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In the past couple of decades several different approaches have been developed to study the
phenomenon of quantum contextuality [1–4]. Among these the sheaf-theoretic approach has yielded
a successful framework for a systematic study of contextuality for nonsignaling distributions arising
from general sets of commuting quantum observables. More recently, a topological approach was
introduced in [5] that is well-suited for studying contextuality as a computational resource in
measurement-based quantum computation [6]. Building off of these efforts in this paper (see [7] for
the arXiv version) we introduce a new framework that subsumes both the topological and sheaf-
theoretic approaches, based on the theory of simplicial sets, which are combinatorial models of
topological spaces generalizing simplicial complexes.

Contextuality in our approach is defined for scenarios consisting of spaces of measurements
and spaces of outcomes. Such spaces are modeled by simplicial sets [8]: objects consisting of a
sequence of sets specifying simplices, together with the simplicial relations which give instructions
on how they are glued together. In categorical terms a simplicial set is a functor X : ∆op → Set
from the opposite of the simplex category1 to the category of sets. There is a category sSet of
simplicial sets whose morphisms are given by natural transformations of functors. Ordinary or
discrete measurement scenarios specified by a set of measurements and outcomes can be embedded
into this framework by regarding each element as a zero-dimensional simplex of a simplicial set.
In this paper we will instead focus on realizations where measurements and outcomes label higher
dimensional simplices. The increase in dimension as compared to the discrete case facilitates a
richer connection between topology and contextuality (see Fig. (1a)), with important results being
proved as a consequence.

Modeling measurements and outcomes as simplicial sets allows us to generalize the types of
distributions available in our framework. More formally, a simplicial scenario is a pair (X,Y )
consisting of a space X of measurements and a space Y of outcomes. We define a simplicial
distribution on a scenario (X,Y ) to be a map of simplicial sets (briefly, a map of spaces) p : X →
DRY, where DRY is a space of distributions given by a simplicial set whose simplicies are given by
R-distributions [9] on the simplices of the outcome space. In other words, the simplicial set DRY

is obtained as the composite ∆op Y−→ Set
DR−−→ Set.

To define contextuality in our framework, let us first introduce the notion of outcome assign-
ments, which are represented by space maps r : X → Y where Y is an arbitrary space of outcomes
and for each such map there is a deterministic distribution denoted by δr : X → DRY . A classical
distribution is an R-convex combination of deterministic distributions. Let us write S(X,Y ) for the
set of simplicial distributions, i.e. the set sSet(X,DRY ) of morphisms in the category of simplicial

1The objects of the simplex category are given by the finite sets [n] = {0, 1, · · · , n} for n ≥ 0 and morphisms of
the category are given by order preserving functions.
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sets, and C(X,Y ) for the set DR(sSet(X,Y )) of classical distributions. There is a canonical map
that sends a classical distribution to the associated simplicial distribution obtained by marginalizing
distributions on each simplex:

Θ : C(X,Y )→ S(X,Y ),

i.e. a natural map DR(sSet(X,Y )) → sSet(X,DRY ). A simplicial distribution p ∈ S(X,Y ) is
called contextual if it does not lie in the image of Θ. Otherwise, it is called noncontextual. This
definition subsumes the notion of contextuality for nonsignaling distributions. In fact, ordinary
nonsignaling distributions defined on discrete scenarios can be studied as a special case, but with
extra freedom provided by topology. For example, the well-known Clauser, Horne, Shimony, Holt
(CHSH) scenario [10], in which Alice and Bob each perform two measurements, denoted by {x0, x1}
and {y0, y1}, with corresponding outcomes in Z2 = {0, 1} can be represented as in Fig. (1a).

Our constructions are natural with respect to change of measurement spaces (and similarly
outcome spaces). More precisely, a map of spaces f : Z → X induces a map f∗ : S(X,Y ) →
S(Z, Y ) between the simplicial distributions (and similarly between the classical distributions). This
map allows us to compare contextual properties of scenarios and provide an extension criterion to
characterize contextuality. For the CHSH scenario the realization given in Fig. (1a) characterizes
contextuality in this way; for instance, the contextual Popescu-Rohrlich (PR) box [11] in Fig. (1c)
fails to extend from the punctured torus to the torus.

(a) (b) (c)

Figure 1: (a) CHSH scenario organized into a surface, which is topologically equivalent to a punc-
tured torus. The edges labeled by x0 (and x1) are identified. (b) On each triangle the probability
distribution associated to a pair of measurements is represented by a triangle and the face maps di
encode the marginalization to the measurements on the edges. (c) PR box fails to extend to the
whole torus, characterizing it as contextual, since the marginals at the inner edges do not match:
0 + 1 6= 0 + 0.

The construction used for a space of distributions associated to a space of outcomes can also be
carried over to quantum measurements. The space of quantum measurements, denoted by QHY , is
the simplicial set whose set of simplices consists of quantum measurements (i.e. POVMs) on the
Hilbert space H with outcomes given by the simplices of Y . A simplicial quantum measurement
defined on a scenario (X,Y ) is a map P : X → QHY of spaces. Now quantum contextuality can
be introduced by generalizing the Born rule to the simplicial setting: A quantum state specified by
a density operator ρ induces a map of spaces ρ∗ : QHY → DR≥0

Y. Then ρ is called (non)contextual

with respect to P if the simplicial distribution X
P−→ QHY

ρ∗−→ DR≥0
Y is (non)contextual. With

these definitions the Mermin square scenario, which was studied from a cohomological perspective
in [5], can also be studied using a cohomology witness for strong contextuality, constructed in [7].
Finally two foundational results from quantum theory, Gleason’s theorem [12] and Kochen–Specker
theorem [13], can be presented in our simplicial framework demonstrating the power of the simplicial
language.
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