norphisms in coherent subnategories

Given the structure of a nategory we can find inference rules for the norphisms of a coherent subnategory.
The two types of compositions are obtained by push-forward/pull-back of the compatibility relation by
the pre- and post-composition action of the morphisms. The binary relation RX ,Y induces the two maps

IX ,Y : HomC(X ;Y ) → Pow(NomC(X ;Y )),

f 7→ {n ∈ NomC(X ;Y ) : ¬ f RX ,Y n},
(9)

and JX ,Y : NomC(X ;Y ) → Pow(HomC(X ;Y )),

n 7→ { f ∈ HomC(X ;Y ) : ¬ f RX ,Y n}.
(10)

Equation (9) answers the question “given a morphism, which norphisms are incompatible with it?”.
Equation (10) answers the question “given a norphism, which morphisms are incompatible with it?”.
Giving a norphism n : X 99K Y is equivalent to giving the value JX ,Y (n).

These two maps can be used to constructively generate new norphisms. Let’s start from the case of
Equation (6). We follow Fig. 1a. First, we can use JX ,Y to find the morphisms which are incompatible
with n, written as JX ,Y (n) (Fig. 1b). Second, note that the morphism f : Z→ Y induces maps

post f : HomC(X ;Z) → HomC(X ;Y ),

g 7→ g # f ,

pre f : HomC(X ;Y ) → HomC(X ;Y ),

h 7→ f #h.
(11)



6 Categorification of Negative Information using Enrichment

n

f

X → Y X 99K Y

X → Z X 99K Z

Z→ Y Z 99K Y

catalyst morphism

need to find a norphism here

the norphism

(a) Starting situation.

JX ,Y (n) n

f

X → Y X 99K Y

X → Z X 99K Z

Z→ Y Z 99K Y

we find incompatibility with n

(b) Find incompatibility with n.

JX ,Y (n) n

f

X → Z

X → Y X 99K Y

X 99K Z

Z→ Y Z 99K Y

post−1
f

we pull back incompatible morphisms

(c) Pulling back incompatible morphisms.

n

f

X → Z

X → Y X 99K Y

X 99K Z

Z→ Y Z 99K Y

JX ,Z(n f )

post−1
f

n f

(d) We have now found n f .

Figure 1: Systematic composition of norphisms.

representing the post and pre-composition of any morphism with f . We can now pull back the “bad”
morphisms through post−1

f and obtain post−1
f (JX ,Y (n)) (Fig. 1c).

We have now found n f , since we have found its incompatible elements (Fig. 1d):

JX ,Z(n f ) = post−1
f (JX ,Y (n)). (12)

We repeat the same procedure for the case of Equation (5), using the pre-composition map to obtain

JX ,Z(n f ) = pre−1
f (JX ,Y (n)). (13)

4 Example: hiking on the Swiss mountains

In this section we present an example of planning, giving a more concrete description of the path planning
problems mentioned in the introduction. We describe Berg, a category whose morphisms are hiking paths
of various difficulty on a mountain. We then consider the problem of finding paths of minimum length.

Definition 6 (Berg). Let h : R2→R≥0 be a C1 function, describing the elevation of a mountain. The set
with elements ⟨a, b, h(a, b)⟩ is a manifold M that is embedded in R3. Let σ = [σL, σU]⊂ R be a closed
interval of real numbers. The category Bergh,σ is specified as follows:

1. An object X is a pair ⟨p, v⟩ ∈ T M, where p = ⟨px, py, pz⟩ is the position, v is the velocity, and
T M is the tangent bundle of the manifold.

2. Morphisms are C1 paths on the manifold (Fig. 2). At each point of a path we define the steepness
as:

s(⟨p, v⟩) := vz/
√

v2
x +v2

y . (14)
We choose as morphisms only the paths that have the steepness values contained in the interval σ :

HomBergh,σ
(X ;Y ) = { f is a C1 path from X to Y and s( f )⊆ σ}, (15)
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M

T M

X

Y v

Figure 2

3. Morphism composition is given by concatenation of paths.
4. Given any object, the identity morphism is the trivial self path with only one point.
For the complete proof that Berg is a category, we refer the reader to Lemma 14.
The steepness interval σ allows considering different categories on the same mountain, with possible

hikes varying in difficulty, measured as minimum/maximum steepness. For example, a good hiker has
σ = [−0.57, 0.57] (positive/negative 30◦ slope). If σ = [−0.57, 0], we are only allowed to climb down.
If σ = [0, 0], we can only walk along isoclines.

Interpretation of norphisms in Berg What should a norphism be in this case?
One possibility is to let a norphism n : X 99K Y mean “there exists no path from X to Y ”. This is a

trivial choice that is similar to Example 5 and that makes morphisms and norphisms mutually exclusive.
We can obtain a more useful theory by letting norphisms carry more information that is complemen-

tary to morphisms by interpreting them as lower bounds on distances. Let the set of norphism be the
nonnegative numbers plus infinity:

NomBergh,σ
(X ;Y ) ⊆ R≥0∪{∞}. (16)

Let length( f ) be the length of the path (according to the manifold metric). A norphism n : X 99K Y is a
witness of “for all paths f : X→Y , we have length( f )≥ n”. This is negative, complementary information
to morphisms, providing a lower bound on the length of the paths. The case in which n = ∞ means that
there is no path from X to Y . The compatibility relation RX ,Y can be written as follows:

f RX ,Y n
.

length( f )≥ n (17)
To say that a path f is optimal means saying that f is feasible and that length( f ) is a norphism:

f : X → Y length( f ) : X 99K Y
.

f is optimal (18)

Composition rules for norphisms Next, we derive the two composition rules that are the equivalent
of Equation (5) and Equation (6). In this case, we obtain that n f and f n are equal:

n f = max{n− length( f ),0} = f n. (19)
The reasoning follows Fig. 3: if f is a path from Z to Y , and we know that going from X to Y takes at
least n, then any path from X to Z must be at least n− length( f ) long. For the other direction: if there
is a path f from X to Y and we know that going from X to Z takes at least n, then any path from Y to Z
must be at least n− length( f ) long.
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Z

Y

X

f

n
max{n− length( f ),0}

(a)

Z

Y

X

max{n− length( f ),0}

f

n

(b)

Figure 3: Composition of morphisms and norphisms in the case of paths and lengths.

Norphisms axioms Finally, we need to specify the set of axioms for the norphisms. So far, we said
that norphisms are nonnegative numbers plus infinity, but we did not say how exactly we associate a set
Nom to each pair of objects. We obtain different subnategories by choosing more or less axioms.

1. Trivial norphism: since lengths cannot be negative, for all pair of objects we have the norphism
0: X 99K X . Having this as an axiom is not very useful, as the composition rules just generate
other zeros as norphisms.

2. Bound based on distance in R3. Any path along the mountain cannot be shorter than the distance
of a straight line (“as the crow flies”). Therefore, for two objects ⟨p1, v1⟩, ⟨p2, v2⟩, we have the
distance in R3 ∥p1−p2∥ as a valid norphism:

∥p1−p2∥ : ⟨p1, v1⟩ 99K ⟨p2, v2⟩. (20)

3. Bound based on geodesic distance. A better bound is based on the geodesic distance. This is
well defined because the points live on a smooth manifold:

dM(p1,p2) : ⟨p1, v1⟩ 99K ⟨p2, v2⟩. (21)

4. Bound based on steepness interval. Finally, we can use the bound on steepness interval. Given
two objects ⟨p1, v1⟩, ⟨p2, v2⟩, we can use one of the following bounds

|p1
z −p2

z |/σU : ⟨p1, v1⟩ 99K ⟨p2, v2⟩, |p1
z −p2

z |/σL : ⟨p1, v1⟩ 99K ⟨p2, v2⟩, (22)

depending on the case (if p1
z −p2

z < 0 we use the first, and if p1
z −p2

z > 0 the second).

5 Example: co-design

The next example revolves around the construction of norphisms for the category of design problems DP [1,
3]; this is called FeasBool in [3]. The objects of DP are posets. The morphisms are design problems (also
referred to as feasibility relations or boolean profunctors). A design problem (DP) d : P−7→Q is a mono-
tone map of the form d : Pop × Q→Pos Bool, where P,Q are arbitrary posets.

The semantics for a DP is that it describes a process which provides a certain functionality, by
requiring certain resources. d is a monotone map, since lowering the requested functionalities will not
require more resources, and increasing the available resources will not provide less functionalities.

Morphism composition is defined as follows. Given DPs d : P−7→Q and e : Q−7→R, they compose
into a DP (d # e) : P−7→R as:

(d # e) : Pop × R →Pos Bool,

⟨p, r⟩ 7→
∨

q∈Q
d(p,q)∧ e(q,r). (23)

For any poset P, the identity DP idP : P−7→P is a monotone map
idP : Pop × P →Pos Bool,
⟨p1, p2⟩ 7→ p1 ⪯P p2.

(24)
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Interpretation of norphisms in DP Given that the morphisms of DP are feasibility relations, we
expect that the norphisms of DP (“nesign problems”), should be infeasibility relations. A nesign problem
(NP) n : F−7→R should be a boolean map n : F × Rop→ Bool, such that n( f ,r) = ⊤ means that it is not
possible to produce f from r. The semantics of an NP make it so this map should also be monotone:

n : F × Rop→Pos Bool. (25)

In fact, if ⟨ f1, r1⟩ is not feasible, and f2 ≥ f1, this implies that ⟨ f2, r1⟩ should not be feasible.
Note that the source poset of a nesign problem is the op of the source poset for a design problem:

d : Fop × R→Pos Bool. (26)

Compatibility of morphisms and norphisms Consider a DP d : F−7→R and a NP n : F−7→R. The
compatibility relation between DP and NP should ensure that there are no contradictions. We ask that,
for any pair of functionality/resources ⟨ f , r⟩, it cannot happen that they are declared feasible by the DP
(d( f ,r)) and declared infeasible by the NP (n( f ,r)).

dRF,Rn
.

∀ f ∈ F,r ∈ R : ¬(d( f ,r)∧n( f ,r)) (27)

Composition rules for norphisms We can recover the composition rules presented in Equation (5)
and Equation (6). Given a NP n : P−7→Q and a DP d : R−7→Q, one can compose them to get a NP
n d : P−7→R:

(n d)(p,r) =
∨

q∈Q
n(p,q)∧d(r,q). (28)

Given a DP d : Q−7→P and a NP n : Q−7→R, one can compose them to get a NP d n : P−7→R:

(d n)(p,r) =
∨

q∈Q
d(q, p)∧n(q,r). (29)

For further examples and explanations please refer to Example 15 and Remark 16.

Norphisms axioms Norphims axioms could follow some knowledge about particular designs we know
are (in)feasible. Every engineering discipline has some fundamental limits in the performance of its
designs that come from physics or information theory.

Interestingly, we can also formulate a very general axiom that is valid across all fields: in this uni-
verse, physically realizable designs can never produce strictly more resources that one starts with. This
axiom can be encoded as a norphism. For each object P, we postulate a NP nP : P−7→P such that

nP(q, p) = p≺P q, (30)

where p≺P q = (p⪯P q)∧ (p ̸= q). Interestingly, starting from a morphism d : F−7→R, one can directly
obtain two NPs in R−7→F that go in the opposite direction. These are

(nR d)(r, f ) =
∨

r′∈R
nR(r,r′)∧d( f ,r′), (d nF)(r, f ) =

∨
f ′∈F

d( f ′,r)∧nF( f ′, f ),

which gives two impossibility results. The first states infeasibility because, while it is possible to get f
from r′ via d for a certain r′, it is not possible to obtain r from r′. The second states infeasibility because,
while it is possible to get f ′ from r via d for a certain f ′, it is not possible to obtain f ′ from f . Therefore,
for this nategory, every positive information induces negative information in the other direction.
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6 Enrichment

We recall a standard definition of enrichment [4].

Definition 7 (Enriched category). Let ⟨V,⊗⊗⊗, 1, as, lu, ru⟩ be a monoidal category, where as is the asso-
ciator, lu is the left unitor, and ru is the right unitor. A V-enriched category E is given by a tuple ⟨ObE,
αE, βE, γE⟩, where

1. ObE is a set of “objects”.
2. αE is a function such that, for all pairs of objects X ,Y ∈ObE, the value αE(X ,Y ) is an object of V.
3. βE is a function such that, for all X ,Y ,Z ∈ ObE, there exists a morphism βE(X ,Y ,Z) of V, called

composition morphism:

βE(X ,Y ,Z) : αE(X ,Y )⊗⊗⊗αE(Y ,Z)→V αE(X ,Z). (31)

4. γE is a function such that, for each X ∈ ObE, there exists a morphism of V:

γE(X) : 1→V αE(X ,X). (32)

Moreover, for any X ,Y ,Z,U ∈ ObE, the diagrams reported in Appendix A must commute.

Lemma 8. Any small category is enriched in the monoidal category P = ⟨Set, ×, 1⟩, where × is the
Cartesian product and 1 is a one-element set.

The construction for an arbitrary small category C goes as follows:
• For each X ,Y ∈ ObC, the object αC(X ,Y ) is the hom-set HomC(X ;Y ).
• For each X ,Y ,Z ∈ObC we need to choose a morphism of Set with type βC(X ,Y ,Z) : HomC(X ;Y )⊗⊗⊗

HomC(Y ;Z)→Set HomC(X ;Z) (i.e., a function). For this, we pick the morphism composition
function of the category C. The diagram commutation requirements imply that this function is
associative.

• For each X ∈ ObC we need to give the function γC(X) : 1→Set HomC(X ;X). The diagram com-
mutation requirements constrain this function to be the one that selects the identity morphism for
the object:

γC(X) : • 7→ idX . (33)

7 Norphisms via enrichment for thin categories

Recall that N0 = ⟨Setop, +, /0⟩ is a monoidal category, where + is the disjoint union and /0 is the empty
set. We now take the monoidal product of P = ⟨Set, ×, 1⟩ and N0 = ⟨Setop, +, /0⟩ in Cat and obtain a
monoidal category

PN0 := ⟨Set, ×, 1⟩⊗⊗⊗Cat ⟨Setop, +, /0⟩. (34)
Let’s now understand the structure of this category. The objects of P and N0 are sets. Therefore, the
objects of PN0 are pairs of sets ⟨A, B⟩. A morphism between two objects ⟨A1, B1⟩,⟨A2, B2⟩ of PN0 is
a pair of functions ⟨ϕ, ψ⟩ where ϕ : A1→ A2 and ψ : B2→ B1. Note that the latter has inverted arrow
direction (because of the op).

It is now time to show how a PN0-enriched category can describe the construction of norphisms for
thin categories. We can do this by unrolling the definition of enrichment for the case of PN0, and we will
see that we can recover from it all the properties of norphisms.

Proposition 9. Describing a thin nategory C and its norphism composition rules is the same thing as
describing a PN0-enriched category E.
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Proof. Consider a nategory C. Take a PN0-enriched category E. For any pair of objects X ,Y ∈ ObE =
ObC there exists an object αE(X ,Y ) ∈ ObPN0 . Giving an object in PN0 means specifying a pair of sets
⟨A, B⟩. We choose

A = HomC(X ;Y ), B = NomC(X ;Y ). (35)
For a thin nategory both A and B are either empty or a singleton.

Next, for each X ∈ObE we need to specify a morphism γE(X) : 1PN0 →PN0 αE(X ,X). We recall that
1PN0 = ⟨1, /0⟩. Therefore, specifying a morphism

γE(X) : ⟨1, /0⟩ →PN0 ⟨HomC(X ;X), NomC(X ;X)⟩, (36)

means specifying two maps ϕ,ψ . Clearly, following the commutativity of unitors, ϕ picks up the identity
(i.e., ϕ(•) = idX ). The other map ψ : NomC(X ;X)→ /0 exists (and is unique) iff NomC(X ;X) = /0. This
condition is equivalent to the assumption that there are no endonorphisms n : X 99K X ; these would be in
contradiction with the presence of the identity morphism.

Finally, we can unwrap the condition on morphisms composition. For any three objects X ,Y ,Z ∈
ObE, we need to find a morphism βE(X ,Y ,Z) : αE(X ,Y )⊗⊗⊗PN0 αE(Y ,Z)→PN0 αE(X ,Z). Simplifying,
this is a morphism

⟨HomC(X ;Y ), NomC(X ;Y )⟩⊗⊗⊗PN0 ⟨HomC(Y ;Z), NomC(Y ;Z)⟩ →PN0 ⟨HomC(X ;Z), HomC(X ;Z)⟩.
(37)

Expanding, we get:

⟨HomC(X ;Y )× HomC(Y ;Z), NomC(X ;Y )+ NomC(Y ;Z)⟩ →PN0 ⟨HomC(X ;Z), NomC(X ;Z)⟩. (38)

Such morphism is given by two maps ϕX ,Y ,Z,ψX ,Y ,Z . As for ϕX ,Y ,Z , we recover morphism composi-
tion:

ϕX ,Y ,Z : HomC(X ;Y )× HomC(Y ;Z) → HomC(X ;Z),

⟨ f , g⟩ 7→ f #g.
(39)

On the other hand, the map ψX ,Y ,Z gives the logic for norphisms. Indeed, the map

ψX ,Y ,Z : NomC(X ;Z)→ NomC(X ;Y )+ NomC(Y ;Z) (40)

represents the rule presented in Equation (3): if a norphism n : X 99K Z exists, then for any Y we need to
find either a norphism X 99K Y or a norphism Y 99K Z. We can then go on to describe the constructive
side: if a morphism f : X →Y exists, then ψ must produce a norphism Y 99K Z; this is f n. Therefore,
we recover Equation (5). On the other hand, if a morphism g : Y 99K Z exists, then ψ must produce a
norphism X 99K Y ; this is n g. We thus recover Equation (6).

Unfortunately, PN0 is not powerful enough to capture norphisms that allow certain morphisms but
not others (in thin categories, there is at most one). Indeed, Equation (40) does not depend on which f ,g
you choose. For this dependency to exist, we need to define a more complex enrichment structure.

8 The category PN

In this section, we will use dependent type notation. For instance, when we write f : (a : A)→ (g(a)→
B), we mean that a ∈ A is a particular element of a set, and g(a) is a set which depends on a. So, given
an a, f (a) is a map from g(a) to B. Another example of dependent-type notation would be writing:

# : (X : ObC, Y : ObC, Z : ObC)→ (HomC(X ;Y )× HomC(Y ;Z)→ HomC(X ;Z)) (41)

We define a category PN as a generalization of PN0.
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Definition 10 (Category PN). The category PN is defined as follows.
1. The objects of PN are pairs ⟨H, m : H→ Pow(N)⟩, where H,N are sets, and m is a map that

associates to an element of H a subset of N.
2. A morphism f : ⟨H1, m1⟩ → ⟨H2, m2⟩ is a pair of functions ⟨ϕ, ψ⟩ where

ϕ : H1→ H2,

ψ : (h1 : H1)→ (m2(ϕ(h1))→ m1(h1)).
(42)

3. Given morphisms f : ⟨H1, m1⟩ → ⟨H2, m2⟩ and g : ⟨H2, m2⟩ → ⟨H3, m3⟩, their composition is a
morphism f #g, where

ϕ f #g = ϕ f #ϕg,

ψ f #g(h1) = ψg(ϕ f (h1)) #ψ f (h1).
(43)

4. An identity for an object ⟨H, m⟩ is given by

ϕ = idH , ψ(h) = idm(h), (44)

where idH is the identity function on the set H and idm(h) is the identity function on the set m(h).

Lemmas 18 to 21 check that this definition is well-posed, and that PN0 is a subcategory of PN.

8.1 Monoidal structure on PN

We define a monoidal structure on PN so that we can use it as a target of enrichment. We start by defining
a useful composition.

Definition 11 (“△”). Given two maps f : H1→ Pow(N1) and g : H2→ Pow(N2), we define

( f△g) : H1 × H2 → Pow(N1 + N2),

⟨h1, h2⟩ 7→ in1( f (h1))∪ in2(g(h2)),
(45)

where in1, in2 are the injections in the disjoint union lifted to sets.

The operation just defined has a neutral element (up to set isomorphism) given by the map

id△ : 1 → Pow( /0),

• 7→ /0.
(46)

We can now proceed to define the monoidal structure on PN.

Lemma 12. ⟨PN,⊗⊗⊗PN, ⟨1, id△ ⟩⟩ is a monoidal category, defining the product of two objects as

⟨H1, m1⟩⊗⊗⊗PN ⟨H2, m2⟩ := ⟨H1 × H2, m1△m2⟩, (47)

and the product of two morphisms f : ⟨H1, m1⟩ → ⟨K1, l1⟩, g : ⟨H2, m2⟩ → ⟨K2, l2⟩

f ⊗⊗⊗PN g : ⟨H1 × H2, m1△m2⟩ → ⟨K1 × K2, l1△ l2⟩ (48)

is the morphism defined by the two functions ϕ f⊗⊗⊗PNg and ψ f⊗⊗⊗PNg defined as

ϕ f⊗⊗⊗PNg = ϕ f ×ϕg, (49)

ψ f⊗⊗⊗PNg : (⟨h1, h2⟩ : H1 × H2)→ ψ f (h1)+ψg(h2), (50)

where × is the product of functions and + is the direct sum of functions.
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9 General norphism structure as enrichment

We are now ready to state the main result of the second part of the paper.

Proposition 13. Giving a nategory and its norphism composition rules is the same thing as giving a
category enriched in PN.

Proof. We will now unroll the definition of PN-enrichment, and we will see that we can recover from it
all the properties of norphisms. Take a category C and a PN-enriched category E, with ObE = ObC. For
any pair of objects X ,Y ∈ObE we need to choose an object αE(X ,Y ) in PN, represented by a pair ⟨H, m⟩.
As in previous constructions, we choose H to be HomC(X ;Y ). As for the map m : HomC(X ;Y )→
Pow(N), we take N to be NomC(X ;Y ) and m to be the incompatibility function IX ,Y defined in Equa-
tion (9).

Next, for each X ∈ ObE we need to specify a morphism γE(X) : 1PN→PN αE(X ,X). Because 1PN =
⟨1, id△ ⟩, in this case we need to specify a morphism of PN

γE(X) : ⟨1, id△ ⟩ →PN ⟨HomC(X ;X), IX ,X⟩ (51)

This means specifying two maps ϕ,ψ . As in the previous derivations, ϕ picks up the identity (ϕ(•) =
idX ). The other map has type

ψ : (h : 1)→ (IX ,X(ϕ(h))→ id△ (h)). (52)

Simplifying, we get:
ψ(•) : IX ,X(idX)→ /0. (53)

A map IX ,X(idX)→ /0 exists (and is unique) only if IX ,X(idX) = /0. That is, the enrichment constraint says
that there cannot be norphisms incompatible with the identity. But, in this case, there might norphisms
that are incompatible with other non-identity morphisms; this could not happen when using PN0.

The other enrichment construction requires that for any three objects X ,Y ,Z, we specify a morphism

βE(X ,Y ,Z) : αE(X ,Y )⊗⊗⊗PN αE(Y ,Z)→PN αE(X ,Z). (54)

Substituting our choice of αE(,), we need to find a morphism

⟨HomC(X ;Y ), IX ,Y ⟩⊗⊗⊗PN ⟨HomC(Y ;Z), IY ,Z⟩ →PN ⟨HomC(X ;Z), IX ,Z⟩. (55)

Expanding using the definition of⊗⊗⊗PN gives

⟨HomC(X ;Y )× HomC(Y ;Z), IX ,Y△IY ,Z⟩ →PN ⟨HomC(X ;Z), IX ,Z⟩. (56)

Such morphism is given by two maps ϕ,ψ . As for ϕ , we recover morphism composition:

ϕ : HomC(X ;Y )× HomC(Y ;Z) → HomC(X ;Z),

⟨ f , g⟩ 7→ f #g.
(57)

On the other hand, the map ψ will recover the logic for norphisms:

ψ : (⟨ f , g⟩ : HomC(X ;Y )× HomC(Y ;Z))→ (IX ,Z(ϕ( f ,g))→ (IX ,Y△IY ,Z)( f ,g)). (58)

For a specific pair of compatible morphisms ⟨ f , g⟩, we have:

ψ( f ,g) : IX ,Z( f #g)→ (in1(IX ,Y ( f ))∪ in2(IY ,Z(g))). (59)

Let’s consider the two cases according to whether IX ,Z( f #g) is empty or not:
1) If IX ,Z( f #g) = /0 it means that there is no norphism that forbids f #g. The choice of ψ( f ,g) is unique
as there is only one function out of /0.
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2) If IX ,Z( f #g) is not empty, it means that f #g is forbidden by one or more norphisms. For each norphism
n ∈ IX ,Z( f #g) we can continue by evaluating the function to obtain

(ψ( f ,g))(n) ∈ in1(IX ,Y ( f ))∪ in2(IY ,Z(g)). (60)

This says that an explanation must be given. Indeed, f # g is forbidden because either f or g (or both)
are forbidden. Now, suppose f is not forbidden, i.e.: IX ,Y ( f ) = /0. This implies that we must pick
out a norphism in IY ,Z(g). Let’s call this norphism f n. We have recovered the rule presented in
Equation (5). Alternatively, by supposing that g is not forbidden (i.e., IY ,Z(g) = /0), we must pick up a
norphism in IX ,Y ( f ), call it n g. We now have recovered Equation (6).

10 Conclusions

This work showed that we can encode negative information using “norphisms”, negative arrows, as
opposed to the positive arrows of morphisms.

In the case of thin categories, norphisms have the interpretation of being witnesses that there is
no morphism between two objects. We have shown that in the simple case of thin categories, the
joint logic of morphisms and norphisms can be captured by considering a category enriched in PN0 =
⟨Set, ×, 1⟩⊗⊗⊗Cat ⟨Setop, +, /0⟩. This shows that norphisms have an “op spirit”, dual to morphisms.

In more general categories, morphisms and norphisms between two objects can live along each other,
and are not exclusive. Norphisms can give complementary information to morphisms. We have seen how,
in the category Berg, norphisms can represent negative results, such as lower bounds on distances be-
tween two locations. A path planning algorithm must construct a morphism to give a path and a norphism
to prove that the path is optimal. Furthermore, we have seen how, in the category DP, norphisms can
represent infeasibility results.

We have described “nategories” as categories that have the norphism structure. For each pair of ob-
jects there is a set NomC(X ;Y ), along with HomC(X ;Y ), and a relation which describes the compatibility
of morphisms and norphisms. One can then ask if a subnategory is coherent, meaning that there are no
pairs of morphisms and norphisms that are incompatible. In a coherent subnategory one can derive rules
to obtain new norphisms. Two norphisms cannot be “composed”. Rather, there are rules allowing one to
derive norphisms using morphisms as “catalysts”, presented in Equation (5) and Equation (6).

Finally, we showed that this series of new definitions and baroque composition operators can be de-
scribed using enriched category theory. We defined a monoidal category PN (which stands for “positive”
and “negative”) that is a generalization of PN0; to model the non-trivial interaction between morphisms
and norphisms, PN is not factorizable, as opposed to PN0. We can then say that giving a nategory
is equivalent to giving a PN-enriched category. All the definitions needed and the mixed composition
operations follow naturally.

Just like we can say that any small category is enriched in P = ⟨Set, ×, 1⟩, we can say that any small
category is enriched in PN with the trivial choice NomC(X ;Y ) = 1, where the lone norphism is a witness
that HomC(X ;Y ) is empty. However, we also expect that many common categories have a non-trivial
norphism structure, as we found for Berg or DP. The immediate future work includes surveying known
categories for natural norphism structures.

An open question for the interested researcher is whether it is possible to extend the construction to
higher-level structures. For example, what would a “nunctor” be?
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A Definitions and diagrams

In Definition 7, for any X ,Y ,Z,U ∈ ObE, the following diagrams must commute.

αE(X ,Y )⊗⊗⊗ (αE(Y ,Z)⊗⊗⊗αE(Z,U)) (αE(X ,Y )⊗⊗⊗αE(Y ,Z))⊗⊗⊗αE(Z,U)

αE(X ,Y )⊗⊗⊗αE(Y ,U) αE(X ,U) αE(X ,Z)⊗⊗⊗αE(Z,U)

as

idαE(X ,Y )⊗⊗⊗βE(Y ,Z,U) βE(X ,Y ,Z)⊗⊗⊗ idαE(Z,U)

βE(X ,Y ,U) βE(X ,Z,U)

(61)

αE(X ,Y )⊗⊗⊗αE(Y ,Y ) αE(X ,Y ) αE(X ,X)⊗⊗⊗αE(X ,Y )

αE(X ,Y )⊗⊗⊗1 1⊗⊗⊗αE(X ,Y )

βE(X ,Y ,Y ) βE(X ,X ,Y )

ruidαE(X ,Y )⊗⊗⊗ γE(Y ) lu
γE(X)⊗⊗⊗ idαE(X ,Y )

(62)

B Proofs, examples, and explanations

Lemma 14. Bergh,σ is indeed a category.

Proof. We can start clarifying what a morphism in this category is. A morphism ⟨p1, v1⟩ → ⟨p2, v2⟩ is a
path on the manifold. One way to define a path on the manifold concretely is as a pair ⟨γ, T ⟩, where

• T ∈ R≥0, which we think of the “time” taken to travel from p1 to p2.

• γ : [0,T ]→M is a C1 function with γ(0) = p1 and γ(T ) = p2, as well as γ̇(0) = v1 and γ̇(T ) = v2
(we take one-sided derivatives at the boundaries).

https://bit.ly/3qQNrdR
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Technically, composition of morphisms works as follows. Given morphisms

⟨γ1, T1⟩ : ⟨p1, v1⟩ → ⟨p2, v2⟩ (63)

and
⟨γ2, T2⟩ : ⟨p2, v2⟩ → ⟨p3, v3⟩, (64)

their composition is ⟨γ, T ⟩ with T = T1 +T2 and

γ(t) =

{
γ1(t) 0≤ t ≤ T1

γ2(t−T1) T1 ≤ t ≤ T1 +T2,
(65)

expressing concatenation of paths. Furthermore, we can express identity morphisms explicitly. For any
object ⟨p, v⟩, we define the identity morphism

id⟨p, v⟩ = ⟨γ, 0⟩ (66)

formally: its path γ is defined on the closed interval [0, 0], (with T = 0 and γ(0) = p). We declare this
path to be C1 by convention, and declare its derivative at 0 to be v. Note that composition of intervals is
associative, because s( f # g) = s( f )∪ s(g). From these constituents and the fact that the composition of
steepness intervals is associative, it is clear that morphism composition is associative. Furthermore, the
identity morphism satisfies unitality.

Example 15. Consider the posets P =
〈
N[kg pears],≤

〉
, Q =

〈
R≥0,[CHF],≤

〉
, and R =

〈
N[kg raisins],≤

〉
.

Consider the design problem d : R−7→Q and the nesign problem n : P−7→Q. The (in)feasibility relations
are given by:

d(r,q)
,

r ·10≤ q

n(p,q)
.

p ·5 > q
In other words, it is possible to buy raisins at 10 CHF/kg or more, and never possible to buy pears at less
than 5 CHF/kg. We can evaluate the composition in a particular point to understand its meaning. First,
the nesign problem (n d) : P−7→R describes the possibility to obtain pears from raisins. For instance:

(n d)(10,4) =
∨

q∈Q
n(10,q)∧d(5,q)

=
∨

q∈Q
(40≤ q < 50) =⊤.

The translation is as follows. Can I get 10 kg of pears from 4 kg of raisins? No. Why? If I could, I would
need to buy the 4 kg of raisins using d, incurring at least in a cost of 40 CHF. In others words, I would
pay 40 CHF for 10 kg of pears, which is impossible as per nesign problem n. ◁

Remark 16 (Explanation for composition of design and nesign problems). Recall that given a NP
n : P−7→Q and a DP d : R−7→Q, one can compose them to get a NP n d : P−7→R:

(n d)(p,r) =
∨

q∈Q
n(p,q)∧d(r,q). (67)

The derivation of the rule is as follows. Can I get p from r? No, if I cannot get p from q, for any q, and I
can get r from q. Similarly, given a DP d : Q−7→P and a NP n : Q−7→R, one can compose them to get a
NP d n : P−7→R:

(d n)(p,r) =
∨

q∈Q
d(q, p)∧n(q,r). (68)

Can I get p from r? No, if I cannot get q from r, for any q, and I can get q from p.

Lemma 17. ⟨Setop, +, /0⟩ is a monoidal category, where + is the disjoint union and /0 is the empty set.
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Proof. Given that the proposed construction is less standard than the one for P, we provide the full con-
struction in this proof. First, note that a morphism in HomSet(A;B) becomes a morphism (map) f : B→A
in Setop. Furthermore, + acts on sets as the disjoint union, and given two morphisms f : B→ A, g : D→
C, it acts on them as

f +g : B + D→ A +C

⟨1, b⟩ 7→ ⟨1, f (b)⟩
⟨2, d⟩ 7→ ⟨2, g(d)⟩

(69)

We first define the associator: asA,B,C : (A + B)+C→ A + (B +C)

⟨1, ⟨1, x⟩⟩ 7→ ⟨1, x⟩
⟨1, ⟨2, x⟩⟩ 7→ ⟨2, ⟨1, x⟩⟩
⟨2, c⟩ 7→ ⟨2, ⟨2, c⟩⟩.

(70)

This is an isomorphism. Consider f : A→ A′, g : B→ B′, h : C → C′. We check that the associator
is natural through the three commuting diagrams in Fig. 4. Furthermore, we define the left and right
unitors: luA : /0 + A→ A

⟨2, a⟩ 7→ a.
(71)

and ruA : A + /0→ A

⟨1, a⟩ 7→ a.
(72)

Again, these clearly define isomorphisms. We check that they are natural through the commuting dia-
grams in Fig. 5. Finally, we check triangle (Fig. 6) and pentagon (Fig. 7) identities.

Lemma 18. The composition of morphisms in PN is well defined.

Proof. Consider morphisms f ,g,h as in the definition. Clearly, ϕh = ϕ f #ϕg is well defined. We expect
ψh to be of type:

ψh : (h1 : H1)→ (m3(ϕh(h1))→ m1(h1)). (73)
Let’s check this. We have:

ψ f (h1) : m2(ϕ f (h1))→ m1(h1) (74)
Expanding, we get:

ψg(h2) : m3(ϕg(h2))→ m2(h2). (75)
Let h2 = ϕ f (h1). Then, we have:

ψg(ϕ f (h1)) : m3(ϕg(ϕ f (h1)))→ m2(ϕ f (h1)), (76)

which expanded becomes:
ψg(ϕ f (h1)) : m3(ϕh(h1))→ m2(ϕ f (h1)) (77)

Now, from ψh(h1) = ψg(ϕ f (h1)) #ψ f (h1), we see that the composition is well defined.

Lemma 19. PN satisfies associativity.

Proof. Consider composable morphisms f ,g,h. Clearly (ϕ f #ϕg) #ϕh = ϕ f # (ϕg #ϕh). Furthermore, we
have:

ψ( f #g)#h(h1) = ψh(ϕ f #g(h1)) #ψ f #g(h1)

= ψh((ϕ f #ϕg)(h1)) #ψg(ϕ f (h1)) #ψ f (h1),
(78)

and
ψ f #(g#h)(h1) = ψg#h(ϕ f (h1)) #ψ f (h1)

= ψh((ϕ f #ϕg)(h1)) #ψg(ϕ f (h1)) #ψ f (h1),
(79)

proving associativity.
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⟨1, ⟨1, a⟩⟩ ⟨1, a⟩

(A + B)+C A + (B +C)

(A′ + B′)+C′ A′ + (B′ +C′)

⟨1, ⟨1, f (a)⟩⟩ ⟨1, f (a)⟩

asA,B,C

( f +g)+h f +(g+h)

asA′,B′,C′

(a) First case.

⟨1, ⟨2, b⟩⟩ ⟨2, ⟨1, b⟩⟩

(A + B)+C A + (B +C)

(A′ + B′)+C′ A′ + (B′ +C′)

⟨1, ⟨2, g(b)⟩⟩ ⟨2, ⟨1, g(b)⟩⟩

asA,B,C

( f +g)+h f +(g+h)

asA′,B′,C′

(b) Second case

⟨2, c⟩ ⟨2, ⟨2, c⟩⟩

(A + B)+C A + (B +C)

(A′ + B′)+C′ A′ + (B′ +C′)

⟨2, h(c)⟩ ⟨2, ⟨2, h(c)⟩⟩

asA,B,C

( f +g)+h f +(g+h)

asA′,B′,C′

(c) Third case.

Figure 4: The associator is natural.

Lemma 20. PN satisfies unitality.

Proof. Consider a morphism f . Clearly ϕ id# f = ϕ id # ϕ f = f and ϕ f #id = ϕ f # ϕ id = f . Similarly, we
have

ψ id# f (h) = ψ f (ϕ id(h)) #ψ id(h)

= ψ f (h) # idm(h)

= ψ f (h),

(80)

and
ψ f #id(h) = ψ id(ϕ f (h)) #ψ f (h)

= idm(h) #ψ f (h)

= ψ f (h),

(81)

proving unitality.

Lemma 21. PN0 is a subcategory of PN.

Proof. An object in PN0 is a pair of sets ⟨H, I⟩. Take an object ⟨H, m : H→ Pow(N)⟩ in PN and consider
a constant m. This is equivalent to a pair of sets, and hence ObPN0 ⊆ ObPN.

Consider two objects ⟨H1, m1 : H1→ Pow(N1)⟩, ⟨H2, m2 : H2→ Pow(N2)⟩ in PN, fix m1,m2 to be
constant, and look at a morphism between them, given by
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⟨2, a⟩ a

/0 + A A

/0 + A′ A′

⟨2, f (a)⟩ f (a)

luA

id /0 + f f

luA′

(a) Left unitor.

⟨1, a⟩ a

A + /0 A

A′ + /0 A′

⟨1, f (a)⟩ f (a)

ruA

f + id /0 f

ruA′

(b) Right unitor

Figure 5: Left and right unitors are natural.

⟨1, ⟨1, a⟩⟩ ⟨1, a⟩

(A + /0)+ B A + ( /0 + B)

A + B

⟨1, a⟩

asA, /0,B

ruA + idB idA + luB

(a) First case.

⟨2, b⟩ ⟨2, ⟨2, b⟩⟩

(A + /0)+ B A + ( /0 + B)

A + B

⟨2, b⟩

asA, /0,B

ruA + idB idA + luB

(b) Second case.

Figure 6: Triangle identity holds.

ϕ : H1→ H2,

ψ : (h1 : H1)→ (m2(ϕ(h1))→ m1(h1)).
(82)

Since m1,m2 are constant, we can re-write the second expression as ψ : (h1 : H1)→ (I2→ I1), where
I1, I2 are two constant outputs of m1,m2. Clearly, ϕ corresponds to the first part of a morphism in
PN0, and ψ is equivalent to its second part. Therefore HomPN0(X ;Y ) ⊆ HomPN(X ;Y ). Now take two
composable morphisms f : ⟨H1, m1⟩→ ⟨H2, m2⟩ and g : ⟨H2, m2⟩→ ⟨H3, m3⟩, with constant m1,m2,m3.
The first component of their composition in PN is ϕ f #ϕg, and corresponds to the first component of the
composition in PN0. The second component of their composition in PN is:

ψg(ϕ f (h1)) #ψ(h1) = (ψg #ψ f )(h1), (83)

which corresponds to the second component of the composition in PN0 (all of this works assuming
constant m1,m2,m3). Clearly, for any ⟨H, m⟩, the identity morphism given by ϕ = idH and ψ(h) = idm(h)
corresponds to the pair of identity maps (identity in PN0).

Remark 22. Note that the map
id△ : 1 → Pow( /0),

• 7→ /0,
(84)
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is neutral for △ , in the sense that, starting from f : H1→ Pow(N1), we have:

( f△ id△ ) : H1 × 1→ Pow(N1 + /0) (id△ △ f ) : 1 × H1→ Pow( /0 + N1)

⟨h1, •⟩ 7→ in1( f (h1))∪ in2( /0) ⟨•, h1⟩ 7→ in1( /0)∪ in2( f (h1)),

which obey the following commutative diagram:

H1 × 1 H1 1 × H1

Pow(N1 + /0) N1 Pow( /0 + N1)

f△ id△

ru⟨Set, ×, 1⟩
H1

f id△ △ f

lu⟨Set, ×, 1⟩
H1

Pow(ru⟨Setop, +, /0⟩
N1

) Pow(lu⟨Setop, +, /0⟩
N1

)

where we leverage the unitors from the previously defined categories ⟨Set, ×, 1⟩ and ⟨Setop, +, /0⟩, and
Pow represents the powerset functor. ◁

Proof of Lemma 12. Consider objects X = ⟨H1, m1⟩, Y = ⟨H2, m2⟩, and Z = ⟨H3, m3⟩. The associator is
given by the isomorphism:

asX ,Y ,Z : ⟨(H1 × H2)× H3, (m1△m2)△m3⟩ → ⟨H1 × (H2 × H3), m1△(m2△m3)⟩, (85)

which is specified by two maps

asϕ

X ,Y ,Z : (H1 × H2)× H3→ H1 × (H2 × H3)

⟨⟨h1, h2⟩, h3⟩ 7→ ⟨h1, ⟨h2, h3⟩⟩,
(86)

which is a natural isomorphism (as seen in ⟨Set, ×, 1⟩), and

asψ

X ,Y ,Z : (⟨⟨h1, h2⟩, h3⟩ : (H1 × H2)× H3)→ ((m1△(m2△m3))(⟨h1, ⟨h2, h3⟩⟩)→ ((m1△m2)△m3)(⟨⟨h1, h2⟩, h3⟩)).
(87)

We can specify the latter map, by fixing:

asψ

X ,Y ,Z(⟨⟨h1, h2⟩, h3⟩) = as⟨Setop, +, /0⟩
m1(h1),m2(h2),m3(h3)

(88)

The left unitor is given by the morphism:

lu⟨H, m⟩ : ⟨1 × H, id△ △m⟩ → ⟨H, m⟩, (89)

which is given by maps
luϕ

⟨H, m⟩ : 1 × H→ H

⟨•, h⟩ 7→ h,
(90)

which is a natural isomorphism (as seen in ⟨Set, ×, 1⟩), and

luψ

⟨H, m⟩ : (⟨•, h⟩ : 1 × H)→ (m(h)→ (id△ △m)(⟨•, h⟩)). (91)

We can specify the latter map, by fixing:

luψ

X (h) = lu⟨Setop, +, /0⟩
m(h) (92)

The right unitor is given by the morphism:

ru⟨H, m⟩ : ⟨H × 1, m△ id△ ⟩ → ⟨H, m⟩, (93)

which is given by maps
ruϕ

⟨H, m⟩ : H × 1→ H

⟨h, •⟩ 7→ h,
(94)
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which is a natural isomorphism (as seen in ⟨Set, ×, 1⟩), and

ruψ

⟨H, m⟩ : (⟨h, •⟩ : H × 1)→ (m(h)→ (m△ id△ )(⟨h, •⟩)). (95)

We can specify the latter map, by fixing:

ruψ

X (h) = ru⟨Setop, +, /0⟩
m(h) . (96)

We have already proved that the “ϕ” part of the morphisms satifies the triangle and pentagon rules.
With the choices we made for the “ψ” part of the morphisms, we know that they satisfy the triangle and
pentagon rules for every evaluation.
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⟨1, ⟨1, a⟩⟩
(A + B)+ (C + D)

⟨1, ⟨1, ⟨1, a⟩⟩⟩ ((A + B)+C)+ D A + (B + (C + D)) ⟨1, a⟩

(A + (B +C))+ D A + ((B +C)+ D)

⟨1, ⟨1, a⟩⟩ ⟨1, a⟩

asA,B,C+D

asA,B,C + idD

asA+B,C,D

asA,B+C,D

idA +asB,C,D

(a) First case.

⟨1, ⟨2, b⟩⟩
(A + B)+ (C + D)

⟨1, ⟨1, ⟨2, b⟩⟩⟩ ((A + B)+C)+ D A + (B + (C + D)) ⟨2, ⟨1, b⟩⟩

(A + (B +C))+ D A + ((B +C)+ D)

⟨1, ⟨2, ⟨1, b⟩⟩⟩ ⟨2, ⟨1, ⟨1, b⟩⟩⟩

asA,B,C+D

asA,B,C + idD

asA+B,C,D

asA,B+C,D

idA +asB,C,D

(b) Second case.

⟨2, ⟨1, c⟩⟩
(A + B)+ (C + D)

⟨1, ⟨2, c⟩⟩ ((A + B)+C)+ D A + (B + (C + D)) ⟨2, ⟨2, ⟨1, c⟩⟩⟩

(A + (B +C))+ D A + ((B +C)+ D)

⟨1, ⟨2, ⟨2, c⟩⟩⟩ ⟨2, ⟨1, ⟨2, c⟩⟩⟩

asA,B,C+D

asA,B,C + idD

asA+B,C,D

asA,B+C,D

idA +asB,C,D

(c) Third case.

⟨2, ⟨2, d⟩⟩
(A + B)+ (C + D)

⟨2, d⟩ ((A + B)+C)+ D A + (B + (C + D)) ⟨2, ⟨2, ⟨2, d⟩⟩⟩

(A + (B +C))+ D A + ((B +C)+ D)

⟨2, d⟩ ⟨2, ⟨2, d⟩⟩

asA,B,C+D

asA,B,C + idD

asA+B,C,D

asA,B+C,D

idA +asB,C,D

(d) Fourth case.

Figure 7: Pentagon identity holds.
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