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Liftings of endofunctors on sets to endofunctors on relations are commonly used to capture bisimu-
lation of coalgebras. Lax versions have been used in those cases where strict lifting fails to capture
bisimilarity, as well as in modeling other notions of simulation. This paper provides tools for defining
and manipulating lax liftings.

As a central result, we define a notion of a lax distributive law of a functor over the powerset
monad, and show that there is an isomorphism between the lattice of lax liftings and the lattice of lax
distributive laws.

We also study two functors in detail: (i) we show that the lifting for monotone bisimilarity is the
minimal lifting for the monotone neighbourhood functor, and (ii) we show that the lattic of liftings
for the (ordinary) neighbourhood functor is isomorphic to P(4).

1 Introduction

Coalgebras for an endofunctor are a general model of state-based transition systems. [9]. Bisimulations
are a central concept in the study of coalgebras, describing behavioral equivalence of states. Going back
to [[14], bisimulations of F-coalgebras in Sets have been defined as prefixed points of F, the extension of
F to Rel, the category of sets and relations.

One issue is that Rel places high demands on extensions: if F : Rel — Rel is to be a strict functor
that preserves the ordering of relations, and coincides with F' on graphs of functions, then F only exists
if F preserves weak pullbacks[3]); and if F preserves them, it is unique [4] and equal to the Barr lifting F
[2]]. This situation is undesireable for two reasons:

* The elegant extension-based framework for bisimulation cannot be directly applied to coalgebras
of type F when F does not preserve weak pullbacks. Neighbourhood-type functors are the most
prominent example of such F.

 While the lifting F can be used to reason about bisimulation, other notions of simulation or equiva-
lence of coalgebras cannot be expressed in the same way, since there are no other strict extensions.

To remedy this, various weaker notions of extension have been proposed.[18] [1][8][12]. Finding
explicit examples has proceeded in a mostly ad-hoc fashion. The aim of this paper is to provide tools to
reason about lax lifting in a more principled way. This paper is based on chapter 3 of the author’s MSc
thesis [[16].

Our main contribution is a new notion of a lax distributive law, which we will show are in one-to-one
correspondence with lax liftings. Distributive laws at their most general are simply natural transforma-
tions F'G = GF for two functors F,G. In most cases however, at least one of the two functors F and G
is taken to be a monad, and the distributive law is required to interact ‘nicely’ with the monad structure.

The connection between liftings and distributive laws originates in [3]], which focused monad-monad
interactions. Mulry [[13] proved the equivalence between distributive laws of a functor ' over a monad
T and liftings of F' to the Kleisli category of 7.
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2 Lax Liftings and Lax Distributive Laws

More recently, some notions of ‘weak distributive law’ have been studied [17]; these, like Beck,
pertain to monad-monad interaction, and involve weakening some of the conditions on Becks original
distributive laws. Closer to the work in this paper are the lax distributive laws in [19]], though again these
focus on monad-monad interactions.

Aside from their connection to monads, distributive laws are of interest in their own right. They
feature centrally in the bialgebraic approach to operational semantics [20][10]. In the theory of automata,
morphisms of distributive laws can provide various determinization procedures. [22]

We also analyse the liftings for two specific functors in detail:

* We prove that the minimal lifting for the monotone neighbourhood functor is given by the lifting
A . This lifting has previously been used [[15]; our result shows that .# is in some sense universal

for A .

* We give a complete description of the liftings for the ordinary neighbourhood functor. Equiva-
lence notions between neighbourhood structures can be quite complex. [7] The classification in
this paper shows that any notion of bisimulation between neighbourhood structures based on lax
liftings will be almost trivial, since none of the 16 possible liftings makes meaningful use of the
input relation.

Outline

In section 2, we show that for a fixed functor, the lax liftings form a complete lattice. This implies
that any functor admits a minimal, “maximally expressive” lifting. We show that for weak pullback-
preserving functors, the minimal lifting coincides with the Barr lifting.

In section 3, we define lax distributive laws, and show that there is an isomorphism between the
lattice of lax liftings, and the lattice of lax distributive laws. We also characterize those distributive laws
that correspond to liftings that are symmetric and diagonal-preserving.

In section 4, we study the monotone and ordinary neighbourhood functors in more detail. For the
monotone neighbourhood functor, we show that the known lifting .# is minimal. For the ordinary
neighbourhood functor, we show that the lattice of liftings is isomorphic to P(4) by giving an explicit
description of all 16 liftings.

2 Preliminaries and basic properties

Definition 1. We write Rel for the category of sets and relations. The objects of Rel are sets, and a
morphism R € Homge (X,Y) is given by a subset RC X X Y.
Given two relations R : X —Y and S : Y —Z, we write R;S : X —Z for their composition R;S =
{(x,z) € X x Z| Jy : xRySz}. Note that the order of composition is reversed from function composition.
Given a relation R : X —Y, we write R° for its converse; that is,

R ={(nx) | (x,y) € R}
Given a function f : X — Y, we write gr(f) for its graph, which is the relation
gr(f) ={(xy) | f(x) =y}

The category Rel is enriched over posets, where relations are ordered by inclusion. This makes
Rel into a 2-category (in fact, it is the canonical example of an allegory). The operation (—)° is the
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morphism part of a functor (—)° : Rel — Rel°?, which is an isomorphism of 2-categories. We write
gr® : Sets’® — Rel for the composition (—)° o gr.

Remark 2. The category Rel is isomorphic to the Kleisli category for the powerset monad. The assign-
ment f — gr(f) is the morphism part of the left adjoint gr in the free-forgetful adjunction gr - P that
arises out of the Kleisli category construction. For a given relation R : X — Y, we will write g : X — PY
for the corresponding Kleisli morphism. Conversely, for a Kleisli morphism f : X — PY, we will write
| f]: X —oY for the corresponding relation.

The converse of a Kleisli morphism f : X — PY will be written as

fb:Y—>PX:y»—>{x\f(x)9y}

Definition 3. Let F : Sets — Sets be a functor. A (lax) F-lifting is a lax 2-functor L : Rel — Rel such
that

Rel —Z - Rel Rel —LX 5 Rel
I B B
Sets —+ Sets Sets® £, Sets°P

commute up to the indicated inequalities. A lifting L is called symmetric if

Rel® £, RelP

(—)ﬁ <—>°T
Rel —5 5 Rel

commutes; it is called diagonal-preserving if it strictly preserves identities.
Explicitly, we can expand the above into the following 5 conditions:

1. (2-cells) Forall R,S: X —Y,if R<S, then LR < LS.
2. (lax functoriality) Forall R: X —Y and S : Y —Z, we have LR;LS < L(R;S).
3. (lifting) For all f: X — Y, we have

gr(Ff)<Lg(f), g°(Ff)<(Lgr(f))°

4. (diagonal-preserving) For all X, we have LAy < Ary.
5. (symmetry) Forall R: X —Y, we have

L(R°) = (LR)°

Remark 4. The above includes various notions of lifting that have been previously been studied. Some
authors (e.g. [[L1]) have taken “lifting” to be synonymous with the Barr lifting (see below). The notion
of “(weak) relator” in [1] and [[L8]] strengthen condition 2 to strict functoriality (although [18]] does not
require monotonicity). The notion used in [12] is almost identical, the only difference being that they
require symmetry.

We give some examples:
Example 5. (5.1) For all functors F : Sets — Sets, there is the lifting Fr : Rel — Rel given by

Fr(R:X—Y)=FX xFY

This lifting is symmetric, but does not preserve diagonals unless |FX| < 1 for all X.
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(5.2) Any relation R : X —oY is presented as a span R = gr°(7X); gr(nf) by the two projection functions
7k : R — X and 7§ : R — Y. This motivates the definition

FX = gt°(Fm);gr(Fm,)

F is known as the Barr lifting; it originates in [2]. In general, F is not lax but oplax, meaning
LR;LS > L(R;S). However, if F preserves weak pullbacks, then F is a strict functor which strictly
preserves graphs and converse graphs.[11] Since the diagonal is the graph of the identity, F also
preserves diagonals.

(5.3) The Neighborhood functor is defined to be the functor .#" = PP. The action on a morphism
f:X =Y is given by
(N NHU={v]f (v eu}
The Monotone neighborhood functor is the subfunctor .# of .4 defined by

MX={UeNX|ucUanduCu = u' €U}

One lifting for the monotone neighbood functor is given by

MR :X—Y)={(U,V)|VueU3IveV:Vyecvixcu:xRy
andVveVIue U :Vx € udy € v: xRy}

This lifting originates in [[15] where it was used to prove uniform interpolation for monotone modal
logic. A closely related notion of bisimulation appeared earlier in [6].
We also state a simple lemma on lax liftings:

Lemma 6. Let L be an F-lifting. For all relations R : X —Y and all functions f : X' - X and g:Y' — Y,
we have

L(gr(f):R;gr°(g)) = gr(F f);LR; gr°(Fg)
This is lemma 3.10(ii) in [16].

For a given functor F : Sets — Sets, write Lift(F) = {L : Rel — Rel | L is an F-lifting}. Liftings are
naturally ordered pointwise: we say L < L' if and only if for all R, we have LR < L'R.

Theorem 7. Fix a functor F : Sets — Sets. The class Lift(F) forms a complete lattice, with meets given
by

(/\L,) R:=[(LiR)
i€l i€l
Proof. See appendix. 0

Since complete lattices have a minimal element, we get the following corollary:
Corollary 8. Every endofunctor on Sets admits a minimal lifting.

The significance of this corollary is the following: each lifting gives rise to a corresponding notion
of simulation of coalgebras, as well as a modal logic. If for two liftings L,L’ we have L < L/, then L-
simulation distinguishes more states than L'-simulation, and L-logic is more expressive than L'-logic. A
minimal lifting hence induces a maximally discerning notion of (bi)simulation, and a maximally expres-
sive logic (among those that arise from lax liftings). [16]

In case F' is weak pullback-preserving, we have an explicit description of its minimal lifting.
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Proposition 9. Let F : Sets — Sets be weak pullback-preserving. Then F is minimal among the F-
liftings.

Proof. Let L be a lifting for F. Then let R : X —Y be a relation. We know that R is presented as a span
R = gr°(nf); gr(nf) with z¥ : R — X and 7% : R — Y being the projection functions. So,

LR = L(gr°(mg): gr(my ) > L(gr°(mg)): L(gr(nf)) > gr°(F7g );gr(F 7y ) = FR

o.

There is also a natural involution on liftings, induced by (—)

Definition 10. For an F-lifting L, we define the lifting L~ as

It is simple to prove that L~ is a lifting when L is. [16]
Natural transformations between functors also induce a map between the associated liftings:

Theorem 11. Let F,G : Sets — Sets be functors, and let 1 : F = G be a natural transformation.

(i) For every G-lifting L, the assignment
R—={(x,y) e FX XFY [ (n(x),n(y)) € LR}

constitutes an F-lifting n*L.
(ii) M* preserves arbitrary meets and (—)".
(iii) If L is symmetric, so is N*L.
(iv) If n is everywhere injective, then if L preserves diagonals, so does n*L.
Note that joins are not preserved in general: in particular, the minimal lifting is rarely preserved by
n-.

Proof. See appendix. O

From point (iv), together with the fact that the Barr lifting always preserves diagonals, we immedi-
ately get the following result:

Corollary 12. All subfunctors of a weak pullback-preserving functor admit a diagonal-preserving lifting.

This motivates the following conjecture:

Conjecture 13. The converse of the above: if F' has a diagonal-preserving lifting, it can be embedded in
a weak pullback-preserving functor.
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3 Lax distributive laws

In this section, we give an alternative characterization of relation lifting in terms of distributive laws. We
will write u : P> — P and 1) : id — P for respectively the multiplication and unit of the powerset monad.

Definition 14. Let F : Sets — Sets be any functor. A lax distributive law for F is a collection of maps
A_:FP(—) — PF(—), satisfying:

(Monotonicity) For any two functions f,g: X — PY, if f < g, then
)Ly o Ff S A,y e} Fg

(Weak naturality) For any function f : X — PY, we have

PFfoAx < Apy oFPf

(Weak monadicity) For any Z, we have

‘uFZOPQLZolpZ SleF,LLZ and leFT]Z > Nrz

There are also the optional properties
(Weak extensionality) For any Z,
AzoFnz <Nrz

(Symmetry) For any map f: X — PY,
(AyoFf) =AxoF(f’)

Definition 15. Let A : FP ~~ PF be a lax distributive law. For a given relation R : X —Y, we define L*R
as
L*R:= |Ay o Fxz]

Conversely, for a lax lifting L of F, we define AL : FP ~ PF as
Al =05
It is not yet clear that these operations do result in a distributive law and a F-lifting respectively. This
will be the main theorem of this section.

Theorem 16. Let F : Sets — Sets be a functor.

(i) If L is a F-lifting, then A" is a lax distributive law. Moreover; if L preserves diagonals then A is
weakly extensional, and if L is symmetric, then A" is symmetric.

(ii) If A is a lax distributive law, then L* is a F-lifting. Moreover, if A is weakly extensional, then L*
preserves diagonals, and if A is symmetric, then Lt is symmetric.

(iii) The operations L — A* and A — L* are inverse to each other.

Proof. (i) We check the conditions in order.
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(Monotonicity) We see that

(Mo Ff) =Moo Fx ) =L (Lf]) = L(|f))

where we already use point (iii) for the final equality. Now monotonicity of A% follows
immediately from monotonicity of L.
(Weak naturality) Note that
(x:gr(f)) € (gr(Pf):>py)
since if A 3 x, then Pf[A] > f(x).
Now we see that

a€PFfolf(®) «= Fd' :a=Ff(d)andd € AL(®)
< dd :a=Ff(d)andd € x.5(D)
<= 3d :a=Ff(d)and (®,d') € L(3x)
> (®,a) € L(3x):gr(Ff)
= (®,a) € L(3x;g1(f))
= (®,a) € L(gr(Pf);2py)
<= (D,a) € gr(FPf);L(>py)
= ac Ay FPf(®P)

(Weak monadicity) First, we write out that
toPAzoAp, = pwoP(Yis)o Xis = Xisis

since y_ turns relational composition ; into Kleisli composition. Next, note that

gr(n);>=3;3

since
U A>xifandonlyifdJA: o/ S AandA > x
Acd

So, we conclude that

\woPALoAl,| =L>;L>
<L(3;3)
= L(gr(n);3)
=gr(Fu);L>
= [HoPyrs0noFu]
=[xz o F i)
= [AZ oFpu]

giving the first inequality.
For the second inequality, we simply note that |1z | = gr(idz), and so

Mo Fiz) =1 [nz) = Ler(idz) > gr(Fidz) = gr(idez) = nr7)
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(Weak extensionality) Assume that L is diagonal-preserving. We aim to show that A is weakly
extensional. This follows simply from

[A7 0 Fnz| = Lex(idz) < gr(idrz) = [Mrz]
(Symmetry) If L is symmetrical, we get simply
LAy o Ff)’) = (LLf)) = L(Lf)°) = [Ax o F(f")]

(i) We prove each of the five conditions.
(2-cells) If S <R, then
L*S=|AyoFys| < |AyoFyg| =L*R
by monotonicity of A.
(lax functoriality) Let R: X —Y and S : Y —Z. We draw the following diagram:

Fx S ppy % | ppg
Fxe Il Fug N
Fpy % pppz Pk, pppy
W L |

PFxs PAz

PFY ———— PFPZ ——— PPFZ

The top left square is F applied to the Kleisli composite yg.s. The top right square is weak
monadicity, and the bottom left square is weak naturality. The bottom right square is a simple
equality.

The above diagram shows that

LR LMS = [prz0 P(Azo Fts) o Ay o F ) < |Azo F (xrss)) = LM (R S)

as desired.
(lifting) Let f : X — Y be a morphism. Then

LY gr(f) =L*(|nyo f))
=|AyoF(nyof)]
= |[AyoFnyoFf]
> |nryoFf] = gr(Ff)

by weak monadicity. We also have
gr(Ff);L* &r°(f) = |y o PAx o PF (Xgw(f)) o NEx o F f]

|
— L?LXOF(xgro(f))oFfj
= [Ax oF (Xgre(s) o F f)]
|
|
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and since gr°(F f) is the least relation R with gr(F f); R > Ax, we obtain

L gr®(f) > er°(Ff)

as desired.
(diagonal-preserving) Assume that A is weakly extensional. Then

LAz = [Azonz] < |Nrz) = Arz
(symmetry) Assume that A is symmetric. Then it follows immediately that
LM(R°) = | Ax o F(xp)) = [(Ay o F2r)’ | = [Ay o F 2z |° = (L*R)°
(ii1) We calculate
25" =1(52) = [AzoF(32)] = Az F i) = [Azo Fidz) = | 22

showing A =2,
For the other equality, we get

ML oFyR]
= [ X150 F X&)
= [UoPyrs0onoF xr]
= |Fxrls | X05))

4 Explicit descriptions

Since the class of F-liftings forms a complete lattice for each F, it follows that each F' has a minimal
lifting £. In the case of weak-pullback preserving F, we know that F = F, the Barr lifting. However, for
non-weak-pullback preserving functors, giving an explicit description of the minimal lifting involves a
non-trivial amount of effort.

In this section, we will study the minimal liftings for the neighborhood functor and the monotone
neighborhood functor. For the (ordinary) neighborhood functor, we moreover give a full description of
the complete lattice of liftings.

4.1 Monotone neighborhood functor

Recall the lifting M from example|(5.3)
Theorem 17. The lifting M is the minimal lifting for the monotone neighborhood functor A .

To prove this, we first need a lemma.
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Lemma 18. Let R : X —Y be a total surjective relation. Then MR < LR for all liftings L.

In [6]], a similar statement appears as lemma 4.7.

Proof. Consider the two projection morphisms 7y : R — X and 7ty : R — Y. Since R is total and surjective,

both these functions are surjective.
We claim that .#R = (.4 nx)°;.# my. The inequality > follows from R = (7x)°; y.

For <,let (U,V) € .#ZR. Then we set

Wo:={{(x,y) ER|x€u} luclU}
Wi={{(x,y) ER[yeV}[veV}
W={w|I e oUW, :w' Cw}

We claim that .2 7y (W) = U. For this, we need to show that (1) if u € U, then 7, ' (1) € W, and (2) if
T (u) €W, thenu € U.

(1) Clearly, if u € U, then 7y ' (u) = {(x,y) ER | x € u} € W, s0 7y ' (u) €W.

(2) Assume 7, ! (1) € W. There are two cases: (i) there is a &’ € U with {(x,y) €R |x € '} C ' (u),
or (ii) there isa v € V with {(x,y) €R |y €V} C 1 ' (u).

(i) In this case, we know that 7x[{(x,y) € R | x € u'}] C 7x(my ' (u)). But since R was total, we
know that 7ty [{(x,y) € R | x € u'}] = u’ and mx[n~"(u)] = u. So u’ C u, and hence u € U.

(ii) Clearly, mx[{(x,y) € R|y € v}] = {x |3y €v:xRy}. Since (U,V) € MR, thereisau' € U
such that for all x € i/, there is a y € v with xRy. But this just says that u’ C mx[{(x,y) €R |
y € v}]. So we conclude that there is a ' € U with

i C ml{(x,y) € R|y € v}] C my () =

and henceu € U.
So in both cases, we have u € U, as desired.

The proof that .# my (W) =V is completely symmetrical; so, we can conclude that (U, V) € (A ©tx)°; A y.
Now, let L be any lifting. Then

LR = L((7x)°; my) > L(7x)*; Ly > (M 7y)°; M Ty = MR

With this lemma, we can prove theorem 17}

Proof. Let R: X —oY be any relation. Let X’ be the domain of R and Y’ the range of R. Then we define
X, =XU{x},Y. =Y U{x} and

R.=RU{(x,%) [x € X\X'JU{(%,y) [y € Y \Y' JU{(%,%)}
Then R, : X, —oY, is total and surjective.

Let1y : X — X, and ty : Y — Y, be the natural inclusion functions. First, we note that R = 1x;R,; (1y)°
The inequality < is clear, since R C R,. For >, notice that * is not in the range of either ty or ty.
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Now by lemmal6 we know that for any lifting L,
LR = (M 1x);LR.; (M 1v)°.
So we can calculate that
LR = M 1x;LR,; (M 1y)°
> M1y, MR, (M 1y)° by lemma [I8]
= MR

We conclude that /7( 1S minimal. O

4.2 The neighborhood functor

We introduce an extremely minimal logic for neighborhood systems. This will consist of the following
expressions:

po:=01|-0L

p1 =0T |-0OT

p == (po,p1)
Given (U,V) € A/ X x A'Y, satisfaction (U,V) I p is defined as follows:

U,V)FOLiffgeU = @€V
UV)IF-OLiffo ¢ U = o ¢V
(U,V)FOTiff X €U = Y eV
(UV)F-OTiffX¢U = Y ¢V

(U,V) IF (po,p1) iff (U,V) Ik pg and (U,V) IF py

Now let I be the set of all p’s. For each J C I, we get a lifting L; defined on a relation R : X —Y as
LyR)={(U,V)e /X xANY |(U,V)IFpforall peJ}

Since these liftings do not depend on the chosen relation, we will omit R, writing simply Ly : 4/ X — AY .
Note also that J D J if and only if L; < Lj.
Theorem 19. The lattice (P(I),2) is isomorphic to (Lift(.4), <) via J — L.
To prove this theorem, we will need the following lemma:
Lemma 20. Let (U,V) € N X X ANY and (U' V') € ¥/ X' x NY'. Assume that for some p, we have
(U,V) ¥ p and (U, V") ¥ p. Then for each p', we have
(U,U)IEp', (V,V)IFp'

Proof. WLOG, we can assume that p = ((J_L,[0T); all other cases are similar.
Then since (U,V) ¥ p, weknow g € U,& ¢V and X € U,Y ¢ V. Similarly, we know @ € U', & ¢ V
and X’ € U',Y' ¢ V'. But from these data, it follows immediately that for all p’, we must have

U,U")IFp’

since U and U’ agree on @ and the entire set. And of course the same holds for (V,V’).
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Now we can start the full proof.

Proof. First, we show that each L; is a lifting. Since clearly L; = Ay Lyp}. it suffices to show that each
Lypy is a lifting.

They are clearly monotonic, since they do not depend on the input R. They are also clearly laxly
functorial. Finally, if f : X — Y is a function, then for all U € .4"X and all p € I, we have

U, (A f)U)IFp
since
(N USDIfU S fF1(2)iff U @and (A f) >XiffU S f1(X)iffU Y
So indeed, each L; extends the graph of .4 f.

This shows that the map J — Lj is well-defined. It is clearly injective and meet-preserving (recall
that the meet in (P(/), D) is given by union), so it remains to show that it is surjective. We will proceed
in three steps:

1. The top element is preserved by J — Ly;
2. The bottom element is preserved by J — Ly;
3. If L > L, then there is some J' C J with L > Lj.

These three steps together imply that J — L; is surjective, from which it then follows that it is an iso-
morphism.

For point 1: The top element of (P(I),2) is @, and indeed Lz (R : X —Y) =X X Y.
For point 2: Let L be any symmetric lifting for .#". For a given X, write Ox : X — X for the empty
relation. We will show that (U,V) € LOx if U and V agree on @ and X.

We first assume that X contains some point xo. Write 2 = {a, b} for the generic two-element set; by
abuse of notation, we may also consider a,b : X — 2 and x : X — X as constant maps.
Let U € .4 X be a neighborhood system. There are four cases:

(i) @ ¢ U,X ¢ U. Then we see that
NalU)=2=4bU)

since for constant maps ¢ : X — Y, we have ¢! (A) = @ or ¢! (A) = X for all A. We also clearly
have 4 b(&) = @. So, we have

(U,2) € gr(A a),(2,U) € gr°(A"b)
for all U omitting & and X. Now we have if U,V both omit @ and X, then
U(Lgr(a))2(Ler(b))V

and hence
(U,V) € Lgr(a);Lgr°(b) C LOx
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{9.X\{a}}: X {{a}. X} : X
{2,{b}}:2 {o}:2 {{a},{a,b}}:2 {{a,b}}:2
@) (b)

(i) ¢ U,X €U. Then A a(U) = {@,{b}}. Take f : X — 2 given by

f(X)={b 7o

a x==xp

LetV ={2,X\{x0}}. Thenitis easily seen that 4" f(V)={,{b}}. Finally, we have A a(V) =
A b(V) = {@}, again by the remarks on inverse images along constant maps.

Now we have a ‘zigzag’ as in figure[la| By tracing the definitions, we can see that gr(a); gr°(f) =
gr(xp), and

gr(a); gr°(f); gr(a) = gr(xo); gr(a) = gr(a)
and similarly gr(a); gr°(f); gr(b) = gr(b). We now have that if U is such that & € U, X ¢ U, then

(U,{2}) € L(gr(a)), and ({2}, U) € L(gr* (b))

But now for all U,V which both contain & and both omit X, we have
(U,V) € Lgr(a); L(gr°(b)) € L(gr(a); &r° (b)) = LOx

(iii) Let U be such that @ ¢ U,X € U. Then A4 a(U) = {{a},{a,b}}. Take V = {{x0},X}. Then
with f as in point (ii), we have A" (V) = {{a},{a,b}}. Now for the constant maps a, b, we have
N a(V)={{a,b}} = 4 b(V). Hence, we obtain a similar zigzag as in point (ii), as can be seen
in figure [Tb] From here, the argument is completely the same as in (ii): for U,V both omitting &
and both including X, we get

U,{{a,b}}) e Lar(a),  ({{a,b}},V) € Lex® (D)
showing that
(U,V) € L(gr(a); (gr(b))°) = LOx

(iv) @ €U,X €U. Then A a(U)=P2=.4b(U), and so as in (i) we get for all U,V both including
@ and X that
(U,P2) € Lgr(a), (P2,V) € Lgr®(b)

and hence
(U,V) € L(gr(a);gr’(b)) = LOx

Now we have that if X is nonempty, then LOx O L;. But of course, if X and Y are arbitrary, then
the empty relation Oyy : X —oY factors through Oxy via the inclusions ty : X - X +Y, iy : Y - X +7Y.
From this, it follows easily that LOxy O L;. But now, for R : X —Y an arbitrary relation, we have that

LR O L0Oxy 2 L;
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showing that L; is minimal indeed.

For point 3: Let L be any lifting, and J C I with L > L;. Then there is some relation R : X —Y and
some neighborhood systems (U,V) € A X x A"Y with (U,V) € LR and (U, V) ¥ py for some py € J.
We claim that now for J' = J\ {po}, we have L > L. Again, we will show that LOxys > Ly for all
XY
Now let (U’,V’) € Ly. There are two cases:
@) (U/,V/) IF po. Then (U’,V’) eLy<L,so (U’,V’) € LOxry:.

(i) (U',V') ¥ po. Since (U,V) ¥ py we know by lemma[20] that
(v\uyeL, (v.WhelL
and hence
(U'.V') € Li;LR;L; C LOx/x; LR; Lyyr C L(Oxx; R; Oyyr) = LOxry»
So indeed, LOx/y: > Ly and hence for arbitrary relations R’ : X' — Y’ we have
LR > LOyyr > Ly

as desired.

5 Conclusion and further research

We have shown that for a fixed functor, the lax liftings form a complete lattice. In particular, any functor
admits a minimal, “maximally expressive” lifting. We show that for weak pullback-preserving functors,
the least functor coincides with the Barr lifting.

We have defined lax distributive laws, and show that there is an isomorphism between the lattice
of lax liftings, and the lattice of lax distributive laws. We also characterize those distributive laws that
correspond to liftings that are symmetric and diagonal-preserving.

We studied the monotone and ordinary neighbourhood functors in more detail. For the monotone
neighbourhood functor, we show that the known lifting .# is minimal. For the ordinary neighbourhood
functor, we have explicitly described all 16 liftings. This question was still open in [[16]].

The results in this paper are specific to the categories of Sets and 2-valued relations. Other kinds
of liftings have been considered. For instance, in [21]], liftings of fuzzy relations are defined. A natural
direction of further research is to investigate if the results from this paper could be extended to cover a
wider range of many-valued relations. More generally still, one can see Sets as the category of functions
inside the allegory Rel. A possible approach would be to study liftings in the setting of arbitrary (power)
allegories.
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A Additional proofs

Proof of theorem[7] We show that Lift(F) has all meets. Let {L; | i € I} be any collection of F-liftings.
Foragiven R: X —oY, set
LR=(\LR
i€l
We show that L is again a lifting, by showing it satisfies conditions 1, 2 and 3.
(1) If R < S, then
LR=(\LR<(\LS=LS
i€l i€l

(2) fR: X —oY and S : Y — Z are relations, then

LR:LS = (ﬂL,R) ; (ﬂm)
i€l i€l

<(LiR;L;S

il jel
<(LiR:L:S
i€l

<[ Li(R:S)
iel

= L(R;S)
3) If f: X — Y is a function, then
Lgr(f) = (Ligr(f) = (e (Ff) = gr(F ).

il il
The other inequality is similar.

So L is a lifting, and is clearly the greatest lower bound for the L;.

Proof of theorem[I1] (i) We check the three conditions.
(2-cells) If R <R, then

N*L(R) = (n xn)""(LR) < (n xn)"'(LR') = n*L(R’)

since for any function f, we know that f~! preserves inclusions.
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(lax functoriality) If R: X —Y and S : Y —Z, we have

N°L(R;S) = {(x,2) [ (n(x),n(2)) € L(R;S)}

> {(x,2) | n(x,z) € LR; LS}

>{(x,2) |y eY:(Mx),n()) € LR,(n(y),n(z)) € LS}
=N"L(R);n"L(S)

(lifting) Let f : X — Y be a function. Naturality of 7 states that gr(F f);gr(n) = gr(n); gr(Gf).
From this, it follows that gr(F f) < gr(n);gr(Gf);gr°(n). Hence, we have

gr(Ff) <gr(n);er(Gf);er®(n) < gr(n);Lgr(f);er®(n) = n"L(gr(f))

and

gr’(Ff) <gr(n):egr®(Gf);er®(m) < gr(n);L(gr°(f));gr®(n) = n"L(gr”(f))
(i) For meets, we have
/\L = () (LR) =(N(n x 1)~ (LiR) </\L>

since meets are preserved by inverse images. For (—)~, we have

(iii) This follows directly from preservation of (—)~: we have

L is symmetric <= L=1L"
= n'L=n"(L")
— n'L=(n'L)
<= 1n"Lis symmetric

(iv) Assume 7 is everywhere injective, and L preserves diagonals. Then let X be arbitrary. For all
(x,y) € FX x FX, we have

(x,y) € N"LAY <= (n(x),n(y)) € LAx
= nx)=n) since L preserves diagonals

= x=y since 1) is injective

and hence n*L preserves diagonals.
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