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Close connections between various notions of entropy and the apparatus of category theory have
been observed already in the 1980s and more vigorously developed in the past ten years. The starting
point of this talk is the recent categorical understanding of structural Ramsey degrees, which then
leads to a way to compute entropy of an object in a small category not as a measure of statistical,
but as a measure of its combinatorial complexity. The new entropy function we propose, the Ramsey
entropy, is a real-valued invariant of an object in an arbitrary small category. We require no additional
categorical machinery to introduce and prove the properties of this entropy. Motivated by combina-
torial phenomena (structural Ramsey degrees) we build the necessary infrastructure and prove the
fundamental properties using only special partitions imposed on homsets.

1 Introduction

Ramsey theory is one of only a few mathematical theories whose reach goes from elementary problems
that can be demonstrated to undergraduates, to a variety of surprisingly subtle applications in mathemat-
ical logic, set theory, finite combinatorics and topological dynamics. The successful generalization of
Ramsey’s theorem from sets (unstructured objects) to cardinals (special well-ordered chains) lead in the
early 1970’s to generalizing this setup to arbitrary first-order structures, giving birth to structural Ramsey
theory. Interestingly, one of the first comprehensive texts published already in 1973 was Leeb’s book [7]
where structural Ramsey theory was presented using the language of category theory. Unfortunately, this
point of view was relatively quickly pushed out of the focus of the research community and was replaced
by the model-theoretic approach that is even today a dominant point of view.

Close connections between various notions of entropy and the apparatus of category theory have
been observed already in the 1980’s [6] and more vigorously developed in the past ten years [1, 2]. In
particular, [8, Chapter 12] describes a general categorical construction which specialized to a real line
produces the Shannon entropy.

In this talk we present some of the results from [11] and [12] and along the way demonstrate the way
category theory can be employed to provide a deeper understanding of interrelationships between appar-
ently unrelated notions such as Ramsey degrees and entropy of combinatorial structures. We propose a
way to compute entropy of a combinatorial (finite first-order) structure not as a measure of statistical, but
as a measure of its combinatorial complexity.

Two central features of every entropy function are continuity and the logarithmic property (H(A,B)=
H(A) +H(B)). Due to the discrete nature of abstract categories (and, consequently, absence of any
nontrivial intrinsic topology apart from the topology induced by the preorder A→ B iff hom(A,B) ̸=∅)
in this paper we adopt the approach advocated in [9] where beside the additive property entropy is
required to be monotonous. So, the entropy functions we are interested in are those with the logarithmic
property (H(A,B) = H(A)+H(B)) which are monotonous (A→ B⇒ H(A)⩽ H(B)).
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2 Preliminaries

Structural Ramsey degrees are defined in terms of coloring “subobjects” using the fact that a subobject
of B isomorphic to A can be identified by a set of “embeddings A→ B” that “differ by an automorphism
of A”. More precisely, let C be a locally small category whose morphisms are mono. For A,B ∈ Ob(C)
define an equivalence relation ∼A on hom(A,B) as follows: for f ,g ∈ hom(A,B) we let f ∼A g if there
is an α ∈ Aut(A) such that f = g ·α . We then think of

(B
A

)
= hom(A,B)/∼A as the set of subobjects of

B isomorphic to A. (Note that if f ∈ hom(A,B) and w ∈ hom(B,C) then w · ( f/∼A) = (w · f )/∼A; this
justifies the correctness of the construction w ·

(B
A

)
that we shall use to define structural Ramsey degrees.)

The requirement that morphisms in C be mono is not essential for the definition of these notions, but
almost no interesting property of Ramsey degrees can be proved without this assumption.

For A ∈ Ob(C) let t̃C(A), the structural Ramsey degree of A in C, denote the least positive integer n,
if such an integer exists, such that for all k ∈ N and all B ∈ Ob(C) there exists a C ∈ Ob(C) such that
for every coloring χ :

(C
A

)
→ k of subobjects of C isomorphic to A with k colors there is a w ∈ hom(B,C)

such that |χ(w ·
(B

A

)
)| ⩽ n. If no such integer exists, we write t̃C(A) = ∞. Analogously, for A ∈ Ob(C)

let tC(A), the embedding Ramsey degree of A in C, denote the least positive integer n, if such an integer
exists, such that for all k ∈ N and all B ∈ Ob(C) there exists a C ∈ Ob(C) such that for every coloring
χ : hom(A,C)→ k there is a w∈ hom(B,C) such that |χ(w ·hom(A,B))|⩽ n. If no such integer exists, we
write tC(A) = ∞. An A∈Ob(C) is a Ramsey object in C if t̃C(A) = 1. A B∈Ob(C) is a subramsey object
in C if B→ A for some Ramsey object A. The following relationship between structural and embedding
Ramsey degrees was proved for relational structures in [13] and generalized to this form in [10].

Proposition 2.1. ([13, 10]) Let C be a locally small category whose morphisms are mono and let A ∈
Ob(C). Then t(A) is finite if and only if both t̃(A) and Aut(A) are finite, and in that case t(A) = |Aut(A)| ·
t̃(A).

The following is a technical result from [12] which will form the basis for the key properties of the
Ramsey entropy.

Theorem 2.2. [12] Let C1 and C2 be categories whose morphisms are mono and homsets are finite.
Then the following holds for all A1 ∈ Ob(C1) and A2 ∈ Ob(C2):

• tC1×C2(A1,A2) = tC1(A1) · tC2(A2), and

• t̃C1×C2(A1,A2) = t̃C1(A1) · t̃C2(A2).

Concerning the monotonicity of Ramsey degrees, the main result we shall need, Lemma 2.3, was
first proved in [13] for amalgamation classes of structures, and reproved in [10] for locally small directed
categories with amalgamation. We shall say that C is a category with amalgamation if for every span

B
f←− A

g−→C in C there is a cospan B
f ′−→ D

g′←−C in C such that f ′ · f = g′ ·g.

Lemma 2.3. (cf. [13, 10]) Let C be a category with amalgamation whose morphisms are mono and
whose homsets are finite. Then for all A1,A2 ∈ Ob(C), if A1→ A2 then t(A1)⩽ t(A2).

As embedding Ramsey degrees are already multiplicative and monotonous one might simply take
log tC(A) for the entropy measure. However, this entropy measure is extremely coarse as, for example,
for every finite graph G with n vertices we have that t(G) = n! regardless of the structure of the graph.
However, thinking of entropy of a finite structure, for example a finite simple graph, as the amount of
information needed to describe the structure, we expect this magnitude to be related to the size of the
automorphism group of the structure: structures with few automorphisms need complex descriptions and,
thus, should have high entropy, while structures with large automorphism groups are highly symmetric
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|Aut(G)|= 5! |Aut(G)|= 5! |Aut(G)|= 2

log2
n!

|Aut(G)| = 0 log2
n!

|Aut(G)| = 0 log2
n!

|Aut(G)| ≈ 5.91

Figure 1: log2 t̃(G) for three graphs

|Aut(P)|= 5! |Aut(P)|= 1 |Aut(P)|= 8

log2
e(P)
|Aut(P)| = 0 log2

e(P)
|Aut(P)| = 0 log2

e(P)
|Aut(P)| ≈ 3.32

Figure 2: log2 t̃(P) for three posets

and of low entropy. Whether the automorphism group of a structure is “small” or “large” is usually
measured with respect to the size of the full symmetric group. So, one might expect that the entropy of
a finite structure A should be related to n!

|Aut(A)| , where n is the size of A, Fig 1.
Taking the entropy of A to be simply the logarithm of this quantity does not suffice for at least two

reasons: in most cases log n!
|Aut(A)| is not monotonous in A; on the other hand, while log n!

|Aut(A)| displays
many desirable properties in case of finite simple graphs, for other combinatorially interesting classes
of structures such as finite partial orders the additive property cannot be established. Interestingly, in
case of finite partial orders replacing n!

|Aut(A)| with e(A)
|Aut(A)| , where e(A) is the number of linear extensions

of A, yields a quantity possessing the same desirable properties, Fig 2. Note that n!
|Aut(G)| and e(P)

|Aut(P)|
are exactly the structural Ramsey degrees of graphs, resp. posets, as computed in [3, 4, 5]. That is why
our goal is to invest into building a more refined measure based on “semicontinuous regularization” of
structural Ramsey degrees.

3 Results

Let C be a locally small category whose morphisms are mono. Fix A,B ∈ Ob(C) so that A→ B. A
partition Λ of

(B
A

)
– the set of all subobjects of B isomorphic to A (see [11] for the precise definition) is

essential if there is a C ∈Ob(C) such that B→C and for every partition Π of
(C

A

)
there is a w∈ hom(B,C)

such that Λ ≽ ℓ−1
w (Π). (Here, ℓw denotes the left multiplication by w.) Let Ess

(B
A

)
be the set of all the



4 On Ramsey Theory, Category Theory an Entropy

essential partitions of
(B

A

)
.

Definition 3.1. Let C be a small category whose morphisms are mono and homsets are finite, and let H
be an entropy on partitions. Define r̃ : Ob(C)→ R∪{∞} as follows:

r̃(X) = infA:X→A supB:A→B min
Λ∈Ess(B

A)
H(Λ).

We refer to r̃ as the Ramsey entropy based on H, and say that C admits the Ramsey entropy based on H
if r̃(X)< ∞ for all X ∈ Ob(C). In particular, if r̃ is based on the Boltzmann entropy HBol(Π) = log |Π|,
we refer to r̃ as the Ramsey-Boltzmann entropy.

Theorem 3.2. Let C be a small category whose morphisms are mono and homsets are finite. Let H be
an arbitrary entropy on partitions and let r̃ be the Ramsey entropy based on H.

(a) If X → Y for some X ,Y ∈ Ob(C) then r̃(X)⩽ r̃(Y );
(b) r̃(X)⩽ log t̃(X) for all X ∈ Ob(C) (where we assume log∞ = ∞).
(c) If C has finite structural Ramsey degrees then C admits the Ramsey entropy.
(d) If X ∈ Ob(C) is a subramsey object in C then r̃(X) = 0; in particular if X is a Ramsey object in

C then r̃(X) = 0.

Theorem 3.3. Ramsey-Boltzmann entropy is the maximal Ramsey entropy on a category. More pre-
cisely, let C be a small category whose morphisms are mono and homsets are finite, let r̃′ be a Ramsey
entropy and r̃ the Ramsey-Boltzmann entropy. Then r̃′(X)⩽ r̃(X) for all X ∈ Ob(C).

Theorem 3.4. Let C be a small category with amalgamation whose morphisms are mono and homsets
are finite.

(a) C has finite structural Ramsey degrees if and only if C admits the Ramsey-Boltzmann entropy.
(b) Assume that C admits the Ramsey-Boltzmann entropy r̃. Then X ∈Ob(C) is a subramsey object

in C if and only if r̃(X) = 0.

Theorem 3.5. Let C1 and C2 be small categories with amalgamation whose morphisms are mono and
homsets are finite, and let r̃C1 and r̃C2 be the Ramsey-Boltzmann entropies. Then for all X1 ∈ Ob(C1)
and X2 ∈ Ob(C2) we have that r̃C1×C2(X1,X2) = r̃C1(X1)+ r̃C2(X2).
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[10] D. Mašulović (2021): The Kechris-Pestov-Todorčević correspondence from the point of view of category
theory. Applied Categorical Structures 29, pp. 141–169.
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