
Central Submonads and Notions of Computation
Titouan Carette∗, Louis Lemonnier† and Vladimir Zamdzhiev‡
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‡ Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract—The notion of ”centre” has been introduced for
many algebraic structures in mathematics. A notable example
is the centre of a monoid which always determines a commu-
tative submonoid. Monads (in category theory) can be seen as
generalisations of monoids and in this paper we show how the
notion of centre may be extended to strong monads acting on
symmetric monoidal categories. We show that the centre of a
strong monad T , if it exists, determines a commutative submonad
Z of T , such that the Kleisli category of Z is isomorphic to the
premonoidal centre (in the sense of Power and Robinson) of the
Kleisli category of T . We provide three equivalent conditions
which characterise the existence of the centre of T . While not
every strong monad admits a centre, we show that every strong
monad on well-known naturally occurring categories does admit
a centre, thereby showing that this new notion is ubiquitous. We
also provide a computational interpretation of our ideas which
consists in giving a refinement of Moggi’s monadic metalanguage.
The added benefit is that this allows us to immediately establish a
large class of contextually equivalent terms for monads that admit
a non-trivial centre by simply looking at the richer syntactic
structure provided by the refinement.
This submission is an extended abstract. A preprint is available at
[1].

I. TECHNICAL SUMMARY OF CONTRIBUTIONS

a) (Commutative) Submonads: Recall that given a
strong monad (T , η, µ, τ) on a symmetric monoidal category
(C, I,⊗), a costrength τ ′ for T can be defined in a canonical
way using the symmetry of C. Then the monad T is said to
be commutative if the following diagram:

T X ⊗ T Y T (T X ⊗ Y ) T 2(X ⊗ Y )

T (X ⊗ T Y ) T 2(X ⊗ Y ) T (X ⊗ Y )

τTX,Y T τ ′X,Y

µX⊗Yτ ′X,T Y

T τX,Y µX⊗Y

(1)

commutes for every choice of objects X and Y of C. A
morphism between two strong monads T and P is a natural
transformation ι : T ⇒ P that satisfies some obvious coher-
ence conditions (see [2]). We say that a strong monad T is
a submonad of a strong monad P if there exists a monomor-
phism of strong monads ι : T ⇒ P (in the category of strong
monads over C with strong monad morphisms between them).
In this situation, the submonad monomorphism ι : T ⇒ P
induces a canonical categorical embedding I : CT → CP
between the Kleisli categories of the two monads.

b) Premonoidal Categories: Let T be a strong monad
on a symmetric monoidal category (C, I,⊗). Then, the Kleisli
category CT does not necessarily have a canonical monoidal
structure. However, it does have a canonical premonoidal
structure as shown by Power and Robinson [3]. In fact,
they show that this premonoidal structure is monoidal iff
the monad T is commutative. What is also interesting is
that Power and Robinson introduce the notion of centre for
premonoidal categories which plays an important part of its
definition. If D is a premonoidal category, then its centre,
denoted Z(D), is a monoidal subcategory of D that has
the same objects. However, given a strong monad T on a
symmetric monoidal category C, it does not necessarily hold
that the subcategory Z(CT ) determines a monad over C.
Nevertheless, in this situation, the left adjoint of the Kleisli
adjunction J : C→ CT always corestricts to Z(CT ) and we
write Ĵ : C→ Z(CT ) to indicate this corestriction.

c) Central Submonads acting on Set: The inspiration for
the construction of the central submonad (if it exists) comes
from the category Set where it can always be defined for
any monad acting on it. Given a (necessarily strong) monad
T : Set→ Set, and a set X , then we define the centre of T
at X , written ZX , to be the set

ZX def
= {t ∈ T X | ∀Y ∈ Ob(Set).∀s ∈ T Y.

µ(T τ ′(τ(t, s))) = µ(T τ(τ ′(t, s)))}

and we write ιX : ZX ⊆ T X for the indicated subset
inclusion. In other words, the centre of T at X is the subset of
T X which contains all monadic elements for which (1) holds.

Theorem 1. The assignment Z(−) extends to a commutative
submonad of T with ιX : ZX ⊆ T X the required monomor-
phism of strong monads. Furthermore, there exists a canonical
isomorphism SetZ ∼= Z(SetT ).

We refer to the commutative monad determined by this
theorem as the central submonad of T . This theorem, together
with our next example, shows that we have successfully
generalised the notion of centre for monoids to monads on
Set.

Example 2. Given a monoid (M, e,m), the free monad
induced by M is the monad T = (M × −) : Set → Set
with unit ηX :: x 7→ (e, x) and monad multiplication µX ::
(z, (z′, x)) 7→ (m(z, z′), x). Then, the central submonad Z of
T is given by the commutative monad (Z(M)×−) : Set→
Set, where Z(M) is the centre of the monoid M and where



the monad data is given by the (co)restrictions of the monad
data of T . For brevity, we omit details of the (canonically
induced) strength.

d) Centralisable Monads: We saw that every monad on
Set admits a centre that yields its central submonad, which
is necessarily commutative. However, a strong monad on an
arbitrary symmetric monoidal category need not admit a centre
at all. Next, we present three equivalent conditions for the
existence of such a centre (Theorem 7).

Definition 3 (Central Cone). Let X be an object of C. A
central cone of T at X is given by a pair (Z, ι) of an object
Z and a morphism ι : Z → T X, such that for any object Y,
the diagram:

Z ⊗ T Y T X ⊗ T Y T (X ⊗ T Y )

T 2(X ⊗ Y )

T (X ⊗ Y )

T X ⊗ T Y

T (T X ⊗ Y ) T 2(X ⊗ Y )

ι⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

ι⊗ T Y

τTX,Y

T τ ′X,Y µX⊗Y

commutes. If (Z, ι) and (Z ′, ι′) are two central cones of T
at X , then a morphism of central cones ϕ : (Z ′, ι′) → (Z, ι)
is a morphism ϕ : Z ′ → Z, such that ι ◦ ϕ = ι′. A terminal
central cone of T at X is a central cone (Z, ι) for T at X ,
such that for any central cone (Z ′, ι′) of T at X , there exists
a unique morphism of central cones ϕ : (Z ′, ι′)→ (Z, ι).

Definition 4 (Centralisable Monad). We say that the monad
T is centralisable if for any object X , a terminal central cone
of T at X exists, which we denote by writing (ZX, ιX).

Theorem 5. If the monad T is centralisable, then the assign-
ment Z(−) extends to a commutative monad (Z, ηZ , µZ , τZ)
on C. Moreover, Z is a commutative submonad of T with
ιX : ZX → T X giving the submonad monomorphism.

Theorem 6. In the situation of Theorem 5, the canonical em-
bedding functor I : CZ → CT corestricts to an isomorphism
of categories CZ ∼= Z(CT ).

The last two theorems show that we are justified in saying
the induced submonad Z is the central submonad of T .

Theorem 7 (Centralisability). Let T be a strong monad on a
symmetric monoidal category C. The following are equivalent:

1) For any object X of C, T admits a terminal central
cone at X;

2) There exists a commutative submonad Z of T such that
the canonical embedding functor I : CZ → CT core-
stricts to an isomorphism of categories CZ ∼= Z(CT );

3) The corestriction of the Kleisli left adjoint J : C→ CT
to the premonoidal centre Ĵ : C → Z(CT ) also is a
left adjoint.

Example 8. Any strong monad on Set is centralisable (as we
already saw). The same is true for any strong monad on the
categories DCPO,Meas,Top,Hilb,Vect and many other
Set-like categories.

In the linked preprint, we describe a strong monad which
is not centralisable. We do this by specifically constructing a
full subcategory of Set for this purpose. However, we are not
aware of any other naturally occurring monad described in the
literature that is not centralisable.

Example 9. The valuation monad V : DCPO→ DCPO is
strong, but its commutativity is an open problem [4]. The cen-
tral submonad of V is precisely the ”central valuations monad”
described in [5]. In fact, the latter work inspired the present
paper, which may be seen as a categorical generalisation of
the ideas presented in [5].

Example 10. The unbounded Giry monad G : Meas →
Meas, which assigns the space of all (possibly unbounded)
measures to a measurable space, is a strong monad which is
not commutative. This monad is centralisable and its central
submonad Z is such that ZX contains all discrete measures
on the measurable space X (and possibly others).

e) Computational Interpretation: Finally, we provide a
computational interpretation of our ideas by presenting a re-
finement of Moggi’s metalanguage [6]. The types are extended
by simply adding the Z unary connective that represents the
central submonad of T :

A,B ::= 1 | A×B | A→ B | ZA | T A.
An excerpt of the more interesting terms together with their
formation rules are shown below:

Γ, x : A `M : B

Γ ` λxA.M : A→ B
Γ `M : A→ B Γ ` N : A

Γ `MN : B

Γ `M : A
Γ ` retZ M : ZA

Γ `M : ZA Γ, x : A ` N : ZB
Γ ` do x←Z M ;N : ZB

Γ `M : ZA
Γ ` ιM : T A

Γ `M : T A Γ, x : A ` N : T B
Γ ` do x←T M ;N : T B

and we omit discussing constants in this short presentation,
but they can be added in principle. Note that the retZ term
is now of type ZA instead of T A, because the monadic unit is
central. We also add an extra term for monadic sequencing for
the Z monad and one extra term for demoting central terms
of type ZA to T A which is interpreted via the ι inclusion.
It is now easy to see that this system keeps track of monadic
operations that are central and so we can very easily establish
a large class of contextually equivalent terms by exploiting this
using standard semantic arguments. As part of future work, we
will describe a sound and adequate semantics of this system
(which is fairly straightforward) and we will also consider the
issue of full abstraction for specific monads with non-trivial
centres.
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