
Submitted to:
ACT2022

© A. Hadzihasanovic & D. Kessler

Data structures for topologically sound
higher-dimensional diagram rewriting

Amar Hadzihasanovic
Tallinn University of Technology

& Quantinuum, Compositional Intelligence
amar@cs.ioc.ee

Diana Kessler
Tallinn University of Technology

diana-maria.kessler@taltech.ee

We present a computational implementation of diagrammatic sets, a model of higher-dimensional
diagram rewriting that is “topologically sound”: diagrams admit a functorial interpretation as homo-
topies in cell complexes. This has potential applications both in the formalisation of higher algebra
and category theory and in computational algebraic topology. We describe data structures for well-
formed shapes of diagrams of arbitrary dimensions and provide a solution to their isomorphism
problem in time O(n3 logn). On top of this, we define a type theory for rewriting in diagrammatic
sets and provide a semantic characterisation of its syntactic category. All data structures and algo-
rithms are implemented in the Python library rewalt, which also supports various visualisations of
diagrams.

Introduction

This article concerns the computational implementation of higher-dimensional diagrams in the sense of
higher category theory, and contains some first steps in the computational complexity theory of diagram-
matic rewriting in arbitrary dimensions.

Higher-dimensional rewriting, as emergent from the theory of polygraphs [5] – see [12] for a survey –
is founded on an interpretation of rewrites as directed homotopies. A particular aim of our work is prov-
able topological soundness, namely, the existence of a functorial interpretation of rewrite systems as cell
complexes, and of rewrites as homotopies. This ensures that our implementation of higher-dimensional
rewriting can act as a formal system for homotopical algebra and higher category theory in all generality.

With this aim, we turn to the diagrammatic set model [13] developed by the first author as a combi-
natorial alternative to polygraphs. Diagrammatic sets have a dual nature as higher-dimensional rewrite
systems and “combinatorial directed cell complexes”. They support a model of weak higher categories
and, unlike polygraphs, are topologically sound.

Beside the formalisation of higher algebra and category theory, potential applications are manifold.
String diagram rewriting, which is a form of 3-dimensional rewriting, is arguably the characteristic
computational mechanism of applied category theory. It has been suggested [4] that even “classical”
forms of rewriting are more faithfully represented as diagram rewriting: for example, term rewriting
implemented as rewriting in monoidal categories with cartesian structure explicitates the “hidden costs”
of copying and deleting terms. In these contexts, it is important to have a grasp on the computational
complexity of the basic operations of diagram rewriting, to ensure that one’s cost model for a machine
operating by diagram rewriting is reasonable.

Via topological soundness, we also envisage applications to computational algebraic topology. Direct-
edness of cells gives an algebraic grip on their pasting, which lends itself better to computation. Directed
cell complexes are also equipped with an orientation on their cells, which makes them naturally suited to
the computation of cellular homology.

2 Data structures for topologically sound higher-dimensional diagram rewriting

Structure of the paper. In Section 1, we present some basic data structures from the theory of diagram-
matic sets, together with their formal encoding: in particular, oriented graded posets which are used to
encode shapes of diagrams.

In Section 2, we focus on the implementation of regular molecules, the inductive subclass of oriented
graded posets corresponding to well-formed shapes of diagrams. To construct regular molecules, we
need to decide their isomorphism problem; for general oriented graded posets, this is equivalent to the
graph isomorphism problem (Proposition 2.11), not known to be in P. Our main result is a solution to
the isomorphism problem for regular molecules in time O(n3 logn) (Theorem 2.18), which also gives us
a canonical form, hence a unique representation of shapes of diagrams.

In Section 3, we move on to the formalisation of diagrams and diagrammatic sets. We present this
in the form of a type theory DiagSet living “on top” of our implementation of shapes of diagrams: the
terms, corresponding to diagrams, are “filtered by regular molecules”. This allows us to define formal
semantics and give a semantic characterisation of our formal system (Theorem 3.10).
Related work. A number of type theories for higher-categorical structures of arbitrary dimension have
been defined in recent years: most notably, Finster and Mimram’s CaTT [8], implementing the Maltsini-
otis model of weak higher categories [3], together with its “strictly associative” [10] and “strictly unital”
[9] variants; and the opetopic type theories by Ho Thanh, Curien, and Mimram [15, 6].

The former are not particularly concerned with diagram rewriting, and focus instead on the imple-
mentation of coherent globular composition; the link to our work is tenuous. The latter have some
commonality, albeit with a focus on a more restrictive class of shapes. In fact, DiagSet takes some inspi-
ration not from one of the published opetopic type theories, but from a privately communicated variant
due to Curien, which similarly rests on a “black-boxed” implementation of opetopic shapes.

Most closely related is the work by Vicary, Bar, Dorn, and others on quasistrict [2] and later associative
[7, 17] n-categories, serving as the foundation of the homotopy.io proof assistant. While the aim is nearly
the same, we believe that our framework has a number of advantages over associative n-categories.

From a theoretical perspective, it is only conjectural that associative n-categories, in general, are topo-
logically sound or satisfy the homotopy hypothesis. They also currently lack connections with other
models of higher categories and a clear functorial viewpoint. On the other hand, diagrammatic sets are
topologically sound, satisfy a version of the homotopy hypothesis, and support a model of weak higher
categories with concrete functorial ties to well-established models.

From a user perspective, the main point of divergence is that diagrams in associative n-categories have
“strict units” but “weak interchange”, while our diagrams have “strict interchange” but need weak units
to model “nullary” inputs or outputs. For rewrite systems with many “nullary” generators, associative
n-categories may have a practical advantage, while diagrammatic sets are otherwise favoured.

Finally, in associative n-categories, diagram shapes are essentially descriptions of cubical tilings, and
by lack of strict interchange, each rewrite gets by default its own “layer” in the tiling. This makes it so a
“local” rewrite on a portion of a diagram leads to an inefficient “global” duplication of information. Our
“face poset” representation of diagrams, on the other hand, allows local rewrites to stay local, which is
more efficient and will be beneficial to the parallelisability of diagram rewriting.
Implementation. All data structures, algorithms, and systems discussed in this article were implemented
by the authors as part of a Python library for higher-dimensional rewriting and algebra, called rewalt.1

An example of rewalt code is included in Example 3.13. The library also supports various kinds of
visualisation for diagrams, optionally in the form of TikZ output. All the Hasse and string diagrams in
this article were generated by rewalt and included here with no subsequent retouching.

1Project page: https://github.com/ahadziha/rewalt. Documentation: https://rewalt.readthedocs.io.

https://github.com/ahadziha/rewalt
https://rewalt.readthedocs.io

A. Hadzihasanovic & D. Kessler 3

1 Basic data structures

1.1. In the theory of diagrammatic sets, the shape of a pasting diagram is encoded by its face poset,
recording whether a cell is located in the boundary of another cell, together with orientation data which
specifies whether an (n− 1)-dimensional cell is in the input or output half of the boundary of an n-di-
mensional cell. We call the mathematical structure containing these data an oriented graded poset. This
is essentially the same as what Steiner calls a directed precomplex [18] and Forest an ω-hypergraph [11].
1.2 (Graded poset). Let P be a finite poset with order relation ≤ and let P⊥ be P extended with a least
element ⊥. We say that P is graded if, for all x ∈ P, all directed paths from x to ⊥ in the Hasse diagram
H P⊥, with edges going from covering to covered elements, have the same length. If this length is n+1,
we let dim(x) := n be the dimension of x. We write Pn for the subset of n-dimensional elements of P.
1.3 (Oriented graded poset). An orientation on a finite poset P is an edge-labelling of its Hasse diagram
with values in {+,−}. An oriented graded poset is a finite graded poset with an orientation.
Implementation 1.4. If we linearly order the elements of an oriented graded poset in each dimension,
each element x is uniquely identified by a pair of integers (n,k), where n is the dimension of x, and k is
the position of x in the linear ordering of n-dimensional elements.
We then represent an oriented graded poset as a pair (face_data,coface_data) of arrays of arrays of
pairs of sets of integers, where

1. j ∈ face_data[n][k][i] if and only if (n−1, j) is covered by (n,k), and
2. j ∈ coface_data[n][k][i] if and only if (n+1, j) covers (n,k)

with orientation− (i= 0) or + (i= 1). We may implement the sets of integers as sorted arrays, or another
data type which supports binary search in logarithmic time. This defines a data type OgPoset.

This representation is essentially an adjacency list representation of the poset’s Hasse diagram, with
vertices separated according to their dimension, and incoming and outgoing edges separated according
to their label. If EP is the set of edges of the Hasse diagram of P, the OgPoset representation of P takes
space O(|P|+ |EP|).

Storing both face_data and coface_data is redundant since these are uniquely determined by each
other. However, most of the computations we need to perform on oriented graded posets require regular
access both to faces (covered elements) and cofaces (covering elements) of a given element, so it is
advantageous to be able to access them in constant time.
Example 1.5. Consider a diagram formed of one 2-cell with two input 1-cells and a single output 1-cell,
whiskered to the right with a single 1-cell. The following are representations of its shape as

• an oriented face poset, pictured as a Hasse diagram with input faces pointing upwards (in magenta)
and output faces downwards (in blue);

• a string diagram (0-cells are unlabelled, but correspond to bounded regions of the plane);
• the pair of face_data and coface_data (rows are outer array indices and columns inner array indices).

0 1 2 3

0 1 2 3

0

3

2

10

0

face_data:
([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [2])
([0,1], [3])
coface_data:
([0,3], []) ([1], [0]) ([2], [1,3]) ([], [2])
([0], []) ([0], []) ([], []) ([], [0])
([], [])

4 Data structures for topologically sound higher-dimensional diagram rewriting

Remark 1.6. The representation of an oriented graded poset (up to isomorphism) is not unique: any
permutation of the linear order on elements in each dimension leads to an equivalent representation.

1.7. Many important computations are performed on (downwards) closed subsets, rather than the whole
of an oriented graded poset. In particular, the structure of an oriented graded poset supports a purely
combinatorial definition of the input and output boundary of a closed subset.

1.8 (Closed subsets). Let P be an oriented graded poset and U ⊆ P. We say that U is closed if, for all
y ∈U and x ∈ P, if x≤ y then x ∈U . The closure of U is the subset clU := {x ∈ P | ∃y ∈U x≤ y}.

We let dim(U) be the maximum of dim(x) for x ∈U , or −1 if U is empty.

1.9 (Input and output boundaries). Let P be an oriented graded poset and U ⊆ P a closed subset. For all
α ∈ {+,−} and n ∈ N, let

• ∆α
n U ⊆U be the subset of elements x such that dim(x) = n and, if y ∈U covers x, then it covers it

with orientation α;
• MnU ⊆U be the subset of elements x such that dim(x) = n and x is maximal in U (not covered by

any other element of U).

The input (α :=−) or output (α :=+) n-boundary of U is the closed subset

∂
α
n U := cl

(
∆

α
n U ∪

⋃
k<n

MkU
)
.

We let ∂nU := ∂+
n U ∪∂−n U and omit n when n = dim(U)−1. For all x ∈ P, we let ∂ α

n x := ∂ α
n cl{x}.

Remark 1.10. It is convenient to also let ∂ α
−1U = ∂ α

−2U := /0, so that ∂ αU is defined for all U ⊆ P.
Example 1.11. Let U be the oriented face poset of Example 1.5. Then

∂
−
1 U = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)},

∂
+
1 U = {(0,0),(0,2),(0,3),(1,2),(1,3)},

∂
−
0 U = {(0,0)}, ∂

+
0 U = {(0,3)}.

Implementation 1.12. We represent a set of elements of an OgPoset as an array of sets of positions,
indexed by dimensions. This allows us to access the subset of elements of a given dimension in constant
time. The size of arrays can be fixed to be equal to the dimension of a specific OgPoset, or dynamically
adjusted to the dimension of each set of elements. Sets of positions can again be implemented as sorted
arrays. This defines a data type GrSet (for graded set).

1.13 (Map of oriented graded posets). A map f : P→ Q of oriented graded posets is a function of their
underlying sets that satisfies ∂ α

n f (x) = f (∂ α
n x) for all x ∈ P, n ∈N, and α ∈ {+,−}. We call an injective

map an inclusion. Oriented graded posets and their maps form a category ogPos.

Example 1.14. A closed subset of an oriented graded poset inherits the structure of an oriented graded
poset by restriction. Its subset inclusion is an inclusion of oriented graded posets.
Implementation 1.15. We represent a map f : P→ Q as an array of arrays of pairs of integers mapping,
together with pointers source, target to OgPoset representations of P and Q. This defines a data type
OgMap. As an array of arrays, mapping has the same size of P’s face_data, and is defined by

mapping[n][k] = (m, j) if and only if f ((n,k)) = (m, j).

This representation takes space O(|P|).

A. Hadzihasanovic & D. Kessler 5

2 Unique representation of shapes of diagrams

2.1. In the theory of diagrammatic sets, shapes of diagrams form an inductively generated class of ori-
ented graded posets, called regular molecules after Steiner [18].

2.2 (Round subset). Let U be a closed subset of an oriented graded poset, n := dim(U). We say that U is
round if, for all k < n,

∂
+
k U ∩∂

−
k U = ∂k−1U.

Remark 2.3. Roundness is called “spherical boundary” in [13].
Example 2.4. Shapes of 2-dimensional diagrams, as oriented face posets, are round precisely when

1. their string diagram representation is connected, and
2. all nodes of the string diagram have at least one input and one output wire.

For example, the oriented graded poset of Example 1.5 is not round: we have

∂0U = {(0,0),(0,3)}(∂
+
1 U ∩∂

−
1 U = {(0,0),(0,2),(0,3)}.

On the other hand, the following oriented graded poset is round:

0 1 2 3

0 1 2 3 4

0 1
4

3

2

1
0

0

1

2.5 (Regular molecules). The class of regular molecules is generated by the following clauses.

• (Point). The terminal oriented graded poset • is a regular molecule.
• (Atom). Let U,V be round regular molecules such that dim(U) = dim(V) and, for all α ∈ {+,−},

∂ αU is isomorphic to ∂ αV . Then U ⇒ V is a regular molecule, where U ⇒ V is the essentially
unique oriented graded poset U ⇒V with the property that

1. U ⇒V has a greatest element, and
2. ∂−(U ⇒V) is isomorphic to U , while ∂+(U ⇒V) is isomorphic to V .

• (Paste). Let U,V be regular molecules and k < min(dim(U),dim(V)), such that ∂
+
k U is isomorphic

to ∂
−
k V . Then the pushout U #k V of the span ∂

+
k U ↪→U , ∂

+
k U

∼
↪→ ∂

−
k V ↪→V is a regular molecule.

A regular molecule is an atom if it has a greatest element; these are precisely the molecules whose final
generating clause is (Point) or (Atom).

The submolecule relation U vV is the preorder generated by U,V vU ⇒V and U,V vU #k V .

Comment 2.6. The properties of regular molecules are explored in [13, Sections 1, 2]. Importantly, the
following results ensure that §2.5 is a valid definition:

1. the category ogPos has pushouts of inclusions;
2. if U and V are isomorphic regular molecules, they are isomorphic in a unique way;
3. input and output boundaries of regular molecules are regular molecules;

6 Data structures for topologically sound higher-dimensional diagram rewriting

4. if U and V are round, then a pair of isomorphisms between ∂ αU and ∂ αV for α ∈ {+,−} extends
uniquely to an isomorphism between ∂U and ∂V .

The first three imply that U #k V is well-defined and does not depend on a choice of isomorphism between
∂
+
k U and ∂

−
k V . The fourth implies that U ⇒ V can be uniquely constructed by extending the isomor-

phisms ∂ αU
∼
↪→ ∂ αV to an isomorphism ∂U

∼
↪→ ∂V , then gluing U and V along this isomorphism, and

finally adding a greatest element with the appropriate orientation.
Example 2.7. Let arrow := (• ⇒ •) and binary := ((arrow #0 arrow)⇒ arrow). The shape of the dia-
gram of Example 1.5 is generated as binary #0 arrow, while the oriented graded poset of Example 2.4 is
generated as (cobinary #0 arrow) #1 (arrow #0 binary), where cobinary := (arrow⇒ (arrow #0 arrow)).
Remark 2.8. As discussed in [13, §2.1], the pasting constructions − #k− satisfy the equations of compo-
sition in strict ω-categories up to unique isomorphism. It follows that the “same” regular molecule may
be constructed in different ways. For example, letting globe := (arrow⇒ arrow), we have

(globe #0 arrow) #1 (arrow #0 globe) ' globe #0 globe ' (arrow #0 globe) #1 (globe #0 arrow).

0 1 2

0 1 2 3

0 1

32

10

0 1

Implementation 2.9. We want to implement regular molecules as a subtype Shape of OgPoset with a
nullary constructor point and partial binary constructors atom(−,−) and pastek(−,−) for k ∈ N. In
order to implement the constructors, we need to be able to perform the following operations:

1. compute input and output k-boundaries;
2. check if a closed subset is round;
3. determine if two regular molecules are isomorphic;
4. compute the pushout of a span of inclusions.

The first, second, and fourth of these admit straightforward algorithms of low-degree polynomial time
complexity, that do not rely on any special properties of regular molecules. The third problem, however,
is non-trivial. Indeed, the isomorphism problem generalised to all oriented graded posets is equivalent to
the graph isomorphism (GI) problem, which is not known to be in P; the best known algorithm, due to
Babai, runs in quasipolynomial time [1].
Remark 2.10. As customary in this context, a graph is a simple graph (no loops or multiple edges).
Proposition 2.11 — The isomorphism problem for oriented graded posets is GI-complete.

Proof. Deciding isomorphism of oriented graded posets is equivalent to deciding isomorphism of their
Hasse diagrams with {+,−}-labelled edges. The isomorphism problem for edge-labelled finite graphs
is an instance of the isomorphism problem for finite relational structures, which is GI-complete [16].

Conversely, a directed graph can be represented by its “oriented incidence poset”: the 0-dimensional
elements are the vertices, the 1-dimensional elements are the edges, the only input face of an edge is
its source, and the only output face of an edge is its target. Two directed graphs are isomorphic if and
only if their oriented incidence posets are isomorphic. Since GI reduces to the isomorphism problem for
directed graphs, it reduces to the isomorphism problem for 1-dimensional oriented graded posets. �

A. Hadzihasanovic & D. Kessler 7

Nevertheless, in the special case of regular molecules, we can do much better. Our strategy is to
describe a deterministic traversal algorithm, where the traversal order depends only on the intrinsic
structure of a regular molecule as an oriented graded poset and not on its representation.

Given U,V : OgPoset representing regular molecules, we traverse both U and V , and then reorder
their elements in each dimension according to their traversal order. If U ′,V ′ : OgPoset are the reordered
versions of U,V , we then have

U 'V if and only if U ′ ≡V ′.

We will show that, with this strategy, we can solve the isomorphism problem for regular molecules in
time O(n3 logn). A more precise upper bound is given in Theorem 2.18 below.

In addition to solving the isomorphism problem for regular molecules, the traversal order gives us a
canonical form for regular molecules in OgPoset form. If we implement the constructors of Shape in
such a way that they always produce an OgPoset in traversal order, we obtain that

for all U,V : Shape, U 'V if and only if U ≡V ,

that is, we have a unique representation for shapes of diagrams.

procedure TRAVERSE(U : regular molecule)
marked← []
stack← [U]
while stack is not empty do

5: focus← top of stack
dim← dim(focus)
if focus⊆marked then

pop focus from top of stack
else

10: if ∂−focus 6⊆marked then
push ∂−focus to top of stack

else
if focus= cl{x} for some x then

append x to marked
15: pop focus from top of stack

if ∂+focus 6⊆marked then
push ∂+focus on top of stack

else
y← first item of dimension dim−1 in marked such that

20: y has an unmarked input coface in focus
x← unique input coface of y in focus
push cl{x} on top of stack

return marked

At each iteration of the main loop (line 4), the current state is fully described by the stack – including its
top element, the focus – and by the list of marked elements.

Theorem 2.12 — The traversal algorithm is correct: given a regular molecule U, it terminates returning
a unique linear ordering of the elements of U.

The proof of Theorem 2.12 uses the following preliminary facts.

Lemma 2.13 — Let V be an item on the stack. Then V is a regular molecule. If W is below V on the
stack, then V is a proper subset of W.

8 Data structures for topologically sound higher-dimensional diagram rewriting

Remark 2.14. In fact, any V that appears on the stack is either ∂
−
k U , which we call “U-linked”, or it is

cl{x} or ∂ α
k x, which we call “x-linked”, for some x ∈U . In the latter case, V is round, which implies that

it is also pure [13, Lemma 1.35]: its maximal elements all have the same dimension.

Lemma 2.15 — Any subset V of U can be pushed onto the stack at most once.

Lemma 2.16 — Let V be the focus, n := dim(V). Then either V is fully marked, or there exists an
n-dimensional element of V which is unmarked.

2.17. In what follows, for a fixed regular molecule U , we let |En| be the number of edges between n and
(n−1)-dimensional elements in the Hasse diagram of U , and we let

|Umax| := max
n
|Un|, |Emax| := max

n
|En|.

Theorem 2.18 — The traversal algorithm admits an implementation running in time

O
(
|U |2(|Emax| · log |Emax|+ |Umax| · log |Umax|)

)
.

Proof. First of all, we represent any closed set on the stack with its graded set of maximal elements. To
initialise the algorithm, we only need to compute the maximal elements of U . This can be done in time
O(|U |) by going through the elements of U and checking if their set of cofaces is empty.

Next, let us find an upper bound for the number of iterations of the main loop (line 4). Let V be a set
on the stack, n := dim(V). Then V can become the focus

• at most once before pushing ∂−V onto the stack (line 11),
• at most once before pushing cl{y} onto the stack for each y ∈Vn (line 22), and
• at most once to be popped from the stack (line 8),

after which, by Lemma 2.15, it can never appear again. Thus, the number of loop iterations with V as
focus is bounded by |Vn|+2.

By Remark 2.14, every set V on the stack is either “U-linked” or “x-linked” for some x ∈U . There are
(dim(U)+1) many U-linked focusses and (2dim(x)+1) many x-linked focusses. Then

• the number of loop iterations with U-linked focusses is bounded by |U |+2dim(U)+2, and
• for each x, the number of loop iterations with x-linked focusses is bounded by |cl{x}|+4dim(x)+2.

Since there are |U | elements, |cl{x}| ≤ |U |, and dim(x) ≤ dim(U), we have a coarse upper bound of
(|U |+1)(|U |+4dim(U)+2) on the total number of iterations, which is O(|U |2).

Next, in our implementation, we split the list of marked elements into three objects: a list order (for the
total traversal order), an array of lists grorder (for the traversal order split by dimension), and a graded
set marked (for the set of marked elements).

Consider a single loop iteration with focus V , n := dim(V).
(Line 7). By Lemma 2.16, to check if V is fully marked, it suffices to check whether Vn ⊆ markedn.
Since both are sorted arrays of integers, they can be compared in time linear in |Vn|+ |markedn|, which is
O(|Un|). At this stage, we may also record the unmarked n-dimensional elements of V in a sorted array
unmarked without affecting the complexity.
(Line 10). To compute the maximal elements of ∂−V and ∂+V , we may use different strategies depend-
ing on whether V is “U-linked” or not.

If V = ∂−n U , we compute the (n−1)-dimensional elements of ∂−V = ∂
−
n−1U simply by going through

the elements of Un−1 and checking which ones have empty sets of output cofaces, in time O(|Un−1|).
Lower-dimensional maximal elements are shared between V and ∂−V , so we may then point from the
latter to the former, at no extra cost.

A. Hadzihasanovic & D. Kessler 9

If V is not U-linked, V and its boundaries are pure, so the set of maximal elements of ∂ αV is equal
to ∆αV , and each of its elements is covered by an element of Vn. To compute it, we add all the in-
put and output faces of all x ∈ Vn to sets in_faces and out_faces, respectively, then use the relations
∆−V = in_faces\out_faces and ∆+V = out_faces\ in_faces.

There are O(|En|) faces of elements of Vn, and we can sort in_faces and out_faces, remove duplicates,
and compute their difference in time O(|En| · log |En|).

At this stage, we also create an associative array candidates as follows: whenever x ∈ Vn is in
unmarked, and y is an input face of x, we add the position of x as a value to candidates, indexed by
the position of y. We then sort the indices of candidates. This also takes time O(|En| · log |En|) so it does
not affect the overall complexity.
(Lines 10, 16). By the same reasoning applied to line 7, checking if ∂−V and ∂+V are fully marked
takes time O(|Un−1|).
(Line 14). If Vn has a single element that we mark, adding it to order and grorder takes constant time
with an appropriate implementation of lists. Adding it to marked takes O(|Un|).
(Lines 19—21). To select the next focus we traverse grordern−1 starting from the first item and search
for each item in the indices of candidates until we find a hit y. This takes time O(|Un−1| · log |Un−1|) in
the worst case. The next focus will be cl{x}, where x is the value corresponding to index y.

Overall, the worst-case complexity is O(|Un|+ |En| · log |En|+ |Un−1| · log |Un−1|). Using the bounds
|Un|, |Un−1| ≤ |Umax| and |En| ≤ |Emax|, and multiplying by our bound on the number of iterations, we
conclude. �

3 A type theory for higher-dimensional rewriting

3.1. We rapidly go through the definitions of diagrammatic sets and some related notions. For a thorough
treatment, we refer to [13, Section 4 and onwards], and to [14, Section V] for diagrammatic complexes
as presentations of higher-dimensional theories.

3.2 (Diagrammatic set). Let (to be read atom) be a skeleton of the full subcategory of ogPos on
the atoms of every dimension. A diagrammatic set is a presheaf on . Diagrammatic sets and their
morphisms of presheaves form a category Set.

3.3. We identify with a full subcategory ↪→ Set via the Yoneda embedding. With this identi-
fication, we use morphisms in Set as our notation for both elements and structural operations of a
diagrammatic set X :

• x ∈ X(U) becomes x : U → X , and
• for each map f : V →U in , X(f)(x) ∈ X(V) becomes f ;x : V → X .

The embedding ↪→ Set extends along pushouts of inclusions to the full subcategory of ogPos on the
regular molecules.

3.4 (Diagrams and cells). Let X be a diagrammatic set and U a regular molecule. A diagram of shape
U in X is a morphism x : U → X . A diagram is a cell if U is an atom. For all n ∈ N, we say that x is an
n-diagram or an n-cell when dim(U) = n.

If U decomposes as U1 #k U2, we write x = x1 #k x2 for xi := ıi;x, where ıi is the inclusion Ui ↪→U for
i∈ {1,2}. Let ıαk : ∂ α

k U ↪→U be the inclusions of the k-boundaries of U . The input k-boundary of x is the
diagram ∂

−
k x := ı−k ;x and the output k-boundary of x is the diagram ∂

+
k x := ı+k ;x. We write x : y−⇒ y+

to express that ∂ α
k x = yα for each α ∈ {+,−}.

10 Data structures for topologically sound higher-dimensional diagram rewriting

3.5 (Diagrammatic complex). For each n ∈ N, let n be the full subcategory of on the atoms of
dimension ≤ n, and let −1 be the empty subcategory. The restriction functor Set→ PSh(n) has a
left adjoint; let σ≤n be the comonad induced by this adjunction. The n-skeleton of a diagrammatic set X
is the counit σ≤nX → X . For all k ≤ n, the k-skeleton factors uniquely through the n-skeleton of X .

A diagrammatic complex is a diagrammatic set X together with a set X = ∑n∈NXn of generating
cells such that, for all n ∈ N,

⊔
x∈Xn

∂U(x)

σ≤nXσ≤n−1X

⊔
x∈Xn

U(x)

(∂x)x∈Xn (x)x∈Xn

is a pushout in Set, where U(x) denotes the shape of x. A diagrammatic complex is finite if X is finite.

3.6 (Support-based diagrammatic complex). Each cell in a diagrammatic complex (X ,X) is uniquely of
the form (p : U �V, x : V →X), where p is a surjective map of atoms and x∈X . We let supp(p,x) := x,
the support of (p,x).

A support-based diagrammatic complex is the quotient of a diagrammatic complex by the relations

x∼ y if and only if supp(ı;x) = supp(ı;y) (1)

for all cells x,y : U → X and all inclusions of atoms ı : V ↪→U . We let Cpxfsb denote the full subcate-
gory of Set on the finite, support-based diagrammatic complexes.

3.7. We define a dependent type theory for diagrammatic sets – more precisely, for finite, support-based
diagrammatic complexes – that relies on an underlying unique representation of regular molecules and
their maps, treated as a “black box”. Of course, in the previous section we have provided such an
implementation and proved that it is computationally feasible. Nevertheless, it is useful to separate its
abstract properties from the implementation details.

3.8 (DiagSet). Let V be an infinite set of variables. We define a type theory DiagSet as follows.
Terms. A term t is a pair of a regular molecule U , the shape of t, and a function t : U → V. We write
t/U to express that t is a term of shape U . Maps p : U →V act on terms by precomposition: if t/V is a
term, then p∗t := (p; t)/U . In particular, we let ∂ α

k t := (ıαk ; t)/∂ α
k V for all k ∈ N and α ∈ {+,−}.

Types. A type A is either ∅ or an expression t ⇒ s where t,s are terms. We may annotate a term t of
shape U with the type A :=∅ if U ≡ •, and A := ∂−t⇒ ∂+t otherwise.
Contexts. A context Γ is a list x1 : A1, . . . ,xn : An of typed variables. We consider two contexts to be
equal if they are equal up to a permutation. If x : A is a typed variable, we say that x has shape • if A≡∅,
and U ⇒V if A≡ t/U ⇒ s/V . We write x/U : A to express that x : A has shape U .
Substitutions. A substitution σ is a list x1 7→ t1, . . . ,xn 7→ tn of assignments of terms to variables. We
consider two substitutions to be equal if they are equal up to a permutation.
Judgments. We consider three kinds of judgments:

• Γ ` meaning that Γ is a well-formed context,
• Γ ` t meaning that t is a well-formed term in context Γ, and
• ∆ ` σ : Γ meaning that σ is a well-formed substitution from context ∆ to context Γ.

The inference rules of DiagSet are the following. We use 〈〉 to indicate the empty list.

A. Hadzihasanovic & D. Kessler 11

Rules for contexts.

init

〈〉 `
Γ `

pt

Γ, x : ∅ `

Γ ` t/U : r−⇒ r+ Γ ` s/V : r−⇒ r+ U,V round
gen

Γ, x : t⇒ s `

(where x ∈ V is fresh)
Rules for terms.

Γ ` (x/V : A) ∈ Γ U atom p : U �V surjective
cell

Γ ` p∗x̂/U

Γ ` t/U Γ ` s/V ∂
+
k t ≡ ∂

−
k s

pastek, k < min(dim(U),dim(V))
Γ ` (t #k s)/(U #k V)

Rules for substitutions.

Γ `
id

Γ ` 〈〉 : Γ

∆ ` σ : Γ Γ, x : s/U ⇒ r/V ` ∆ ` t/U ⇒V : s[σ]⇒ r[σ]
ext

∆ ` 〈σ , x 7→ t〉 : (Γ, x : s⇒ r)

In the rules cell and paste, the terms x̂ and t #k s are defined as follows:

• x̂ is the unique term of shape V which sends the greatest element of V to x, and, if A≡ t⇒ s, is equal
to t on ∂−V and to s on ∂+V ;

• t #k s is the unique term of shape U #k V which is equal to t on U ↪→ (U #k V) and to s on V ↪→ (U #k V).

The side conditions for gen and paste ensure that this is well-defined.
To define the action t[σ] of a well-formed substitution σ on a term t, we extend σ to a function V→V

as follows: for all x ∈ V, if (x 7→ t/U) ∈ σ , we let σ(x) := t(>), where > is the greatest element of
U ; otherwise, σ(x) := x. Then t[σ] is the composite of t : U → V and σ : V→ V. Note that this is
well-defined because a well-formed substitution assigns to each variable a term whose shape is an atom.
3.9 (Syntactic category). The syntactic category Ctx[DiagSet] has

• well-formed contexts Γ as objects, and
• well-formed substitutions as morphisms from ∆ to Γ,

with the obvious composition of substitutions, and empty substitutions as identities.
Theorem 3.10 — The category Ctx[DiagSet]op is equivalent to Cpxfsb.

Sketch of proof. We define an encoding enc of finite support-based diagrammatic complexes, diagrams,
and morphisms as contexts, terms, and substitutions. Given (X ,X), we pick an injective function
name : X → V, assigning unique variable names to the generating cells of X .

For all diagrams d : U → X , we define a term enc(d) as follows: for all x ∈U , we let enc(d)(x) be
equal to name(supp(d|cl{x})). Since (X ,X) is support-based, enc(d)≡ enc(d′) implies d = d′.

Let n be the greatest dimension in which Xn is non-empty, and pick a linear ordering x1, . . . ,xmk of
Xk for all k ≤ n. We let enc(X ,X) := Γ0, . . . ,Γn, where

Γk := name(x1) : enc(∂−x1)⇒ enc(∂+x1), . . . , name(xmk) : enc(∂−xmk)⇒ enc(∂+xmk).

By the construction of X as a colimit of its generating cells, any map X → Y is uniquely determined by
what it does on X . Given a map f : (X ,X)→ (Y,Y) in Cpxfsb, we let enc(f) be the substitution

〈nameX(x) 7→ encY (f (x))〉x∈X .

12 Data structures for topologically sound higher-dimensional diagram rewriting

Conversely, we define an interpretation J−K of well-formed contexts, terms, and substitutions by induc-
tion on inference rules of DiagSet. At each step the interpretation JΓK of a well-formed context is a
support-based diagrammatic complex with one generator Jx̂K of shape U for each variable x/U in Γ.

• (init) The interpretation of the empty context is the initial diagrammatic set.
• (pt) Suppose JΓK is defined. The interpretation of Γ, x : ∅ is the coproduct JΓK+•. The interpretation

of x̂ is the inclusion • ↪→ JΓK+•.
• (gen) Suppose JΓK and Jt/UK,Js/V K are defined. The interpretation of Γ, x : t ⇒ s is the pushout of

∂ Jx̂K : ∂ (U ⇒V)→ JΓK and ∂ (U ⇒V) ↪→ (U ⇒V), quotiented by the equations (1), where ∂ Jx̂K is
equal to JtK on ∂−(U ⇒V) and to JsK on ∂+(U ⇒V).

• (cell) Suppose JΓK is defined and has a generating cell Jx̂K. The interpretation of p∗x̂ is p;Jx̂K.
• (pastek) Suppose JΓK and JtK,JsK are defined with ∂

+
k JtK = J∂

+
k tK = J∂

−
k sK = ∂

−
k JsK. The interpreta-

tion of t #k s is the diagram JtK #k JsK.
• (id) The interpretation of the empty substitution in context Γ is the identity of JΓK.
• (ext) Suppose JσK and JtK are defined, where Jx̂K and JtK both have the same shape U . By the

construction of JΓ,xK as a colimit of JΓK and U , the pair of JσK : JΓK → J∆K and JtK : U → JΓK
induces a unique morphism Jσ ,x 7→ tK : JΓ,xK→ J∆K.

It is routine to check that enc and J−K define contravariant functors between Cpxfsb and Ctx[DiagSet],
and that they are each other’s inverse up to natural isomorphism. �

Remark 3.11. The proof of Theorem 3.10 gives a semantic characterisation of well-formed terms as
diagrams in a diagrammatic set. An immediate consequence is that the following rule is admissible:

Γ ` t/V p : U →V map
pb

Γ ` p∗t/U

where p is an arbitrary map of regular molecules.
Comment 3.12. A sticking point in our type theory is the fact that cell is parametrised by an arbitrary
surjective map of atoms p. This is necessary to access the “weak units” and degenerate cells which in
our framework are needed, among other things, to model nullary operations in an algebraic theory.

In practice, however, this is the one point in which the underlying implementation of regular molecules
and their maps has to be explicitly accessed in order to define p and its domain. To avoid this, in a
practical implementation, we want to include explicitly some extra admissible rules, corresponding to
the application of useful maps that are parametric in their codomain.

In particular, we want to explicitly include

• the trivial case p≡ idU :
Γ ` (x/U : A) ∈ Γ

cell′

Γ ` x̂/U
,

• unit rules, modelling [13, §4.16]:
Γ ` t/U

unit

Γ ` unit(t) := τ
∗(t) : t⇒ t

,

• left and right unitor rules, modelling [ibid., §4.17]:
Γ ` t/U V v ∂

−U round
lunitor

Γ ` lunitorV (t) := (`−V ↪→U)
∗t

Γ ` t/U V v ∂
+U round

runitor

Γ ` runitorV (t) := (r−V ↪→U)
∗t

where V can be specified, for example, by the set of positions of its maximal elements.

We may also have extra rules for simplex and cube degeneracy maps and for cube connection maps, in
the case where U is an oriented simplex or cube as in [ibid., §3.33]. All of these are implemented as
diagram methods in rewalt.

A. Hadzihasanovic & D. Kessler 13

Example 3.13. As an example, we give a presentation in DiagSet of the theory of a left-unital binary
operation, together with its implementation in rewalt. In the framework of diagrammatic sets, a many-
sorted “monoidal theory” is presented by a diagrammatic complex with a single 0-cell; this is analogous
to the way a monoidal category is a bicategory with a single 0-cell. The sorts are generating 1-cells, the
basic operations are generating 2-cells, and “oriented equations” are generating 3-cells.

First, we add a single 0-cell x and a single sort a.

init

〈〉 `
pt

x : ∅
cell′

x : ∅ ` x̂

x : ∅ ` x̂ x : ∅ ` x̂
gen

x : ∅, a : x̂⇒ x̂ `
cell′

x : ∅, a : x̂⇒ x̂ ` â

1 import rewalt

2 Lun = rewalt.DiagSet ()

3 x = Lun.add('x')

4 a = Lun.add('a', x, x)

Let Γ := x : ∅, a : x̂⇒ x̂. We add a binary operation m.

Γ ` â Γ ` â
paste0

Γ ` â #0 â Γ ` â
gen

Γ, m : â #0 â⇒ â `
cell′

Γ, m : â #0 â⇒ â ` m̂

5 m = Lun.add('m', a.paste(a), a)

Let Γ′ := Γ, m : â #0 â⇒ â. We produce a weak unit on x and add a nullary operation u.

Γ
′ ` x̂

unit

Γ
′ ` unit(x̂) Γ

′ ` â
gen

Γ
′, u : unit(x̂)⇒ â `

cell′

Γ
′, u : unit(x̂)⇒ â ` û

6 u = Lun.add('u', x.unit(), a)

Let Γ′′ := Γ′, u : unit(x̂)⇒ â. We produce a left unitor 2-cell on a, and add an “oriented equation”
exhibiting the fact that u is a left unit for m.

Γ
′′ ` û Γ

′′ ` â
paste0

Γ
′′ ` û #0 â Γ

′′ ` m̂
paste1

Γ
′′ ` (û #0 â)#1 m̂

Γ
′′ ` â/arrow

lunitor

Γ
′′ ` lunitor∂−arrow(â)

gen

Γ
′′, lu : ((û #0 â)#1 m̂)⇒ lunitor∂−arrow(â) `

7 lu = Lun.add('lu', u.paste(a).paste(m), a.lunitor ())

The following is a representation of lu as a term of DiagSet, that is, an oriented graded poset la-
belled with names, together with string diagram representations of lu, its input boundary, and its output
boundary, and the rewalt code that generated them.

14 Data structures for topologically sound higher-dimensional diagram rewriting

0,x 1,x 2,x

0,x 1,a 2,a 3,a

0,u 1,m 2,a

0,lu

a

mu

lu

a

a

a
x

u

m
a

ax

8 lu.hasse(tikz=True)

9 lu.draw(bgcolor='gray !10', tikz=True)

10 lu.input.draw(bgcolor='gray !10', tikz=True)

11 lu.output.draw(bgcolor='gray !10', tikz=True)

Comment 3.14. Provided we have a unique underlying representation of shapes, as described in Section
2, every term of DiagSet also has a unique representation. In this sense, terms of DiagSet are “noncom-
putational”: all the computation, which consists exclusively of computing and matching shapes, happens
under the hood before a term is even created, so the equality theory of terms is trivial.

This is intended. Rather than a computational theory in itself, DiagSet is intended as a substrate for
computational theories according to the paradigm of higher-dimensional rewriting. A term t : r−⇒ r+

can be seen as a rewrite of the “lower-dimensional” term r− to the term r+, and the extension of t via the
pastek rules establishes how the rewrite can happen in a wider context. In this sense, every well-formed
context in DiagSet contains its own internal computational theory on terms of each dimension.

Remark 3.15. While “rewrites in context” can be built with the pastek rules, this is quite impractical. In
practice, one wants to start from a diagram and apply a generating rewrite directly to a subdiagram. This
is modelled by pasting along a subdiagram [13, §4.12] in the theory of diagrammatic sets.

Pasting along a subdiagram is implemented in rewalt with methods to_inputs and to_outputs.
These invoke a procedure for recognising subdiagrams, which currently uses a quite naive algorithm.
The issue of recognising subdiagrams deserves further study, so we leave it to future work.

Conclusions and outlook

We have provided a formal implementation of “plain” diagrammatic sets. An obvious next step is the
formalisation of weakly invertible cells, and then of diagrammatic sets with weak composites, a model of
weak higher categories [13, Sections 5, 6]. This is in fact part of rewalt, but still lacks a formal analysis.

In addition, we still have a limited range of high-level methods for handling weak units. We may want,
for example, flexible higher-dimensional versions of “Mac Lane triangle” rules for shuffling weak units
around. Development of these methods, and others tailored to specific applications, will likely go hand
in hand with practical experience in the use of rewalt as a proof assistant.

To conclude, we have only scratched the surface of the algorithm and complexity theory of diagram
rewriting in higher dimensions. In particular, we have not yet studied the problem of searching for
a subdiagram within another diagram, whose solution is essential to any form of fully automated or
assisted diagram rewriting. We plan to tackle this problem in future work.
Acknowledgements. This work was supported by the ESF funded Estonian IT Academy research mea-
sure (project 2014-2020.4.05.19-0001) and by the Estonian Research Council grant PSG764.

A. Hadzihasanovic & D. Kessler 15

References

[1] L. Babai (2016): Graph isomorphism in quasipolynomial time [extended abstract]. In: Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Computing, ACM, pp. 684–697,
doi:10.1145/2897518.2897542. Available at https://doi.org/10.1145%2F2897518.2897542.

[2] K. Bar & J. Vicary (2017): Data structures for quasistrict higher categories. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2017.8005147. Avail-
able at https://doi.org/10.1109%2Flics.2017.8005147.

[3] T. Benjamin, E. Finster & S. Mimram (2021): Globular weak ω-categories as models of a type theory. arXiv
preprint arXiv:2106.04475.

[4] G. Bonfante & Y. Guiraud (2009): Polygraphic programs and polynomial-time functions. Logical Meth-
ods in Computer Science 5(2), doi:10.2168/lmcs-5(2:14)2009. Available at https://doi.org/10.2168%
2Flmcs-5%282%3A14%292009.

[5] A. Burroni (1993): Higher-dimensional word problems with applications to equational logic. Theoretical
Computer Science 115(1), pp. 43–62, doi:10.1016/0304-3975(93)90054-w. Available at https://doi.
org/10.1016%2F0304-3975%2893%2990054-w.

[6] P.L. Curien, C. Ho Thanh & S. Mimram (2019): Syntactic approaches to opetopes. arXiv preprint
arXiv:1903.05848.

[7] C. Dorn (2018): Associative n-categories. Ph.D. thesis, University of Oxford.

[8] E. Finster & S. Mimram (2017): A type-theoretical definition of weak ω-categories. In: 2017 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2017.8005124.
Available at https://doi.org/10.1109%2Flics.2017.8005124.

[9] E. Finster, D. Reutter & J. Vicary (2020): A type theory for strictly unital ∞-categories. arXiv preprint
arXiv:2007.08307.

[10] E. Finster, A. Rice & J. Vicary (2021): A type theory for strictly associative infinity categories. arXiv preprint
arXiv:2109.01513.

[11] S. Forest (2019): Unifying notions of pasting diagrams. arXiv preprint arXiv:1903.00282.

[12] Y. Guiraud (2019): Rewriting methods in higher algebra. Thèse d’habilitation à diriger des recherches,
Université Paris 7.

[13] A. Hadzihasanovic (2020): Diagrammatic sets and rewriting in weak higher categories. arXiv preprint
arXiv:2007.14505.

[14] A. Hadzihasanovic (2021): The smash product of monoidal theories. In: 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics52264.2021.9470575. Available
at https://doi.org/10.1109%2Flics52264.2021.9470575.

[15] C. Ho Thanh, P.L. Curien & S. Mimram (2019): A Sequent Calculus for Opetopes. In: 2019 34th An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2019.8785667.
Available at https://doi.org/10.1109%2Flics.2019.8785667.

[16] G.L. Miller (1979): Graph isomorphism, general remarks. Journal of Computer and System Sciences
18(2), pp. 128–142, doi:10.1016/0022-0000(79)90043-6. Available at https://doi.org/10.1016%

2F0022-0000%2879%2990043-6.

[17] D. Reutter & J. Vicary (2019): High-level methods for homotopy construction in associative n-
categories. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE,
doi:10.1109/lics.2019.8785895. Available at https://doi.org/10.1109%2Flics.2019.8785895.

[18] R. Steiner (1993): The algebra of directed complexes. Applied Categorical Structures 1(3), pp. 247–284,
doi:10.1007/bf00873990. Available at https://doi.org/10.1007%2Fbf00873990.

http://dx.doi.org/10.1145/2897518.2897542
https://doi.org/10.1145%2F2897518.2897542
http://dx.doi.org/10.1109/lics.2017.8005147
https://doi.org/10.1109%2Flics.2017.8005147
http://dx.doi.org/10.2168/lmcs-5(2:14)2009
https://doi.org/10.2168%2Flmcs-5%282%3A14%292009
https://doi.org/10.2168%2Flmcs-5%282%3A14%292009
http://dx.doi.org/10.1016/0304-3975(93)90054-w
https://doi.org/10.1016%2F0304-3975%2893%2990054-w
https://doi.org/10.1016%2F0304-3975%2893%2990054-w
http://dx.doi.org/10.1109/lics.2017.8005124
https://doi.org/10.1109%2Flics.2017.8005124
http://dx.doi.org/10.1109/lics52264.2021.9470575
https://doi.org/10.1109%2Flics52264.2021.9470575
http://dx.doi.org/10.1109/lics.2019.8785667
https://doi.org/10.1109%2Flics.2019.8785667
http://dx.doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.1016%2F0022-0000%2879%2990043-6
https://doi.org/10.1016%2F0022-0000%2879%2990043-6
http://dx.doi.org/10.1109/lics.2019.8785895
https://doi.org/10.1109%2Flics.2019.8785895
http://dx.doi.org/10.1007/bf00873990
https://doi.org/10.1007%2Fbf00873990

16 Data structures for topologically sound higher-dimensional diagram rewriting

A Correctness of traversal algorithm

Proof of Lemma 2.13. Initially, the stack only contains U , which is a regular molecule by assumption.
Assume, inductively, that the statement is true at the beginning of the current iteration with focus V , and
that a set V ′ is pushed onto the stack at the end. Then either

1. V ′ = ∂ αV for some α ∈ {+,−}, or

2. V ′ = cl{x} for some x ∈V .

In both cases, V ′ is a regular molecule and a proper subset of V (hence also of each item below V), under
the assumption that V is a regular molecule. �

Lemma A.1 — Suppose V is on the stack. Then all elements of V must be marked before any item below
V is accessed, or before any proper superset of V becomes the focus.

Proof. By Lemma 2.13, as long as V is on the stack, only V and its proper subsets can be on top. It
follows that, for a proper superset of V to be the focus, V must be popped from the stack at the end of an
iteration where V is the focus. There are only two ways this can happen:

• V was already fully marked before the current loop iteration, or

• ∂−V was fully marked and V = cl{x} for some x which is marked at the current loop iteration.

In both cases, ∂−V was already fully marked before the current loop iteration. In the latter case, if ∂+V
is already fully marked, then V = {x}∪ ∂−V ∪ ∂+V is also fully marked. Otherwise, ∂+V (V gets
pushed onto the stack to replace V , and must be popped before any superset of V becomes the focus. By
the same case distinction, whenever ∂+V is popped, either

• it was fully marked, in which case V was fully marked, or

• it is of the form cl{y} for some y which is marked at the current loop iteration.

Either way, since all regular molecules satisfy the globularity property ∂ α(∂+V) = ∂ α(∂−V)⊆ ∂−V , we
know that ∂+V , hence V , is fully marked at the end of the iteration, and nothing is added to the stack. �

Proof of Lemma 2.15. Suppose V is pushed onto the stack. As long as V is on the stack, any subsequent
addition to the stack must be a proper subset of V , so it cannot be equal to V .

If V is popped from the stack, by Lemma A.1, it must be fully marked before any item below it is
accessed. Since the algorithm checks if a set is fully marked before pushing it onto the stack, V can
never appear again. �

Proof of Lemma 2.16. First, we prove a weaker result: either V is fully marked, or there exists a maximal
element of V which is unmarked.

Let x ∈V be marked. At some prior iteration, cl{x} must have been the focus, and by Lemma A.1, in
order for V to become the focus, cl{x} must have been fully marked as well. Because

V =
⋃
k≤n

clMkV =
⋃
k≤n

⋃
x∈MkV

cl{x},

it follows that V is fully marked if and only if its maximal elements are all marked.
Now, V has one of the two forms in Remark 2.14. If V is of the second form, its maximal elements all

have the top dimension, so we only need to consider the case V = ∂
−
k U .

A. Hadzihasanovic & D. Kessler 17

At the start of the algorithm, U, . . . ,∂−0 U are all consecutively added to the stack. So ∂
−
k U becomes

the focus either at this stage, in which case all its elements are unmarked, or after ∂
−
k−1U is fully marked.

In the latter case, any maximal element of ∂
−
k U of dimension strictly smaller than k also belongs to

∂
−
k−1U . �

Proof of Theorem 2.12. As a particular case of Lemma A.1, U must be fully marked before the stack is
emptied. Therefore, the algorithm either terminates after all elements have been traversed, or it does not
terminate.

To prove that the algorithm does always terminate, it suffices to show that, unless all elements are
already marked, it always finds an element to mark. First of all, observe that, from any state, the algorithm
first goes through the following sequence of steps:

1. popping all fully marked subsets from the top of the stack;
2. once it reaches a subset which is not fully marked, successively pushing its lower-dimensional input

boundaries that are not fully marked onto the stack.

At the end of this sequence, we always reach a state in which the focus V is not fully marked, but ∂−V
is fully marked. Let us call such a V a proper focus.

We proceed by induction on dimension and proper subsets of a proper focus. If dim(V) = 0, since a
0-molecule always consists of a single element, V = {x}, and x gets marked at the current iteration.

Let n := dim(V). By Lemma 2.16, there is an unmarked x ∈Vn. If V = cl{x}, then x is marked at the
current iteration, and we are done. Otherwise, we prove that there always exists a pair (y,x) where x ∈Vn

is unmarked, and y is a marked input face of x. By [13, Lemma 1.16] applied to V , the coface x is unique
given y, so among such pairs we can pick the one where y comes earliest in the list of marked elements,
and this selects a unique x.

Let x ∈Vn be unmarked. By a dual version of [ibid., Lemma 1.37], there exists a sequence

y0→ x0→ . . .→ ym→ xm = x

where y0 ∈ ∆
−
n−1V , xi ∈ Vn, yi is an input face of xi, and yi+1 is an output face of xi. Since V is a proper

focus, y0 is marked. Let k be the smallest index such that xk is unmarked; because xm is unmarked, such
a k exists. Then xi is marked for all i < k, hence cl{xi} is also marked. It follows that yk ∈ ∂+xk−1 is
marked, and the pair (yk,xk) satisfies our requirement.

Thus, the algorithm will find a unique x ∈ Vn and push cl{x} onto the stack. The next proper focus
will necessarily be a proper subset of V , and we conclude by the inductive hypothesis. �

	Basic data structures
	Unique representation of shapes of diagrams
	A type theory for higher-dimensional rewriting
	Correctness of traversal algorithm

