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Abstract. Reverse derivative categories (RDCs) have recently been shown
to be a suitable semantic framework for studying machine learning al-
gorithms. Whereas emphasis has been put on training methodologies,
less attention has been devoted to particular model classes: the concrete
categories whose morphisms represent machine learning models. In this
paper we study presentations by generators and equations of classes of
RDCs. In particular, we propose polynomial circuits as a suitable ma-
chine learning model. We give an axiomatisation for these circuits and
prove a functional completeness result. Finally, we discuss the use of
polynomial circuits over specific semirings to perform machine learning
with discrete values.

1 Introduction

Reverse Derivative Categories [7] have recently been introduced as a formal-
ism to study abstractly the concept of differentiable functions. As explored
in [8], it turns out that this framework is suitable to give a categorical seman-
tics for gradient-based learning. In this approach, models–as for instance neural
networks–correspond to morphisms in some RDC. We think of the particular
RDC as a ‘model class’–the space of all possible definable models.

However, much less attention has been directed to actually defining the RDCs
in which models are specified: existing approaches assume there is some chosen
RDC and morphism, treating both essentially as a black box. In this paper,
we focus on classes of RDCs which we call ‘polynomial circuits’, which may be
thought of as a more expressive version of the boolean circuits of Lafont [9],
with wires carrying values from an arbitrary semiring instead of Z2. Because we
ensure polynomial circuits have RDC structure, they are suitable as machine
learning models, as we discuss in the second part of the paper.

Our main contribution is to provide an algebraic description of polynomial
circuits and their reverse derivative structure. More specifically, we build a pre-
sentation of these categories by operation and equations. Our approach will
proceed in steps, by gradually enriching the algebraic structures considered, and
culminate in showing that a certain presentation is functionally complete for the
class of functions that these circuits are meant to represent.

An important feature of our categories of circuits is that morphisms are spec-
ified in the graphical formalism of string diagrams. This approach has the benefit
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of making the model specification reflect its combinatorial structure. Moreover,
at a computational level, the use of string diagrams makes available the prin-
cipled mathematical toolbox of double-pushout rewriting, via an interpretation
of string diagrams as hypergraphs [3,4,5]. Finally, the string diagrammatic pre-
sentation suggests a way to encode polynomial circuits into datastructures: an
important requirement for being able to incorporate these models into tools
analogous to existing deep learning frameworks such as TensorFlow [1] and Py-
Torch [10].

Tool-building is not the only application of the model classes we define here.
Recent neural networks literature [2,6] proposes to improve model performance
(e.g. memory requirements, power consumption, and inference time) by ‘quan-
tizing’ network parameters. One categorical approach in this area is [11], in
which the authors define learning directly over boolean circuit models instead
of training with real-valued parameters and then quantizing. The categories in
our paper can be thought of as a generalisation of this approach to arbitrary
semirings.

This generalisation further yields another benefit: while neural networks lit-
erature focuses on finding particular ‘architectures’ (i.e. specific morphisms) that
work well for a given problem, our approach suggests a new avenue for model
design: changing the underlying semiring (and thus the corresponding notion of
arithmetic). To this end, we conclude our paper with some examples of finite
semirings which may yield new approaches to model design.

2 Full Paper

The details of our approach are to appear in a full paper accepted for publication
in the proceedings of ICGT 2022 (see https://icgt2022.gitlab.io/). A preprint is
available on the Arxiv at https://arxiv.org/abs/2203.06430

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015), https://www.tensorflow.org/

2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients
through stochastic neurons for conditional computation (2013). https://doi.org/
10.48550/ARXIV.1308.3432, https://arxiv.org/abs/1308.3432

3. Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram
rewrite theory i: Rewriting with frobenius structure (2020). https://doi.org/10.
48550/ARXIV.2012.01847

4. Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram
rewrite theory ii: Rewriting with symmetric monoidal structure (2021). https:
//doi.org/10.48550/ARXIV.2104.14686

5. Bonchi, F., Gadducci, F., Kissinger, A., Sobociski, P., Zanasi, F.: String diagram
rewrite theory iii: Confluence with and without frobenius (2021). https://doi.
org/10.48550/ARXIV.2109.06049

https://icgt2022.gitlab.io/
https://arxiv.org/abs/2203.06430
https://www.tensorflow.org/
https://doi.org/10.48550/ARXIV.1308.3432
https://doi.org/10.48550/ARXIV.1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.48550/ARXIV.2012.01847
https://doi.org/10.48550/ARXIV.2012.01847
https://doi.org/10.48550/ARXIV.2104.14686
https://doi.org/10.48550/ARXIV.2104.14686
https://doi.org/10.48550/ARXIV.2109.06049
https://doi.org/10.48550/ARXIV.2109.06049


Categories of Differentiable Polynomial Circuits for Machine Learning 3

6. Choi, J., et al.: Accurate and efficient 2-bit quantized neural networks. In: Tal-
walkar, A., Smith, V., Zaharia, M. (eds.) Proceedings of Machine Learning and Sys-
tems. vol. 1, pp. 348–359 (2019), https://proceedings.mlsys.org/paper/2019/
file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf

7. Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J.S.P., MacAdam, B., Plotkin,
G., Pronk, D.: Reverse derivative categories (2019). https://doi.org/10.48550/
ARXIV.1910.07065

8. Cruttwell, G.S.H., Gavranovi, B., Ghani, N., Wilson, P., Zanasi, F.: Categori-
cal foundations of gradient-based learning (2021). https://doi.org/10.48550/
ARXIV.2103.01931, https://arxiv.org/abs/2103.01931

9. Lafont, Y.: Towards an algebraic theory of Boolean circuits. Journal of Pure
and Applied Algebra 184(2-3), 257–310 (Nov 2003). https://doi.org/10.1016/
S0022-4049(03)00069-0

10. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc. (2019)

11. Wilson, P., Zanasi, F.: Reverse derivative ascent: A categorical approach to learning
boolean circuits. Electronic Proceedings in Theoretical Computer Science 333,
247260 (Feb 2021). https://doi.org/10.4204/eptcs.333.17

https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://doi.org/10.48550/ARXIV.1910.07065
https://doi.org/10.48550/ARXIV.1910.07065
https://doi.org/10.48550/ARXIV.2103.01931
https://doi.org/10.48550/ARXIV.2103.01931
https://arxiv.org/abs/2103.01931
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.4204/eptcs.333.17

	Categories of Differentiable Polynomial Circuits for Machine Learning

