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We present categories of open dynamical systems with general time evolution as cate-

gories of coalgebras opindexed by polynomial interfaces, and show how this extends the

coalgebraic framework to capture common scientific applications such as ordinary differ-

ential equations, open Markov processes, and random dynamical systems. We then extend

Spivak’s operad Org to this setting, and construct associated monoidal categories whose

morphisms represent hierarchical open systems; when their interfaces are simple, these

categories supply canonical comonoid structures. We exemplify these constructions us-

ing the ‘Laplace doctrine’, which provides dynamical semantics for active inference, and

indicate some connections to Bayesian inversion and coalgebraic logic.

1. Background

1.1. Closed dynamical systems and Markov processes

In this brief section, we recall a ‘behavioural’ approach to dynamical systems originally due (we believe)

to Lawvere; for a pedagogical account, see [1]. These systems are ‘closed’ in the sense that they do not

require environmental interaction for their evolution, but they nonetheless form the starting point for

our categories of more open systems.

Definition 1.1. Let pT,`, 0q be a monoid, representing time. LetX : E be some space, called the state
space. Then a closed dynamical system ϑ with state space X and time T is an action of T onX . When T
is also an object of E , then this amounts to a morphism ϑ : TˆX Ñ X (or equivalently, a time-indexed

family of X-endomorphisms, ϑptq : X Ñ X), such that ϑp0q “ idX and ϑps` tq “ ϑpsq ˝ ϑptq.

Proposition 1.2. When time is discrete, as in the case T “ N, any dynamical system ϑ is entirely

determined by its action at 1 : T. That is, letting the state space be X , we have ϑptq “ ϑp1q˝t
where

ϑp1q˝t
means “compose ϑp1q : X Ñ X with itself t times”.

Example 1.3. Suppose X : U Ñ TU is a vector field on U , with a corresponding solution (integral

curve) χx : R Ñ U for all x : U ; that is, χ1ptq “ Xpχxptqq and χxp0q “ x. Then letting the point x
vary, we obtain a map χ : R ˆ U Ñ U . This χ is a closed dynamical system with state space U and

time R.

Proposition 1.4. Closed dynamical systems with state spaces in E and time T are the objects of the

functor category CatpBT, Eq, where BT denotes the delooping of the monoid T. Morphisms of dy-

namical systems are therefore natural transformations.
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We will also often be interested in dynamical systems whose evolution has ‘side-effects’, such as the

generation (or ‘mixing’) of uncertainty or randomness. We will largely model such systems as Kleisli

maps or coalgebras of monads modelling these side-effects. In the case of uncertainty, the monads will

be so-called probability monads, which we will often denote by P . Such a monad P : E Ñ E can often

be thought of as taking each set or space X : E to the set (or space) P X of probability distributions

over X , and each morphism to the corresponding ‘pushforwards’ map; the monad multiplication is

given by “averaging out” uncertainty, and the unit takes a point to the ‘Dirac’ distribution over it. With

these ideas in mind, we can extend the concepts above to cover Markov chains and Markov processes.

Example 1.5 (Closed Markov chains and Markov processes). A closedMarkov chain is given by a map

X Ñ P X , where P : E Ñ E is a probability monad on E ; this is equivalently a P-coalgebra with time

N, and an object inCat
`

BN,KℓpPq
˘

. With more general time T, one obtains closedMarkov processes:
objects in Cat

`

BT,KℓpPq
˘

. More explicitly, a closed Markov process is a time-indexed family of

Markov kernels; that is, a morphism ϑ : T ˆX Ñ P X such that, for all times s, t : T, ϑs`t “ ϑs ‚ ϑt
as a morphism in KℓpPq. Note that composition ‚ in KℓpPq is given by the Chapman-Kolmogorov

equation, so this means that

ϑs`tpy|xq “

ż

x1:X
ϑspy|x1qϑtpdx

1|xq .

1.2. Polynomial functors

We will use polynomial functors to model the interfaces of our open systems, following Spivak and Niu

[2]. We will assume these to be functors E Ñ E for a locally Cartesian closed category E , but we will
typically assume that E is furthermore concrete, and often that it is in fact Set.

Definition 1.6. Let E be a locally Cartesian closed category, and denote by yA the representable co-

presheaf yA :“ EpA,´q : E Ñ E . A polynomial functor p is a coproduct of representable functors,

written p :“
ř

i:pp1q y
pi
, where pp1q : E is the indexing object. The category of polynomial functors

in E is the full subcategory PolyE ãÑ rE , Es of the E-copresheaf category spanned by coproducts of

representables. A morphism of polynomials is therefore a natural transformation.

Remark 1.7. Every polynomial functor P : E Ñ E corresponds to a bundle p : E Ñ B in E , for which
B “ P p1q and for each i : P p1q, the fibre pi is P piq. We will henceforth elide the distinction between a

copresheaf P and its corresponding bundle p, writing pp1q :“ B and pris :“ pi, where E “
ř

i pris. A
natural transformation f : p Ñ q between copresheaves therefore corresponds to a map of bundles. In

the case of polynomials, by the Yoneda lemma, this map is given by a ‘forwards’ map f1 : pp1q Ñ qp1q

and a family of ‘backwards’ maps f# : qrf1p-qs Ñ pr-s indexed by pp1q, as in the left diagram below.

Given f : p Ñ q and g : q Ñ r, their composite g ˝ f : p Ñ r is as in the right diagram below.

E f˚F F

B B C

f#

qp

f1

{

E f˚g˚G G

B B D

pgfq#

rp

g1˝f1

{

where pgfq# is given by the pp1q-indexed family of composite maps rrg1pf1p-qqs
f˚g#
ÝÝÝÑ qrf1p-qs

f#
ÝÝÑ

pr-s.

We can interpret the type pp1q to be a set or space of ‘configurations’ or ‘positions’ of a p-shaped
system, and each pris to be the available ‘inputs’ or ‘directions’ available to the system when it is in

configuration/position i.

We now recall a handful of useful facts about polynomials and their morphisms, each of which is

explained in Spivak and Niu [2] and summarized in Spivak [3].
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Proposition 1.8. Polynomial morphisms p Ñ y correspond to sections pp1q Ñ
ř

i pris of the corre-
sponding bundle p.

Proposition 1.9. There is an embedding of E into PolyE given by taking objects X : E to the linear

polynomials Xy : PolyE and morphisms f : X Ñ Y to morphisms pf, idXq : Xy Ñ Y y.

Proposition 1.10. There is a symmetric monoidal structure pb, yq on PolyE that we call tensor, and

which is given on objects by pbq :“
ř

i:pp1q

ř

j:qp1q y
prisˆqrjs

and onmorphisms f :“ pf1, f
#q : p Ñ p1

and g :“ pg1, g
#q : q Ñ q1

by f b g :“ pf1 ˆ g1, f
# ˆ g#q.

Proposition 1.11. pPolyE ,b, yq is symmetric monoidal closed, with internal hom denoted r´,“s.

Explicitly, we have rp, qs “
ř

f :pÑq y
ř

i:pp1q qrf1piqs
. Given an object A : E , we have rAy, ys – yA.

Proposition 1.12. The composition of polynomial functors q ˝ p : E Ñ E Ñ E induces a monoidal

structure on PolyE , which we denote Ÿ, and call ‘composition’ or ‘substitution’. Its unit is again y.
Famously, Ÿ-comonoids correspond to categories and their comonoid homomorphisms are cofunctors

[4]. If T is a monoid, then the comonoid structure on yT corresponds witnesses it as the category

BT. Monomials of the form SyS can be equipped with a canonical comonoid structure witnessing the

codiscrete groupoid on S.

2. Open dynamical systems as polynomial coalgebras

2.1. Deterministic systems

Definition 2.1. A deterministic open dynamical system with interface p, state space S and time T is a

polynomial morphism β : SyS Ñ rTy, ps such that, for any section σ : p Ñ y, the induced morphism

SyS
β
ÝÑ rTy, ps

rTy,σs
ÝÝÝÝÑ rTy, ys

„
ÝÑ yT

is a comonoid homomorphism.

To see how such a morphism β is like an ‘open’ version of the closed dynamical systems intro-

duced above, note that by the tensor-hom adjunction, β can equivalently be written with the type

Ty b SyS Ñ p. In turn, such a morphism corresponds to a pair pβo, βuq, where βo is the component

‘on positions’ with the type T ˆ S Ñ pp1q, and βu is the component ‘on directions’ with the type
ř

t:T
ř

s:S prβopt, sqs Ñ S. We will call the map βo the output map, as it chooses an output position

for each state and moment in time; and we will call the map βu the update map, as it takes a state s : S,
a quantity of time t : T, and an ‘input’ in prβopt, sqs, and returns a new state. We might imagine the

new state as being given by evolving the system from s for time t, and the input as being given at the

position corresponding to ps, tq.

But it is not sufficient to consider merely such pairs β “ pβo, βuq to be our open dynamical systems,

for we need them to be like ‘open’ monoid actions: evolving for time t then for time smust be equivalent

to evolving for time t ` s, given the same inputs. It is fairly easy to prove the following proposition,

whose proof we defer until after establishing the categories CoalgTppq.

Proposition 2.2. Comonoid homomorphismsSyS Ñ yT correspond bijectivelywith closed dynamical

systems with state space S : E , in the sense given by functors BT Ñ E .

This establishes that seeking such a comonoid homomorphism will give us the monoid action prop-

erty that we seek, and so it remains to show that a composite comonoid homomorphism of the form

rTy, σs ˝ β is a closed dynamical system with the “right inputs”. Unwinding this composite, we find
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that the condition that it be a comonoid homomorphism corresponds to the requirement that, for any

t : T, the closure βσ : T ˆ S Ñ S of β by σ given by

βσptq :“ S
βoptq˚σ
ÝÝÝÝÝÑ

ÿ

s:S

prβopt, sqs
βu

ÝÑ S

constitutes a closed dynamical system on S. The idea here is that σ gives the ‘context’ in which we can

make an open system closed, thereby formalizing the “given the same inputs” requirement above.

With this conceptual framework in mind, we are in a position to render open dynamical systems on

pwith time T into a category, which we will denote byCoalgTppq. Its objects will be pairs pS, βq with

S : E and β an open dynamical on p with state space S; we will often write these pairs equivalently

as triples pS, βo, βuq, making explicit the output and update maps. Morphisms will be maps of state

spaces that commute with the dynamics:

Proposition 2.3. Open dynamical systems over p with time T form a category, denoted CoalgTppq.

Its morphisms are defined as follows. Let ϑ :“ pX,ϑo, ϑuq and ψ :“ pY, ψo, ψuq be two dynamical

systems over p. A morphism f : ϑ Ñ ψ consists in a morphism f : X Ñ Y such that, for any time

t : T and global section σ : pp1q Ñ
ř

i:pp1q

pris of p, the following naturality squares commute:

X
ř

x:X

prϑopt, xqs X

Y
ř

y:Y

prψopt, yqs Y

ϑoptq˚σ ϑuptq

f f

ψoptq˚σ ψuptq

The identity morphism idϑ on the dynamical system ϑ is given by the identity morphism idX on its state

space X . Composition of morphisms of dynamical systems is given by composition of the morphisms

of the state spaces.

Proof. We need to check unitality and associativity of composition. This amounts to checking that

the composite naturality squares commute. But this follows immediately, since the composite of two

commutative diagrams along a common edge is again a commutative diagram.

We can alternatively state Proposition 2.2 as follows, noting that the polynomial y corresponds to a

trivial interface, exposing no configuration to any environment nor receiving any signals from it:

Proposition 2.4. CoalgT
idpyq is equivalent to the classical category CatpBT, Eq of closed dynamical

systems in E with time T.

Proof. The trivial interface y corresponds to the trivial bundle id1 : 1 Ñ 1. Therefore, a dynamical

system over y consists of a choice of state space S along with a trivial output map ϑo “ : TˆS Ñ 1
and a time-indexed update map ϑu : T ˆ S Ñ S. This therefore has the form of a classical closed

dynamical system, so it remains to check the monoid action. There is only one section of id1, which
is again id1. Pulling this back along the unique map ϑoptq : S Ñ 1 gives ϑoptq˚ id1 “ idS . Therefore
the requirement that, given any section σ of y, the maps ϑu ˝ ϑoptq˚σ form an action means in turn

that so does ϑu : T ˆ S Ñ S. Since the pullback of the unique section id1 along the trivial output

map ϑoptq “ : S Ñ 1 of any dynamical system in CoalgT
idpyq is the identity of the corresponding

state space idS , a morphism f : pϑp˚q, ϑu, q Ñ pψp˚q, ψu, q in CoalgT
idpyq amounts precisely to

a map f : ϑp˚q Ñ ψp˚q on the state spaces in E such that the naturality condition f ˝ ϑuptq “

ψuptq˝f of Proposition 1.4 is satisfied, and every morphism inCatpBT, Eq corresponds to a morphism

in CoalgT
idpyq in this way.
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Now that we know that our concept of open dynamical system subsumes closed systems, let us

consider some more examples.

Example 2.5. Consider a dynamical system pS, ϑo, ϑuq with outputs but no inputs. Such a system has

a ‘linear’ interface p :“ Iy for some I : E ; alternatively, we can write its interface p as the ‘bundle’

idI : I Ñ I . A section of this bundle must again be idI , and so ϑoptq˚ idI “ idS . Once again, the

update maps collect into to a closed dynamical system in CatpBT, Eq; just now we have outputs ϑo :
T ˆ S Ñ pp1q “ I exposed to the environment.

Proposition 2.6. When time is discrete, as with T “ N, any open dynamical system pX,ϑo, ϑuq over

p is entirely determined by its components at 1 : T. That is, we have ϑoptq “ ϑop1q : X Ñ pp1q and

ϑuptq “ ϑup1q :
ř

x:X prϑopxqs Ñ X . A discrete-time open dynamical system is therefore a triple

pX,ϑo, ϑuq, where the two maps have types ϑo : X Ñ pp1q and ϑu :
ř

x:X prϑopxqs Ñ X .

Proof. Suppose σ is a section of p. We require each closure ϑσ to satisfy the flow conditions, that

ϑσp0q “ idX and ϑσpt ` sq “ ϑσptq ˝ ϑσpsq. In particular, we must have ϑσpt ` 1q “ ϑσptq ˝ ϑσp1q.

By induction, this means that we must have ϑσptq “ ϑσp1q˝t
(compare Proposition 1.2). Therefore we

must in general have ϑoptq “ ϑop1q and ϑuptq “ ϑup1q.

Example 2.7. Suppose 9x “ fpx, aq and b “ gpxq, with f : X ˆ A Ñ TX and g : X Ñ B. Then,

as for the ‘closed’ vector fields of Example 1.3, this induces an open dynamical system pX,
ş

f, gq :
CoalgRpByAq, where

ş

f : R ˆX ˆA Ñ X returns the pX,Aq-indexed solutions of f .

Example 2.8. The preceding example is easily extended to the case of a general polynomial interface.

Suppose similarly that 9x “ fpx, axq and b “ gpxq, now with f :
ř

x:X prgpxqs Ñ TX and g :
X Ñ pp1q. Then we obtain an open dynamical system pX,

ş

f, gq : CoalgR
idppq, where now

ş

f :
R ˆ

ř

x:X prgpxqs Ñ X is the ‘update’ and g : X Ñ pp1q the ‘output’ map.

It is quite straightforward to extend the construction ofCoalgTppq to an opindexed categoryCoalgT
;

we unravel this opindexing explicitly in the appendix (Proposition A.1).

Proposition 2.9. CoalgT
extends to an opindexed category CoalgT : PolyE Ñ Cat. On objects

(polynomials), it returns the categories above. Onmorphisms of polynomials, we simply post-compose:

given φ : p Ñ q and β : SyS Ñ rTy, ps, obtain SyS Ñ rTy, ps Ñ rTy, qs in the obvious way.

At this point, the reader may be wondering in what sense these open dynamical systems are coalge-

bras. To see this, observe that a polynomial morphism SyS Ñ q is equivalently a map S Ñ qpSq: that

is to say, a q-coalgebra. By setting q “ rTy, ps, we see the connection immediately; to make it clear, in

Proposition A.2, we spell it out for the case T “ N.

2.2. Open Markov processes via stochastic polynomials

Just as coalgebras S Ñ pS correspond to discrete-time deterministic open dynamical systems, coal-

gebras S Ñ pP S correspond to discrete-time stochastic dynamical systems when P is a probability

monad as introduced above. We have already seen that ‘closed’ Markov chains correspond to maps

S Ñ P S, and that Markov processes in general time correspond to functors BT Ñ KℓpPq. Our task

in this section is therefore to connect these two perspectives, extending the categories of deterministic

coalgebras CoalgTppq.

Working concretely, it is not hard to spot the relevant adjustment. We therefore make the following

definition.

Definition 2.10. LetM : E Ñ E be a monad on the category E , and let p : PolyE be a polynomial

in E . Let pT,`, 0q be a monoid in E , representing time. Then a pM -coalgebra with time T consists
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in a triple ϑ :“ pS, ϑo, ϑuq of a state space S : E and two morphisms ϑo : T ˆ S Ñ pp1q and

ϑu :
ř

t:T
ř

s:S prϑopt, sqs Ñ MS, such that, for any section σ : pp1q Ñ
ř

i:pp1q pris of p, the maps

ϑσ : T ˆ S Ñ MS given by

ÿ

t:T
S

ϑop´q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑop´, sqs
ϑu
ÝÑ MS

constitute an object in the functor category Cat
`

BT,KℓpT q
˘

, where BT is the delooping of T and

KℓpT q is the Kleisli category of T . Once more, we call the closed system ϑσ , induced by a section σ of

p, the closure of ϑ by σ.

As before, such pM -coalgebras form a category; and these categories in turn are opindexed by poly-

nomials.

Proposition 2.11. pM -coalgebras with time T form a category, denoted CoalgT
M ppq. Its morphisms

are defined as follows. Let ϑ :“ pX,ϑo, ϑuq and ψ :“ pY, ψo, ψuq be two pM -coalgebras. A morphism

f : ϑ Ñ ψ consists in a morphism f : X Ñ Y such that, for any time t : T and global section

σ : pp1q Ñ
ř

i:pp1q

pris of p, the following naturality squares commute:

X
ř

x:X

prϑopt, xqs MX

Y
ř

y:Y

prψopt, yqs MY

ϑoptq˚σ ϑuptq

f Mf

ψoptq˚σ ψuptq

The identity morphism idϑ on the pM -coalgebra ϑ is given by the identity morphism idX on its state

space X . Composition of morphisms of pM -coalgebras is given by composition of the morphisms of

the state spaces.

Proposition 2.12. CoalgT
M ppq extends to an opindexed category, CoalgT

M p´q : PolyE Ñ Cat.
Suppose φ : p Ñ q is a morphism of polynomials. We define a corresponding functor CoalgT

M pφq :
CoalgT

M ppq Ñ CoalgT
M pqq as follows. Suppose pX,ϑo, ϑuq : CoalgT

M ppq is an object (pM -coalgebra)

in CoalgT
M ppq. Then CoalgT

M pφqpX,ϑo, ϑuq is defined as the triple pX,φ1 ˝ ϑo, ϑu ˝ ϑo˚φ#q :
CoalgT

M pqq, where the two maps are explicitly the following composites:

T ˆX
ϑo
ÝÑ pp1q

φ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrφ1 ˝ ϑopt, xqs
ϑo˚φ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑopt, xqs
ϑu
ÝÑ MX .

On morphisms, CoalgT
M pφqpfq : CoalgT

M pφqpX,ϑo, ϑuq Ñ CoalgT
M pφqpY, ψo, ψuq is given by the

same underlying map f : X Ñ Y of state spaces.

The opindexed categoryCoalgT
M ppq clearly generalizesCoalgT

, sincewe can always takeM “ idE .
Yet these concrete definitions obscure the more elegant representation of the objects of CoalgT

as

morphisms SyS Ñ rTy, ps. Our task is therefore to find a setting in which a similar representation

is possible; to do so, we generalize PolyE so that the backwards components of its morphisms may

incorporate ‘side-effects’ modelled by M . We will call the corresponding category PolyM , and will

find that instantiating CoalgT
in PolyM recovers CoalgT

M ppq.

We begin by recalling that PolyE is equivalent to the category of Grothendieck lenses for the self-

indexing [5, 2]: PolyE –
ş

E{ ´ op
, where the opposite is taken pointwise on each E{B. We will define

PolyM by analogy, using the following indexed category. SupposeM is a commutative monad on E
and let ι denote the identity-on-objects inclusion E ãÑ KℓpMq given on morphisms by post-composing

with the unit η of the monad structure. For ease of exposition in this short paper, we will assume here

that E “ Set.
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Definition 2.13. Define the indexed category EM{´ : E op Ñ Cat as follows. On objects B : E , we
define EM{B to be the full subcategory of KℓpMq{B on those objects ιp : EÑ‚ B which correspond

to maps E
p
ÝÑ B

ηB
ÝÝÑ MB in the image of ι. Now suppose f : C Ñ B is a map in E . We define

EM{f : EM{B Ñ EM{C as follows. The functor EM{f takes objects ιp : EÑ‚ B to ιpf˚pq : f˚EÑ‚ C
where f˚p is the pullback of p along f in E , included into KℓpMq by ι.

To define the action of EM{f on morphisms α : pE, ιp : EÑ‚ Bq Ñ pF, ιq : FÑ‚ Bq, note that since

we must have ιq ‚ α “ ιp, α must correspond to a family of maps αx : prxs Ñ Mqrxs for x : B. Then

we can define pEM{fqpαq pointwise as pEM{fqpαqy :“ αfpyq : prfpyqs Ñ Mqrfpyqs for y : C .

Definition 2.14. We define PolyM to be the category of Grothendieck lenses for EM{´. That is,

PolyM :“
ş

EM{ ´ op
, where the opposite is again taken pointwise.

Unwinding this definition, we find that the objects of PolyM are the same polynomial functors as

constitute the objects of PolyE . The morphisms f : p Ñ q are pairs pf1, f
#q, where f1 : B Ñ C is

a map in E and f# is a family of morphisms qrf1pxqsÑ‚ prxs in KℓpMq, making the following diagram

commute:

ř

x:BMprxs
ř

b:B qrf1pxqs
ř

y:C qrys

B B C

f#

qηB
˚p

f1

{

Remark 2.15. Note that the tensor b extends to PolyM : on objects, it is defined identically to the

tensor on PolyE . On morphisms f :“ pf1, f
#q : p Ñ q and g :“ pg1, g

#q : p1 Ñ q1
, we define the

tensor fbg to have forwards component f1 ˆg1 as before, and the backwards components are defined

by pf b gq
#
px,x1q

:“ qrf1pxqs ˆ q1rg1px1qs Ñ Mprxs ˆMp1rx1s Ñ M
`

prxs ˆ p1rx1s
˘

, where the second

arrow is given by the commutativity of the monadM . On the other hand, we only get an internal hom

satisfying the adjunction PolyM pp b q, rq – PolyM pp, rq, rsq when the backwards components of

morphisms pb q Ñ r are ‘uncorrelated’ between p and q.

Remark 2.16. For PolyM to behave faithfully like the category PolyE of polynomial functors and

their morphisms, we should want the substitution functors EM{f : EM{C Ñ EM{B to have left and

right adjoints. Althoughwe do not spell it out here, it is quite straightforward to exhibit the left adjoints.

On the other hand, writing f˚
as shorthand for EM{f , we can see that a right adjoint only obtains in

restricted circumstances. Denote the putative right adjoint byΠf : EM{B Ñ EM{C , and for ιp : EÑ‚ B
suppose that pΠfEqrys is given by the set of ‘partial sections’ σ : f´1tyu Ñ TE of p over f´1tyu as

in the commutative diagram:

f´1tyu tyu

TE B C
f

{

ηB
˚p

σ

Then we would need to exhibit a natural isomorphism EM{Bpf˚D,Eq – EM{CpD,ΠfEq. But this

will only obtain when the ‘backwards’ components h#y : Drys Ñ MpΠfEqrys are in the image of

ι—otherwise, it is not generally possible to pull f´1tyu out ofM .

Despite these restrictions, we do have enough structure at hand to instantiate CoalgT
in PolyM .

The only piece remaining is the composition product Ÿ, but for our purposes it suffices to define its

action on objects, which is identical to its action on objects inPolyE
1
, and then consider Ÿ-comonoids

inPolyM . The comonoid laws force the structure maps to be deterministic (i.e., in the image of ι), and
so Ÿ-comonoids in PolyM are just Ÿ-comonoids in PolyE .

1

We leave the full exposition of Ÿ in PolyM to the forthcoming extended version of this paper.
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Finally, we note that we can define morphisms β : SyS Ñ rTy, ps: these again just correspond to

morphisms Ty b SyS Ñ p, and the condition that the backwards maps be uncorrelated between Ty
and p is satisfied because Ty has a trivial exponent. Unwinding such a β according to the definition of

PolyM indeed gives precisely a pair pβo, βuq of the requisite types; and a comonoid homomorphism

SyS Ñ yT in PolyM is precisely a functor BT Ñ KℓpMq, thereby establishing equivalence between

the objects of CoalgTppq established in PolyM and the objects of CoalgT
M ppq. The equivalence be-

tween the hom-sets is established by a similar unwinding. All told, in this section, we have sketched

the proof of the following theorem:

Theorem 2.17. Constructing CoalgTppq in PolyM yields a category equivalent to CoalgT
M ppq.

2.3. Random dynamical systems and bundle systems

In the analysis of stochastic systems, it is often fruitful to consider two perspectives: on one side,

one considers explicitly the evolution of the distribution of the states of the system, by following (for

instance) a Markov process, or Fokker-Planck equation. On the other side, one considers the system as

if it were a deterministic system, perturbed by noisy inputs, giving rise to the frameworks of stochastic

differential equations and associated random dynamical systems.

Whereas a (closed) Markov process is typically given by the action of a ‘time’ monoid on an object

in a Kleisli category of a probability monad, a (closed) random dynamical system is given by a bundle
of closed dynamical systems, where the base system is equipped with a probability measure which it

preserves: the idea being that a random dynamical system can be thought of as a ‘random’ choice of

dynamical system on the total space at each moment in time, with the base measure-preserving system

being the source of the randomness [6].

This idea corresponds in non-dynamical settings to the notion of randomness pushback [7, Def. 11.19],
by which a stochastic map f : A Ñ P B can be presented as a deterministic map f 5 : Ω ˆ A Ñ B
where pΩ, ωq is a probability space such that, for any a : A, pushing ω forward through f 5p-, aq gives

the state fpaq; that is, ω induces a random choice of map f 5pω, -q : A Ñ B. Similarly, under ‘nice’

conditions, random dynamical systems andMarkov processes do coincide, although they have different

suitability in applications.

In this section, we sketch how the generalized-coalgebraic structures developed above extend also

to random dynamical systems, though with most details deferred to the Appendix. By observing that

we can also ‘open up’ the base system of a random dynamical system, we obtain furthermore a notion

of open bundle system: a bundle of dynamical systems that is coherently ‘open’ over polynomials both

in the total space and the base space.

Definition 2.18. Suppose E is a category equipped with a probability monadP : E Ñ E and a terminal

object 1 : E . A probability space in E is an object of the slice 1{KℓpPq of the Kleisli category of the

probability monad under 1.

Remark 2.19. In order to consider polynomials in E , we will later assume again that it is locally

Cartesian closed. A simple example of a locally Cartesian closed category equipped with a probability

monad is the category Set equipped with the monad D taking each set to the set of finitely-supported

probability distributions upon it.

Proposition 2.20. There is a forgetful functor 1{KℓpPq Ñ E taking probability spaces pB, βq to the

underlying spaces B and their morphisms f : pA,αq Ñ pB, βq to the underlying maps f : A Ñ P B.

We will write B to refer to the space in E underlying a probability space pB, βq, in the image of this

forgetful functor.

Definition 2.21. Let pB, βq be a probability space in E . A closed metric or measure-preserving dy-

namical system pϑ, βq on pB, βq with time T is a closed dynamical system ϑ with state space B : E
such that, for all t : T, P ϑptq ˝ β “ β; that is, each ϑptq is a pB, βq-endomorphism in 1{KℓpPq.
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Proposition 2.22. Closed measure-preserving dynamical systems in E with time T form the objects

of a category CatpBT, EqP whose morphisms f : pϑ, αq Ñ pψ, βq are maps f : ϑp˚q Ñ ψp˚q in E
between the state spaces that preserve both flow andmeasure, as in the following commutative diagram,

which also indicates their composition:

P ϑp˚q P ϑp˚q

1 P ψp˚q P ψp˚q 1

P λp˚q P λp˚q

α

β

γ

α

β

γ

P ϑptq

P ψptq

P λptq

P f P f

P g P g

Definition 2.23. Let pϑ, βq be a closed measure-preserving dynamical system. A closed random dy-

namical system over pϑ, βq is an object of the slice categoryCatpBT, Eq{ϑ; it is therefore a bundle of
the corresponding functors.

Example 2.24. The solutions Xpt, ω;x0q : R` ˆ Ω ˆ M Ñ M to a stochastic differential equation

dXt “ fpt,Xtqdt ` σpt,XtqdWt, where W : R` ˆ Ω Ñ M is a Wiener process in M , define a

random dynamical system R` ˆ Ω ˆ M Ñ M : pt, ω, xq ÞÑ Xpt, ω;x0q over the Wiener base flow

θ : R` ˆ Ω Ñ Ω : pt, ωq ÞÑ W ps` t, ωq ´W pt, ωq for any s : R`.

Definition 2.25. Let pθ, βq be a closed measure-preserving dynamical system in E with time T, and let
p : PolyE be a polynomial in E . WriteΩ :“ θp˚q for the state space of θ, and let π : S Ñ Ω be an object

(bundle) in E{Ω. An open random dynamical system over pθ, βq on the interface p with state space π :
S Ñ Ω and time T consists in a pair of morphisms ϑo : T ˆ S Ñ pp1q and ϑu :

ř

t:T

ř

s:S

prϑopt, sqs Ñ S,

such that, for any global section σ : pp1q Ñ
ř

i:pp1q

pris of p, the maps ϑσ : T ˆ S Ñ S defined as

ÿ

t:T
S

ϑop´q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑop´, sqs
ϑu
ÝÑ S

form a closed random dynamical system in CatpBT, Eq{θ, in the sense that, for all t : T and sections

σ, the following diagram commutes:

S
ř

s:S

prϑopt, sqs S

Ω Ω

π π

θptq

ϑoptq˚σ ϑuptq

Proposition 2.26. Let pθ, βq be a closed measure-preserving dynamical system in E with time T, and
let p : PolyE be a polynomial in E . Open random dynamical systems over pθ, βq on the interface p
form the objects of a categoryRDynTpp, θq. See Definition A.3 in the Appendix for details.

Proposition 2.27. The categories RDynTpp, θq collect into a doubly-indexed category of the form

RDynT : PolyE ˆ CatpBT, EqP Ñ Cat. See Proposition A.4 in the Appendix for details.

By allowing the base systems of open random dynamical systems instead to be arbitrary dynamical

systems, and then by opening them up similarly, one obtains notions of open bundle dynamical system,

and correspondingly doubly-opindexed categories over pairs of polynomials. Representing these cate-

gories concisely, as we did for the categories CoalgT
M ppq, is the subject of on-going work, and so we

defer the details to the Appendix, in Definition A.5, and Propositions A.6, A.7, and A.8.
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3. Hierarchical systems via generalized Org

In order to exhibit the main example of this paper, we will need to construct, from the opindexed

categories of pP-coalgebras introduced above, monoidal categories whose objects represent the in-

terfaces of hierarchical systems and whose morphisms represent the hierarchical systems themselves.

Informally put, we will think of a morphism p Ñ q in such a category as “a q-shaped system with a p-
shaped hole”. In order to achieve this, we will in turn adopt and generalize the operadOrg introduced

by Spivak [8].

Definition 3.1 (Following Spivak [8, Def. 2.19]). We define a (category-enriched, symmetric, coloured)

operad,OrgT
M . Its objects are polynomials, and for any tuple of polynomials pp1, . . . , pk; p

1q of at least

length 2, the hom category OrgT
M pp1, . . . , pk; p

1q is given by CoalgT
M prp1 b ¨ ¨ ¨ b pk, p

1sq. Note that

ty Ñ rTy, rp, pssu – tTy Ñ rp, psu. On any given interface p, the identity coalgebra is therefore

given by the morphism Ty Ñ rp, ps that constantly outputs idp and has trivial backwards component.

To define composition, we use the canonical maps rp, qs b rq, rs Ñ rp, rs and rp, qs b rp1, q1s Ñ

rpbp1, qbq1s, the pseudofunctoriality ofCoalgT
M p´q, and the laxatorsCoalgT

M ppqˆCoalgT
M pqq Ñ

CoalgT
M ppb qq; since each of these components is associative and unital, the composition is well-

defined.

Remark 3.2. Spivak’s original definition ofOrg corresponds to the case whereM “ idE and T “ N.

For our present purposes, all that is required is to obtain from Org a (monoidal) (bi)category
2
. We

therefore restrict OrgT
M to a bicategory Hier whose objects are again polynomials and whose hom-

categories from p to q are given by OrgT
M pp, qq; it inherits a monoidal structure from the monoidal

category associated to the symmetric operadOrgT
M . We will writeHier|E to denote the restriction of

Hier to the linear polynomials Ay.

To bring things a little down to earth, first consider a general system β : p Ñ q inHier. Recall that

rp, qs “
ř

f :pÑq y
ř

i:pp1q qrf1piqs
. β is therefore given by a choice of state space X along with a pair of

maps βo : T ˆX Ñ PolyM pp, qq and βu :
ř

t:T
ř

x:X

ř

i:pp1q qrβopt, sq1piqs Ñ MX .

Tomake this a littlemore comprehensible again, suppose p “ AyS and q “ ByT . ThenPolyM pp, qq “

EpA,Bq ˆ EpA ˆ T, Sq, and so by the universal property of the product, βo is equivalently given

by a pair of maps: a ‘forwards’ output map βo1 : T ˆ X ˆ A Ñ B and a ‘backwards’ output map

βo2 : T ˆ X ˆ A ˆ T Ñ S; if this reminds you of a category of lenses, then this is no surprise: the

subcategory of PolyE on the monomials AyS is indeed the category of bimorphic lenses in E . Finally,
the update map simplifies to βu : T ˆ X ˆ A ˆ T Ñ MX , which updates the state given ‘forwards’

inputs in A and ‘backwards’ inputs in T . We might denote the subcategory of Hier on such linear

polynomials asHiBi, to indicate ‘hierarchical bidirectional’ systems.

Taking one further step down the ladder of complexity, we briefly consider systems β : Ay Ñ By
in Hier|E : these are just hierarchical bidirectional systems where S “ T “ 1. Therefore, in this case,

the backwards output map becomes trivial, leaving only a forwards output map βo : T ˆX ˆA Ñ B
and an update map taking inputs in A, βu : T ˆ X ˆ A Ñ MX . By filling in the A-inputs, we get a
systemwithB-outputs, corresponding to the informal intuition with which we opened this section: we

have a B-shaped system with an A-shaped hole. Composition of these systems corresponds to placing

systems in parallel using b and plugging interfaces into holes of the matching shape.

We end this section by briefly sketching the canonical b-comonoid structure on Hier|E , making

Hier|E into a ‘semi-Markov’ [7] or ‘copy-discard’ [9] category. Note that, if a system has the trivial

state space 1, then (i) tensoring with it is a no-op, and (ii) it has a trivial update map (assuming that

M1 – 13). Thus, for each objectAy, we obtain a discarding system A : Ay Ñ 1y by taking the trivial
state space, trivial update map, and trivial output map. The copying system A : Ay Ñ pA ˆ Aqy

2

and in fact, we won’t even really need to make use of the monoidal or bicategorical structures here!

3

This condition is satisfied whenM is a probability monad like the finite-support distribution monad, for instance.
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again has trivial state space and update map, but now the output map
o
A : T ˆ A Ñ A ˆ A is given

by the constant copying map pt, aq ÞÑ pa, aq. It is then straightforward to check the comonoid laws.

4. Dynamical Bayesian inversion

One consequence of Hier|E being a copy-discard category is that we can instantiate an abstract form

of Bayes’ rule there, giving rise to a notion of when one pP-coalgebraic system can be seen to be ‘pre-

dicting’ or ‘inverting’ another. In general, Bayes’ rule is expressed as an equality between morphisms,

but this is too strong for dynamical systems, which ‘black-box’ their state spaces: that is to say, we

should consider two morphisms (systems) ‘equal’ when they are observationally equivalent—or, more

precisely, when they are related by a (quasi-)bisimulation.

Definition 4.1. We define a family of relations „ that we collectively call quasi-bisimilarity. Given
systems ϑ :“ pX,ϑo, ϑuq and ψ :“ pY, ψo, ψuq in CoalgT

Pppq and a section σ of p, we first define the
trace4 or trajectory of ϑ given σ as the morphism

trpθ, σq :“ T ˆX
ϑop-q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

x:X

prϑopt, xqs
pϑuqŹT
ÝÝÝÝÑ T ˆ P X

P ϑo
ÝÝÝÑ P pp1q .

Supposing α : 1 Ñ P X and β : 1 Ñ P Y to be corresponding initial states, we define ϑ
α,β
„ ψ as the

relation

ϑ
α,β
„ ψ ðñ @σ : Γppq.@t : T. trpϑ, σqptq ‚ α “ trpψ, σqptq ‚ β ,

where we write g ‚ f to indicate Kleisli composition g ‚ f “ µ ˝ P g ˝ f (where µ is the multiplication

of the monad P). We write ϑ
D,D
„ ψ when there exists some α, β such that ϑ

α,β
„ ψ, and likewise for

ϑ
@,@
„ ψ, ϑ

@,D
„ ψ, and ϑ

D,@
„ ψ.

In light of this definition, we can define an appropriate notion of Bayesian inversion forHier|E :

Definition 4.2. We say that a system c : Xy Ñ Y y in Hier|E admits Bayesian inversion with respect

to π : y Ñ Xy, if there exists a system c:
π : Y y Ñ Xy satisfying the equation [9, eq. 5]:

c

π

X Y

D,D
„

c:
π

π

c

X Y

We call c:
π the Bayesian inversion of c with respect to π, and call the defining relation the dynamical

Bayes’ rule.

5. The Laplace doctrine of predictive processing

In real-world systems, however, even such quasi-bisimulation is too strong. In the setting of computa-

tional neuroscience, it is proposed [10, 11] that certain neural circuits implement approximate Bayesian
inference by optimizing certain statistical games [12]. A statistical game consists of a Bayesian lens—a

4

Note that this is in analogy with the coalgebraic trace, not the trace of traced monoidal categories.
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pair of a ‘forwards’ stochastic channel A Ñ P B and a ‘backwards’ inversion P A ˆ B Ñ P A—
equipped with a loss function to evaluate the systems predictive performance. Embodied predictive

systems such as brains then realize these games as dynamical systems. Here we sketch this functorial

semantics, using a category of ‘hierarchical bidirectional Stat-systems’, following [13, 12].

We noted above that the category HiBi resembles a category of lenses, but it does not sufficiently

resemble the category of Bayesian lenses: notice that the backwards maps of the latter have codomains

of the form P A ˆ T Ñ P S rather than A ˆ T Ñ S. For this reason, HiBi makes for an inadequate

semantic category for predictive processing. However, all is not lost, for we can define a modification of

HiBi by analogy to the definition of Bayesian lenses as Grothendieck lenses for the indexed category

Stat of state-dependent maps [13].

Definition 5.1. Denote byHiBiP the following (semi-)(bi)category. Its objects are pairs of objects in

E , and its hom-categories HiBiPppA,Sq, pB, T qq are given by OrgT
PpP AyS , ByT q. Composition is

given by the following family of composite maps:

HiBiPppA,Sq, pB, T qq ˆ HiBiPppB, T q, pC,Uqq

“ OrgT
PpP AyS , ByT q ˆ OrgT

PpP ByT , CyU q

“ CoalgT
PprP AyS , ByT sq ˆ CoalgT

PprP ByT , CyU sq

Ñ CoalgT
PprP AyS , ByT s b rP ByT , CyU sq

Ñ CoalgT
PprP AyS ,P ByT s b rP ByT , CyU sq

Ñ CoalgT
PprP AyS , CyU sq

“ HiBiPppA,Sq, pC,Uqq

where the fourth line is generated from the monadic unit ηB : B Ñ P B by CoalgprP yS , pηBqyT sq.

Remark 5.2. Note that we say ’semi-’(bi)category: this is because HiBiP does not have identities.

This is not problematic for our work here; and of courseOrgT
P itself does have identities.

We are now in a position to sketch the ‘Laplace doctrine’ of dynamical semantics for approximate

inference. We first recall the notion of D-Bayesian inference game [12]:

Definition 5.3 (Bayesian inference). Let D : KℓpPqpI,Xq ˆ KℓpPqp1, Xq Ñ R be a measure of

divergence between states on X . Then a (simple) D-Bayesian inference game is a statistical game

pX,Xq Ñ pY, Y q with fitness function ϕ : KℓpPqp1, Xq ˆ KℓpPqpY,Xq Ñ R given by ϕpπ, kq “

Ey„k‚c‚π

”

D
´

c1
πpyq, c:

πpyq

¯ı

, where pc, c1q constitutes the lens part of the game and c:
π is the exact

inversion of c with respect to π.

Write DKL for the Kullback-Leibler divergence. Given a DKL-Bayesian inference game pγ, ρ, ϕq :
pX,Xq Ñ pY, Y q whereX and Y are Euclidean spaces and whose forward and backward channels are

constrained to output Gaussian distributions, the Laplace doctrine returns a hierarchical bidirectional

Stat-system minimizing an upper bound on the divergence between each approximate posterior ρπ
and the ‘true’ posterior γ:

π , for any Gaussian state π : P X .

Remark 5.4. Note that the statistical properties of the system are not the focus of this paper: this

doctrine is merely being used to illustrate the coalgebraic framework.

The Laplace doctrine hinges on the following approximation, whose proof we defer to A.9.

Lemma 5.5 (Laplace approximation). Given a DKL-Bayesian inference game pγ, ρ, ϕq : pX,Xq Ñ

pY, Y q with forwards channel γ : X Ñ P Y constrained to emit Gaussian distributions, write µγpxq :
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R|Y |
for the mean of γpxq and Σγpxq : R|Y |ˆ|Y |

for its covariance matrix, and assume that for all y : Y ,

the eigenvalues of Σρπpyq are small.

Then the loss ϕ : KℓpPqp1, Xq ˆ KℓpPqpY,Xq Ñ R is approximately bounded from above by

ϕpπ, kq “ E
y„k‚γ‚π

“

D
`

ρπpyq, γ:
πpyq

˘‰

ď E
y„k‚γ‚π

“

D
`

ρπpyq, γ:
πpyq

˘

´ log pγ‚πpyq
‰

“ E
y„k‚γ‚π

“

Fpyq
‰

« E
y„k‚γ‚π

“

FLpyq
‰

where F is called the free energy and where FL
is its Laplace approximation,

FLpyq “ Epπ,γq pµρπpyq, yq ´ SX rρπpyqs (1)

“ ´ log pγpy|µρπpyqq ´ log pπpµρπpyqq ´ SX rρπpyqs

where Sxrρπpyqs “ Ex„ρπpyqr´ log pρπpx|yqs is the Shannon entropy of ρπpyq, and pγ : Y ˆ X Ñ

r0, 1s, pπ : X Ñ r0, 1s, and pρπ : X ˆ Y Ñ r0, 1s are density functions for γ, π, and ρπ respectively.

The approximation is valid when Σρπ satisfies

Σρπpyq “
`

B2
xEpπ,γq

˘

pµρπpyq, yq
´1 . (2)

With this approximation in hand, and given such a statistical game pγ, ρ, ϕq, we will construct a hier-

archical bidirectional Stat-system Laplacepγ, ρ, ϕq performing approximate stochastic gradient descent

on the loss function, with respect to the statistical parameters of the inversions ρπ . We will work in dis-

crete time, T “ N, although all of what follows can be done in continuous time, T “ R`, by replacing

the discrete update steps by stochastic differential equations.

Since the entropy SX rρπpyqs depends only on the variance Σρπpyq, to optimize the mean µρπpyq it

suffices to consider only the energy Epπ,γqpµρπpyq, yq. We have

Epπ,γqpx, yq “ ´ log pγpy|xq ´ log pπpxq

“ ´
1

2

A

ϵγpy, xq, Σγpxq
´1ϵγpy, xq

E

´
1

2

@

ϵπpxq, Σπ
´1ϵπpxq

D

` log
b

p2πq|Y | detΣγpxq ` log

b

p2πq|X| detΣπ

and a straightforward computation shows that

BxEpπ,γqpx, yq “ ´BxµγpxqTΣγpxq
´1ϵγpy, xq ` Σπ

´1ϵπpxq .

Let ηγpy, xq :“ Σγpxq
´1ϵγpy, xq and ηπpxq :“ Σπ

´1ϵπpxq, so that

BxEpπ,γqpx, yq “ ´BxµγpxqT ηγpy, xq ` ηπpxq . (3)

Note that Epπ,γq defines a function X ˆ Y Ñ R. We will use the domain X ˆ Y of this function as

the state space of our system. To avoid ambiguity, we will write

ÝÑ
X to indicate the space X when it is

used as an input in the ‘forwards’ direction, and

ÐÝ
Y to indicate the space Y when it is used as an input

in the ‘backwards’ direction.

Our system Laplacepγ, ρ, ϕq will therefore have the type

pX ˆ Y, βo1 : X ˆ Y ˆ P ÝÑ
X Ñ

ÝÑ
Y ,

βo2 : X ˆ Y ˆ P ÝÑ
X ˆ

ÐÝ
Y Ñ

ÐÝ
X,

βu : X ˆ Y ˆ P ÝÑ
X ˆ

ÐÝ
Y Ñ PpX ˆ Y qq.
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We define βo1 to be the projection of the second factor Y of the state space onto Y , and βo2 to be the

projection of the first factor X onto X . The update map βu : X ˆ Y ˆ P ÝÑ
X ˆ

ÐÝ
Y Ñ PpX ˆ Y q is

then given by composing the commutativity (or ‘double strength’) of the monadP , dst : P XˆP Y Ñ

PpX ˆ Y q, after the following map (represented as a string diagram in E):

ρu

γÐ

PX

PY
Y

P X

X

Y

where p´qÐ :“ µP ˝ Pp´q denotes Kleisli extension (for µP the multiplication of the monad P), so

that γÐ :“ µPY ˝ Ppγq : P X Ñ P Y .

In turn, the map ρu : X ˆ P X ˆ Y Ñ P X is defined by

ρu : X ˆ P X ˆ Y Ñ R|X| ˆ R|X|ˆ|X| ãÑ P X

px, π, yq ÞÑ
`

x´ λBxEpπ,γqpx, yq,Σ˚
ρπpyq

˘

where the inclusion into P X picks the Gaussian state with the given statistical parameters, where

λ : R` is some choice of “learning rate”, where Σ˚
ρπpyq is as above and in Equation (2), and where

BxEpπ,γqpx, yq is as in Equation (3).

Observe that the factor ρu performs approximate stochastic gradient descent on the free energy:

for a given input y : Y , the mean trajectory of the system follows the update law µρ ÞÑ µρ ´

λBµρEpπ,γqpµρ, yq, and, when Σρpyq “ Σ˚
ρpyq, we have BµρEpπ,γqpµρ, yq « Bµρ Fpyq. Note also that

the update map ρu depends on a prior, just as the inversion map ρ of the lens pγ, ρq does.

A full treatment of the Laplace doctrine will appear in a forthcoming sequeal to the author’s [12].

6. Conclusions; current and future work

In this work we have sketched a framework for treating open dynamical systems of a general na-

ture as coalgebras for certain polynomial functors or—in the case of systems with side-effects such as

randomness—certain generalizations thereof. Although we have attempted to give a wide overview of

the applicability of these structures, with a particular focus on the adaptive systems of primary interest

to the author, we are aware that we have barely scratched the surface of their use and relationships.

Here, we briefly list some avenues of current and future work.

Our current principal focus is on exploring the connections between these structures and other com-

positional treatments of dynamical systems. In particular, relating our categories to the respective

frameworks of Myers [14], Libkind [15] and Baez and colleagues (e.g., [16]). Evidently, the structures
presented here are most closely in line with the approaches explored by Spivak [8, 17], and are particu-

larly interested in generalizing his topos-theoretic perspective: given that the category of discrete-time

deterministic systems over a polynomial p forms a topos, we suspect that so too does CoalgTppq. We

are also seeking the connections between these putative topoi and the topoi of behaviour types [17]

as well as with coalgebraic logic [18], particularly in its modal forms. We hope that we can further

develop the theory of PolyM to support some of these methods, too.

Finally, there are a number of ways in which this framework should be made more elegant. In

particular, we hope to cast a number of properties instead as structures, including the comonoid-

homomorphism property of our main definition, and the explicit definitions of random and bundle

dynamical systems. With particular respect to the latter, we expect there to be an inductive story of

nested parameterization, which appears to the author to have an opetopic shape closely connected to

the Para construction [19].

14



7. References
1. Lawvere, F.W., and Schnauel, S.H.: Conceptual mathematics : a first introduction to categories. Cambridge University

Press, Cambridge, UK New York (2009). doi: 10.1017/CBO9780511804199

2. Spivak, D.I., and Niu, N.: Polynomial Functors: A General Theory of Interaction (2021)

3. Spivak, D.I.: A reference for categorical structures on Poly. (2022)

4. Ahman, D., and Uustalu, T.: Directed Containers as Categories. EPTCS 207, 2016, pp. 89-98 (2016). doi: 10.4204/EPTCS.

207.5

5. Spivak, D.I.: Poly: An abundant categorical setting for mode-dependent dynamics. (2020)

6. Arnold, L.: Random Dynamical Systems. Springer Berlin Heidelberg (1998)

7. Fritz, T.: A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. (2019)

8. Spivak, D.I.: Learners’ languages. (2021)

9. Cho, K., and Jacobs, B.: Disintegration and Bayesian Inversion via String Diagrams. Math. Struct. Comp. Sci. 29 (2019)

938-971 (2017). doi: 10.1017/S0960129518000488

10. Friston, K.: A theory of cortical responses. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 815–836 (2005). doi: 10.

1098/rstb.2005.1622

11. Buckley, C.L., Kim, C.S., McGregor, S., and Seth, A.K.: The free energy principle for action and perception: A mathematical

review. Journal of Mathematical Psychology 81, 55–79 (2017)

12. St. Clere Smithe, T.: Compositional Active Inference I: Bayesian Lenses. Statistical Games. (2021)

13. St. Clere Smithe, T.: Bayesian Updates Compose Optically. (2020)

14. Myers, D.J.: Double Categories of Open Dynamical Systems. In: Applied Category Theory 2020 (2020)

15. Libkind, S.: An Algebra of Resource Sharing Machines. (2020)

16. Baez, J.C., Courser, K., and Vasilakopoulou, C.: Structured versus Decorated Cospans. (2021)

17. Schultz, P., Spivak, D.I., and Vasilakopoulou, C.: Dynamical Systems and Sheaves. Applied Categorical Structures (2016)

18. Jacobs, B.: Introduction to Coalgebra. Cambridge University Press (2017)

19. Capucci, M., Gavranović, B., and St. Clere Smithe, T.: Parameterized Categories and Categories by Proxy. In: Category

Theory 2021 (2021)

A. Extra proofs and structures

Proposition A.1. CoalgTppq extends to a polynomially-indexed category,CoalgT : PolyE Ñ Cat.
Suppose φ : p Ñ q is a morphism of polynomials. We define a corresponding functor CoalgTpφq :
CoalgTppq Ñ CoalgTpqq as follows. Suppose pX,ϑo, ϑuq : CoalgTppq is an object (dynamical sys-

tem) in CoalgTppq. Then CoalgTpφqpX,ϑo, ϑuq is defined as the triple pX,φ1 ˝ ϑo, ϑu ˝ ϑo˚φ#q :
CoalgTpqq, where the two maps are explicitly the following composites:

T ˆX
ϑo
ÝÑ pp1q

φ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrφ1 ˝ ϑopt, xqs
ϑo˚φ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑopt, xqs
ϑu
ÝÑ X .
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On morphisms, CoalgTpφqpfq : CoalgTpφqpX,ϑo, ϑuq Ñ CoalgTpφqpY, ψo, ψuq is given by the

same underlying map f : X Ñ Y of state spaces.

Proof. We need to check thatCoalgTpφqpX,ϑo, ϑuq satisfies the flow conditions of Definition 2.1, that

CoalgTpφqpfq satisfies the naturality condition of Proposition 2.3, and thatCoalgT
is functorial with

respect to polynomials. We begin with the flow condition. Given a section τ : qp1q Ñ
ř

j:qp1q

qrjs of q,

we require the closures CoalgTpφqpϑqτ : T ˆX Ñ X given by

ÿ

t:T
X

ϑop´q˚τ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

x:X

qrφ1 ˝ ϑopt, xqs
ϑo˚φ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑopt, xqs
ϑu
ÝÑ X

to satisfyCoalgTpφqpϑqτ p0q “ idX andCoalgTpφqpϑqτ ps`tq “ CoalgTpφqpϑqτ psq˝CoalgTpφqpϑqτ ptq.
Note that the following diagram commutes, by the definition of φ#

,

ř

i:pp1q

pris
ř

i:pp1q

qrφ1piqs pp1q

pp1q pp1q

φ˚
1 q

φ˚
1 τφ#

p

so that φ# ˝ φ˚
1τ is a section of p. Therefore, letting σ :“ φ# ˝ φ˚

1τ , forCoalgTpφqpϑqτ to satisfy the

flow condition for τ reduces to ϑσ satisfying the flow condition for σ. But this is given ex hypothesi by
Definition 2.1, for any such section σ, so CoalgTpφqpϑqτ satisfies the flow condition for τ . And since

τ was any section, we see that CoalgTpφqpϑq satisfies the flow condition generally.

The proof thatCoalgTpφqpfq satisfies the naturality condition of Proposition 2.3 proceeds similarly.

Supposing again that τ is any section of q, we require the following diagram to commute for any time

t : T:

X
ř

x:X

qrφ1 ˝ ϑopt, xqs
ř

x:X

prϑopt, xqs X

Y
ř

y:Y

qrφ1 ˝ ψopt, xqs
ř

y:Y

prψopt, xqs Y

f f

ϑoptq˚φ˚
1 τ ϑoptq˚φ# ϑuptq

ψoptq˚φ˚
1 τ ϑoptq˚φ# ψuptq

Again letting σ :“ φ# ˝ φ˚
1τ , we see that this diagram reduces exactly to the diagram in Proposition

2.3 by the functoriality of pullback, and since f makes that diagram commute, it must also make this

diagram commute.

Finally, to show that CoalgT
is functorial with respect to polynomials amounts to checking that

composition and pullback are functorial; but this is a basic result of category theory.

Proposition A.2. When T “ N, the categoryCoalgNppq of open dynamical systems over pwith time

N is equivalent to the topos p-Coalg of p-coalgebras [8].

Proof. p-Coalg has as objects pairs pS, βq where S : E is an object in E , β : S Ñ pŸ S is a morphism

of polynomials (interpreting S as the constant copresheaf on the set S), and Ÿ denotes the composition

monoidal product in PolyE (i.e., composing the corresponding copresheaves E Ñ E ). A straightfor-

ward computation shows that, interpreted as an object in E , p Ÿ S corresponds to

ř

i:pp1q S
pris

. By

the universal property of the dependent sum, a morphism β : S Ñ
ř

i:pp1q S
pris

therefore corresponds
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bijectively to a pair of maps βo : S Ñ pp1q and βu :
ř

s:S prβopsqs Ñ X . By Proposition 2.6, such a

pair is equivalently a discrete-time open dynamical system over pwith state space S: that is, the objects
of p-Coalg are in bijection with those of CoalgNppq.

Next, we show that the hom-sets p-Coalg
`

pS, βq, pS1, β1q
˘

andCoalgNppq
`

pS, βo, βuq, pS1, β1o, β1uq
˘

are in bijection. A morphism f : pS, βq Ñ pS1, β1q of p-coalgebras is a morphism f : S Ñ S1
between

the state spaces such that β1 ˝ f “ pp Ÿ fq ˝ β. Unpacking this, we find that this means the following

diagram in E must commute for any section σ of p:

S
ř

s:S

prβopsqs
ř

i:pp1q

pris pp1q

S pp1q

S1 pp1q

S1
ř

s1:S1

prβ1ops1qs
ř

i:pp1q

pris pp1q

f
f

βo

{

β1o

{

βu

β1u σ

σ

Pulling the arbitrary section σ back along the ‘output’ maps βo and β1o
means that the following com-

mutes:

S
ř

s:S

prβopsqs S

S

S1

S1
ř

s1:S1

prβ1ops1qs S1

f
f

βu

β1u

βo˚σ

β1o˚σ
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Forgetting the vertical projections out of the pullbacks gives:

S
ř

s:S

prβopsqs S

S

S1

S1
ř

s1:S1

prβ1ops1qs S1

f

βu

β1u

βo˚σ

β1o˚σ

f

Finally, by collapsing the identity maps and reflecting the diagram horizontally, we obtain

S
ř

s:S

prβopsqs S

S1
ř

s1:S1

prβ1ops1qs S1

f f

βo˚σ

β1o˚σ

βu

β1u

which we recognize from Proposition 2.3 as the defining characteristic of a morphism in CoalgNppq.

Finally, we note that each of these steps is bijective, and so we have the desired bijection of hom-

sets.

Definition A.3 (Category of open random dynamical systems over p). Writing ϑ :“ pπX , ϑ
o, ϑuq and

ψ :“ pπY , ψ
o, ψuq, a morphism f : ϑ Ñ ψ is a map f : X Ñ Y in E making the following diagram

commute for all times t : T and sections σ of p:

X
ř

x:X

prϑopt, xqs X

Ω Ω

Y
ř

y:Y

prψopt, yqs Y

πX πX

θptq

ϑoptq˚σ ϑuptq

ψoptq˚σ ψuptq

πY πY

f f

Identities are given by the identity maps on state-spaces. Composition is given by pasting of diagrams.

Proposition A.4 (Opindexed category of open random dynamical systems over polynomials). By the

universal property of the product ˆ in Cat, it suffices to define the actions of RDynT
separately on

morphisms of polynomials and on morphisms of closed measure-preserving systems.
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Suppose therefore that φ : p Ñ q is a morphism of polynomials. Then, for each measure-preserving

system pθ, βq : CatpBT, EqP , we define the functor RDynTpφ, θq : RDynTpp, θq Ñ RDynTpq, θq

as follows. Let ϑ :“ pπX : X Ñ Ω, ϑo, ϑuq : RDynTpp, θq be an object (open random dynamical

system) in RDynTpp, θq. Then RDynTpφ, θqpϑq is defined as the triple pπX , φ1 ˝ ϑo, ϑu ˝ φo˚φ#q :
RDynTpq, θq, where the two maps are explicitly the following composites:

T ˆX
ϑo
ÝÑ pp1q

φ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrφ1 ˝ ϑopt, xqs
ϑo˚φ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑopt, xqs
ϑu
ÝÑ X .

On morphisms f : pπX : X Ñ Ω, ϑo, ϑuq Ñ pπY : Y Ñ Ω, ψo, ψuq, the image RDynTpφ, θqpfq :
RDynTpφ, θqpπX , ϑ

o, ϑuq Ñ RDynTpφ, θqpπY , ψ
o, ψuq is given by the same underlying map f :

X Ñ Y of state spaces.

Next, suppose that ϕ : pθ, βq Ñ pθ1, β1q is a morphism of closed measure-preserving dynamical

systems, and let Ω1 :“ θ1p˚q be the state space of the system θ1
. By Proposition 2.22, the morphism ϕ

corresponds to a map ϕ : Ω Ñ Ω1
on the state spaces that preserves both flow and measure. Therefore,

for each polynomial p : PolyE , we define the functorRDynTpp, ϕq : RDynTpp, θq Ñ RDynTpp, θ1q

by post-composition. That is, suppose given open random dynamical systems and morphisms over

pp, θq as in the diagram of Proposition 2.26. ThenRDynTpp, ϕq returns the following diagram:

X
ř

x:X

prϑopt, xqs X

Ω1 Ω1

Y
ř

y:Y

prψopt, yqs Y

θ1ptq

ϑoptq˚σ ϑuptq

ψoptq˚σ ψuptq

f f

ϕ˝πY

ϕ˝πX

ϕ˝πY

ϕ˝πX

That is, RDynTpp, ϕqpϑq :“ pϕ ˝ πX , ϑ
o, ϑuq and RDynTpp, ϕqpfq is given by the same underlying

map f : X Ñ Y on state spaces.

Proof. We need to check: the naturality condition of Definition 2.25 for both RDynTpφ, θqpϑq and

RDynTpp, ϕqpϑq; functoriality ofRDynTpφ, θq andRDynTpp, ϕq; and (pseudo)functoriality ofRDynT

with respect to both morphisms of polynomials and of closed measure-preserving systems.

We begin by checking that the conditions of Definition 2.25 are satisfied by the objectsRDynTpφ, θqpπX , ϑ
o, ϑuq :

RDynTpq, θq andmorphismsRDynTpφ, θqpfq : RDynTpφ, θqpπX , ϑ
o, ϑuq Ñ RDynTpφ, θqpπY , ψ

o, ψuq

in the image of RDynTpφ, θq. Given a section τ : qp1q Ñ
ř

j:qp1q

qrjs of q, we need to check that the

closureRDynTpφ, θqpϑqτ forms a closed random dynamical system inCatpBT, Eq{θ. That is to say,

for all t : T and sections τ , we need to check that the following naturality square commutes:

X
ř

x:X

qrφ1 ˝ ϑopt, xqs
ř

x:X

prϑopt, xqs X

Ω Ω

ϑoptq˚τ ϑoptq˚φ#
ϑu

πX

θptq

πX

As before, we find that φ# ˝φ˚
1τ is a section of p, so that commutativity of the diagram above reduces

to commutativity of the diagram in Definition 2.25. Similarly, given a morphism f : pπX , ϑ
o, ϑuq Ñ
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pπY , ψ
o, ψuq, we need to check that the diagram in Proposition 2.26 induced forRDynTpφ, θqpfq com-

mutes for all times t : T and sections τ of q. But given such a section τ , the diagram forRDynTpφ, θqpfq

reduces to that for f and the section φ# ˝φ˚
1τ of p, which commutes ex hypothesi; and functoriality of

RDynTpφ, θq follows immediately.

Next, we check that the conditions of Definition 2.25 are satisfied in the image of RDynTpp, ϕq. It

is clear by the definition of the action of RDynTpp, ϕq that the condition that the diagram in Propo-

sition A.1 commutes is satisfied, from which it follows by pasting thatRDynTpp, ϕq is functorial. We

therefore just have to check the induced diagram in Definition 2.25 commutes. Consider the following

diagram:

X
ř

x:X

prϑopt, xqs X

Ω Ω

Ω1 Ω1

πX

ϑoptq˚σ ϑuptq

πX

θptq

ϕ ϕ

θ1ptq

The top square commutes ex hypothesi, the bottom square commutes by the definition of morphism of

closed measure-preserving dynamical systems (Proposition 2.22), and the outer square is the induced

diagram we need to check, which therefore commutes by the pasting of commuting squares.

Finally, we check that RDynT
is functorial with respect to morphisms of polynomials and mor-

phisms of closed measure-preserving dynamical systems. These reduce to checking that pullback and

composition are functorial, which we again leave to the dedicated reader.

Definition A.5 (Open bundle dynamical system). Let p, b : PolyE be polynomials in E , and let θ :“
pθp˚q, θo, θuq : CoalgT

idpbq be an open dynamical system over b. An open bundle dynamical system

over pp, b, θq is a pair pπϑθ, ϑq where ϑ :“ pϑp˚q, ϑo, ϑuq : CoalgT
idppq is an open dynamical system

over p and πϑθ : ϑp˚q Ñ θp˚q is a bundle in E , such that, for all time t : T and sections σ of p
and ς of b, the following diagrams commute, thereby inducing a bundle of closed dynamical systems

πσςϑθ : ϑ
σ Ñ θς in CatpBT, Eq:

ϑp˚q
ř

w:ϑp˚q

prϑopt, wqs ϑp˚q

θp˚q
ř

x:θp˚q

brθopt, xqs θp˚q

πϑθ πϑθ

ϑoptq˚σ ϑuptq

θoptq˚ς θuptq

Proposition A.6 (Category of open bundle dynamical systems over pp, bq). Let p, b : PolyE be poly-

nomials in E , and let θ :“ pθp˚q, θo, θuq : CoalgT
idpbq be an open dynamical system over b. Open

bundle dynamical systems over pp, b, θq form the objects of a categoryBunDynTpp, b, θq. Morphisms

f : pπϑθ, ϑq Ñ pπϱθ, ϱq are maps f : ϑp˚q Ñ ϱp˚q in E making the following diagram commute for all
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times t : T and sections σ of p and ς of b:

ϑp˚q
ř

w:ϑp˚q

prϑopt, wqs ϑp˚q

θp˚q
ř

x:θp˚q

brθopt, xqs θp˚q

ϱp˚q
ř

y:ϱp˚q

prϱopt, yqs ϱp˚q

ϑoptq˚σ ϑuptq

θoptq˚ς θuptq

πϑθ

πϱθ

πϑθ

πϱθ

ϱoptq˚σ ϱuptq

f f

That is, f is amap on the state spaces that induces amorphism pπϑθ, ϑ
σq Ñ pπϱθ, ϱ

σq inCatpBT, Eq{θς

of bundles of the closures. Identity morphisms are the corresponding identity maps, and composition

is by pasting.

Proposition A.7 (Opindexed category of open bundle dynamical systems). Varying the polynomials

p in BunDynTpp, b, θq induces an opindexed category BunDynTp´, b, θq : PolyE Ñ Cat. On

polynomials p, it returns the categoriesBunDynTpp, b, θq of Proposition A.6. On morphisms φ : p Ñ

q of polynomials, define the functors BunDynTpφ, b, θq : BunDynTpp, b, θq Ñ BunDynTpq, b, θq

as in Proposition 2.27. That is, suppose pπϑθ, ϑq : BunDynTpp, b, θq is object (open bundle dynamical

system) in BunDynTpp, b, θq, where ϑ :“ pϑp˚q, ϑo, ϑuq. Then its image BunDynTpφ, b, θqpπϑθ, ϑq

is defined as the pair pπϑθ, φϑq, whereφϑ :“ pϑp˚q, ϕ1˝ϑo, ϑu˝ϑo˚φ#q. Onmorphisms f : pπϑθ, ϑq Ñ

pπϱθ, ϱq, BunDynTpφ, b, θqpfq is again given by the same underlying map f : ϑp˚q Ñ ϱp˚q of state

spaces.

Proof. The proof amounts to the proof for Proposition 2.27 that RDynTpφ, θq constitutes an indexed

category, except that the closed base dynamical system θ of that Proposition is here replaced, for any

section ς of b, by the closure θς by ς of the open dynamical system θ : CoalgT
idpbq of the present Propo-

sition. The proof goes through accordingly, since the relevant diagrams are guaranteed to commute for

any such ς by the conditions in Definition A.5 and Proposition A.6.

Proposition A.8 (Doubly-opindexed category of open bundle dynamical systems). Letting the base

system θ also vary induces a doubly-opindexed categoryBunDynTp´, b,“q : PolyEˆCoalgT
idpbq Ñ

Cat. Given a polynomial p : PolyE andmorphismϕ : θ Ñ ρ inCoalgT
idpbq, the functorBunDynTpp, b, ϕq :

BunDynTpp, b, θq Ñ BunDynTpp, b, ρq is defined by post-composition, as in Proposition 2.27 for

the action ofRDynT
on morphisms of the base systems there. More explicitly, such a morphism ϕ cor-

responds to a map ϕ : θp˚q Ñ ρp˚q of state spaces in E . Given an object pπϑθ, ϑq ofBunDynTpp, b, θq,

we define BunDynTpp, b, ϕqpπϑθ, ϑq :“ pϕ ˝ πϑθ, ϑq. Given a morphism f : pπϑθ, ϑq Ñ pπϱθ, ϱq in

BunDynTpp, b, θq, its imageBunDynTpp, b, ϕqpfq : pϕ ˝πϑθ, ϑq Ñ pϕ ˝πϱθ, ϱq is given by the same

underlying map f : ϑp˚q Ñ ϱp˚q of state spaces.

Proof. As for PropositionA.7, the proof here amounts to the proof for Proposition 2.27 thatRDynTpp, ϕq

constitutes an indexed category, except again the closed systems are replaced by (the appropriate clo-

sures of) open ones, and the measure-preserving structure is forgotten.

Proof A.9 (Proof of the Laplace approximation). First note that the KL divergence is bounded from

above by the free energy since log pγ‚πpyq is always negative.
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Next, we can write the density functions as:

log pγpy|xq “
1

2

@

ϵγ , Σγ
´1ϵγ

D

´ log
b

p2πq|Y | detΣγ

log pρπpx|yq “
1

2

@

ϵρπ , Σρπ
´1ϵρπ

D

´ log
b

p2πq|X| detΣρπ

log pπpxq “
1

2

@

ϵπ, Σπ
´1ϵπ

D

´ log

b

p2πq|X| detΣπ

where for clarity we have omitted the dependence of Σγ on x and Σρπ on y, and where

ϵγ : Y ˆX Ñ Y : py, xq ÞÑ y ´ µγpxq ,

ϵρπ : X ˆ Y Ñ X : px, yq ÞÑ x´ µρπpyq ,

ϵπ : X ˆ 1 Ñ X : px, ˚q ÞÑ x´ µπ .

Then, note that we can write the free energy Fpyq as the difference between expected energy and

entropy:

Fpyq “ E
x„ρπpyq

„

log
pρπpx|yq

pγpy|xq ¨ pπpxq

ȷ

“ E
x„ρπpyq

r´ log pγpy|xq ´ log pπpxqs ´ SX rρπpyqs

“ E
x„ρπpyq

“

Epπ,γqpx, yq
‰

´ SX rρπpyqs

Next, since the eigenvalues of Σρπpyq are small for all y : Y , we can approximate the expected energy

by its second-order Taylor expansion around the mean µρπpyq:

Fpyq « Epπ,γqpµρπpyq, yq `
1

2

@

ϵρπ pµρπpyq, yq ,
`

B2
xEpπ,γq

˘

pµρπpyq, yq ¨ ϵρπ pµρπpyq, yq
D

´ SX
“

ρπpyq
‰

.

where

`

B2
xEpπ,γq

˘

pµρπpyq, yq is the Hessian of Epπ,γq with respect to x evaluated at pµρπpyq, yq.

Note that

@

ϵρπ pµρπpyq, yq ,
`

B2
xEpπ,γq

˘

pµρπpyq, yq ¨ ϵρπ pµρπpyq, yq
D

“ tr
“`

B2
xEpπ,γq

˘

pµρπpyq, yq Σρπpyq
‰

,
(4)

that the entropy of a Gaussian measure depends only on its covariance,

SX
“

ρπpyq
‰

“
1

2
log det p2π eΣρπpyqq ,

and that the energyEpπ,γqpµρπpyq, yq does not depend onΣρπpyq. We can therefore write down directly

the covariance Σ˚
ρπpyq minimizing Fpyq as a function of y. We have

BΣρπ
Fpyq «

1

2

`

B2
xEpπ,γq

˘

pµρπpyq, yq `
1

2
Σρπ

´1 .

Setting BΣρπ
Fpyq “ 0, we find the optimum

Σ˚
ρπpyq “

`

B2
xEpπ,γq

˘

pµρπpyq, yq
´1 .

Finally, on substituting Σ˚
ρπpyq in equation (4), we obtain the desired expression

Fpyq « Epπ,γq pµρπpyq, yq ´ SX rρπpyqs “: FLpyq .
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