
Monoidal Streams for Dataflow Programming
Extended abstract

Elena Di Lavore
Tallinn University of Technology

Giovanni de Felice
University of Oxford

Quantinuum

Mario Román
Tallinn University of Technology

Abstract
We introduce monoidal streams: a generalization of causal
stream functions to monoidal categories. In the same way
that streams provide semantics to dataflow programming
with pure functions, monoidal streams provide semantics
to dataflow programming with theories of processes repre-
sented by a symmetric monoidal category. At the same time,
monoidal streams form a feedback monoidal category, which
can be used to interpret signal flow graphs. As an example,
we study a stochastic dataflow language.

This is an extended abstract of “Monoidal Streams for
Dataflow Programming”, to appear in LiCS ’22.

Keywords: Monoidal stream, Stream, Monoidal category,
Dataflow programming, Feedback, Signal flow graph, Coal-
gebra, Stochastic process.

1 Introuction
Dataflow languages. Dataflow (or stream-based) pro-

gramming languages, such as Lucid [11, 22], follow a para-
digm in which every declaration represents an infinite list of
values: a stream [2, 20]. The following program in a Lucid-
like language (Figure 1) computes the Fibonacci sequence,
thanks to a Fby (“followed by”) operator.

fib = 0 Fby (fib + (1 Fby Wait(fib)))

Figure 1. The Fibonacci sequence is 0 followed by the Fibonacci
sequence plus the Fibonacci sequence preceded by a 1.

The control structure of dataflow programs is inspired
by signal flow graphs [2, 15, 18]. Signal flow graphs are dia-
grammatic specifications of processes with feedback loops,
widely used in control system engineering. In a dataflow
program, feedback loops represent how the current value of
a stream may depend on its previous values. For instance,
the previous program (Figure 1) corresponds to the signal
flow graph in Figure 2.

Feedback monoidal categories. Signal flow graphs are
the graphical syntax for feedback monoidal categories [5, 6, 9,
10, 14]: they are the string diagrams for any monoidal theory,
extended with feedback.
Yet, semantics of dataflow languages have been mostly

restricted to theories of pure functions [2, 7, 8, 16, 19, 21]:
what are called cartesian monoidal categories. We claim that
this restriction is actually inessential; dataflow programs

1

+

𝑓 𝑏𝑦

0

𝑓 𝑏𝑦

𝑤𝑎𝑖𝑡
fib = fbk (copy;
𝜕(1 × wait) × id;
𝜕(fby) × id;

𝜕(+);
0 × id;
fby;
copy)

Figure 2. Fibonacci: signal flow graph and morphism.
may take semantics in non-cartesian monoidal categories,
exactly as their signal flow graphs do.

Contributions. The present work provides this missing
semantics: we constructmonoidal streams (Theorem 2.3) over
a symmetric monoidal category, which form a feedback mo-
noidal category (Theorem 3.3). Monoidal streams model the
values of amonoidal dataflow language, in the same way that
streams model the values of a classical dataflow language.
This opens the door to stochastic, effectful, or quantum data-
flow languages. In particular, we give semantics and string
diagrams for a stochastic dataflow programming language,
where the following code can be run.

walk = 0 Fby (Uniform(−1, 1) + walk)

Figure 3. A stochastic dataflow program. A random walk is 0
followed by the random walk plus a stochastic stream of steps
to the left (-1) or to the right (1), sampled uniformly.

+0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓
walk = fbk (
𝜕(unif) ⊗ id;
0 ⊗ 𝜕(+);

fby;
copy)

Figure 4. Random walk: signal flow graph and morphism.

2 Monoidal Streams
The manuscript contains three main definitions in terms
of universal properties: intensional [19], extensional and ob-
servational monoidal streams (Figure 5). The latter are our

https://arxiv.org/abs/2202.02061
https://arxiv.org/abs/2202.02061

Elena Di Lavore, Giovanni de Felice, and Mario Román

definitive notion of streams and we refer to them as simply
monoidal streams. The present extended abstract directly
introduces the coinductive definition of monoidal streams
(Definition 2.4) and their explicit construction: observational
sequences (Definition 2.2).

Monoidal streams. Classically, type-variant streams have
a neat coinductive definition [12, 17] that says:
“A stream of type A = (𝐴0, 𝐴1, . . .) is an element of 𝐴0
together with a stream of type A+ = (𝐴1, 𝐴2, . . .)”.

Formally, streams are the final fixpoint of the equation

S(𝐴0, 𝐴1, . . .) � 𝐴0 × S(𝐴1, 𝐴2, . . .);
and this fixpoint is computed to be S(A) = ∏∞

𝑛∈N 𝐴𝑛 .
In the same vein, we want to introduce not only streams

but stream processes over a fixed theory of processes.
“A stream process fromX = (𝑋0, 𝑋1, . . .) to Y = (𝑌0, 𝑌1, . . .)
is a process from 𝑋0 to 𝑌0 communicating along a channel
𝑀 with a stream process from X+ = (𝑋1, 𝑋2, . . .) to Y+ =

(𝑌1, 𝑌2, . . .).”
Streams are recovered as stream processes on an empty input,
so we take this more general slogan as our definition of
monoidal stream (in Theorem 2.3). Formally, they are the
final fixpoint of the equation in Figure 5.

Q(X,Y) �
∫ 𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) × Q(𝑀 · X+,Y+).

Figure 5. Fixpoint equation for monoidal streams.

Remark 2.1 (Notation). Let X ∈ [N,C] be a sequence of ob-
jects (𝑋0, 𝑋1, . . .). We write X+ for its tail (𝑋1, 𝑋2, . . .). Given
𝑀 ∈ C, we write𝑀 ·X for the sequence (𝑀 ⊗𝑋0, 𝑋1, 𝑋2, . . .);
As a consequence, we write𝑀 · X+ for (𝑀 ⊗ 𝑋1, 𝑋2, 𝑋3, . . .).

Definition 2.2 (Observational sequence). The set of obser-
vational sequences is

Obs(X,Y) �
(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖)

) /
≈

where (≈) is observational equivalence.

Theorem 2.3. In a productive category, the final fixpoint of
the equation in Figure 5, which is the set of monoidal streams,
coincides with the set of observational sequences.

The final fixpoint of a functor does not need to exist in
general. However, when C satisfies some extra conditions,
which we call productivity, the final fixpoint does exist and
can be computed by Adámek’s theorem [1]. This allows us
to recast the definition of monoidal streams in coinductive
terms.

Definition 2.4 (Monoidal stream). A monoidal stream 𝑓 ∈
Stream(X,Y) is a triple consisting of

• 𝑀 (𝑓) ∈ Obj(C), the memory,
• now(𝑓) ∈ hom (𝑋0, 𝑀 (𝑓) ⊗ 𝑌0), the first action,
• later(𝑓) ∈ Stream(𝑀 (𝑓) ·X+,Y+), the rest of the action,

quotiented by dinaturality in𝑀 .

Explicitly, monoidal streams are quotiented by the equiv-
alence relation 𝑓 ∼ 𝑔 generated by

• the existence of 𝑟 : 𝑀 (𝑔) → 𝑀 (𝑓),
• such that now(𝑓) = now(𝑔); 𝑟 ,
• and such that 𝑟 · later(𝑓) ∼ later(𝑔).

Here, 𝑟 · later(𝑓) ∈ Stream(𝑀 (𝑔) · X+,Y+) is obtained by
precomposition of the first action of later(𝑓) with 𝑟 .

3 Delayed feedback for streams
Monoidal streams form a feedback monoidal category with
respect to the “delay functor” 𝜕 : [N,C] → [N,C].

Definition 3.1 (Delay functor). Let 𝜕 : [N,C] → [N,C]
be the endofunctor defined on objects X = (𝑋0, 𝑋1, . . .), as
𝜕(X) = (𝐼 , 𝑋0, 𝑋1, . . .); and on morphisms f = (𝑓0, 𝑓1, . . .) as
𝜕(f) = (id𝐼 , 𝑓0, 𝑓1, . . .).

Given some stream in Stream(𝜕S ⊗ X,S ⊗ Y), we can
create a new stream in Stream(X,Y) that passes the output
in S as a memory channel that gets used as the input in
𝜕S. As a consequence, the category of monoidal streams
has a graphical calculus given by that of feedback monoidal
categories [3, 4, 9, 13, 14]. This graphical calculus is complete
for extensional equivalence.

Definition 3.2. A feedback monoidal category is a symme-
tric monoidal category (C, ⊗, 𝐼) endowed with a monoidal
endofunctor F : C → C and an operation

fbk𝑆 : hom (F(𝑆) ⊗ 𝑋, 𝑆 ⊗ 𝑌) → hom (𝑋,𝑌)

for all 𝑆 , 𝑋 and 𝑌 objects of C; this operation needs to satisfy
the following axioms.
(A1). Tightening:𝑢 ;fbk𝑆 (𝑓) ;𝑣 = fbk𝑆 ((idF𝑆⊗𝑢) ;𝑓 ;(id𝑆⊗𝑣)).
(A2). Vanishing: fbk𝐼 (𝑓) = 𝑓 .
(A3). Joining: fbk𝑇 (fbk𝑆 (𝑓)) = fbk𝑆⊗𝑇 (𝑓)
(A4). Strength: fbk𝑆 (𝑓) ⊗ 𝑔 = fbk𝑆 (𝑓 ⊗ 𝑔).
(A5). Sliding: fbk𝑆 ((Fℎ ⊗ id𝑋) ; 𝑓) = fbk𝑇 (𝑓 ; (ℎ ⊗ id𝑌)).

𝑓

𝐹ℎ =
𝑓

ℎ

Figure 6. The sliding axiom (A5).

Theorem 3.3. Monoidal streams over a symmetric monoidal
category form a 𝜕-feedback monoidal category.

Monoidal Streams for Dataflow Programming

Acknowledgments
Elena Di Lavore and Mario Román were supported by the
ESF funded Estonian IT Academy research measure (project
2014-2020.4.05.19-0001) and the Estonian Research Council
grant PRG1210. We thank Paweł Sobociński, Edward More-
house, Fosco Loregian, Niels Voorneveld, George Kaye, Chad
Nester, and the reviewers for an earlier version presented at
NWPT’21.

References
[1] Jiří Adámek. Free algebras and automata realizations in the language

of categories. Commentationes Mathematicae Universitatis Carolinae,
015(4):589–602, 1974. URL: http://eudml.org/doc/16649.

[2] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halb-
wachs. Data-flow synchronous languages. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, A Decade of Concur-
rency, Reflections and Perspectives, REX School/Symposium, Noordwi-
jkerhout, The Netherlands, June 1-4, 1993, Proceedings, volume 803
of Lecture Notes in Computer Science, pages 1–45. Springer, 1993.
doi:10.1007/3-540-58043-3_16.

[3] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational
Logic of Iterative Processes. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1993. doi:10.1007/978-3-642-78034-9.

[4] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński,
and Fabio Zanasi. Diagrammatic algebra: from linear to concurrent
systems. Proc. ACM Program. Lang., 3(POPL):25:1–25:28, 2019. doi:
10.1145/3290338.

[5] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical
semantics of signal flow graphs. In International Conference on Con-
currency Theory, pages 435–450. Springer, 2014.

[6] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full abstraction
for signal flow graphs. ACM SIGPLAN Notices, 50(1):515–526, 2015.

[7] Patrick Cousot. Syntactic and semantic soundness of structural data-
flow analysis. In Bor-Yuh Evan Chang, editor, Static Analysis - 26th
International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019,
Proceedings, volume 11822 of Lecture Notes in Computer Science, pages
96–117. Springer, 2019. doi:10.1007/978-3-030-32304-2_6.

[8] Antonin Delpeuch. A complete language for faceted dataflow pro-
grams. In John Baez and Bob Coecke, editors, Proceedings Applied Cat-
egory Theory 2019, ACT 2019, University of Oxford, UK, 15-19 July 2019,
volume 323 of EPTCS, pages 1–14, 2019. doi:10.4204/EPTCS.323.1.

[9] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini,
and Paweł Sobociński. A canonical algebra of open transition systems.
In Gwen Salaün and Anton Wijs, editors, Formal Aspects of Component
Software, pages 63–81, Cham, 2021. Springer International Publishing.

[10] Dan R. Ghica, George Kaye, and David Sprunger. Full abstraction for
digital circuits, 2022. arXiv:2201.10456.

[11] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and verifying real-time systems by means of the synchronous
data-flow language LUSTRE. IEEE Trans. Software Eng., 18(9):785–793,
1992. doi:10.1109/32.159839.

[12] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States
and Observation, volume 59 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2016. doi:10.1017/
CBO9781316823187.

[13] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the
algebra of feedback and systems with boundary. In Rendiconti del
Seminario Matematico di Palermo, 1999.

[14] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feed-
back, trace and fixed-point semantics. RAIRO-Theor. Informatics Appl.,
36(2):181–194, 2002. doi:10.1051/ita:2002009.

[15] S. J. Mason. Feedback Theory - Some properties of signal flow graphs.
Proceedings of the Institute of Radio Engineers, 41(9):1144–1156, 1953.
doi:10.1109/JRPROC.1953.274449.

[16] José Nuno Oliveira. The formal semantics of deterministic dataflow
programs. PhD thesis, University of Manchester, UK, 1984. URL:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376586.

[17] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. The-
oretical Computer Science, 249(1):3–80, 2000. doi:10.1016/S0304-
3975(00)00056-6.

[18] Claude E. Shannon. The Theory and Design of Linear Differential
Equation Machines. Bell Telephone Laboratories, 1942.

[19] David Sprunger and Shin-ya Katsumata. Differentiable causal com-
putations via delayed trace. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785670.

[20] TarmoUustalu and VarmoVene. The essence of dataflow programming.
In Kwangkeun Yi, editor, Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages
2–18. Springer, 2005. doi:10.1007/11575467_2.

[21] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
In Jiří Adámek and Clemens Kupke, editors, Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008, volume 203 of Electronic Notes
in Theoretical Computer Science, pages 263–284. Elsevier, 2008. doi:
10.1016/j.entcs.2008.05.029.

[22] William W Wadge, Edward A Ashcroft, et al. Lucid, the dataflow
programming language, volume 303. Academic Press London, 1985.

http://eudml.org/doc/16649
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.1007/978-3-030-32304-2_6
https://doi.org/10.4204/EPTCS.323.1
http://arxiv.org/abs/2201.10456
https://doi.org/10.1109/32.159839
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1051/ita:2002009
https://doi.org/10.1109/JRPROC.1953.274449
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376586
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1109/LICS.2019.8785670
https://doi.org/10.1007/11575467_2
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

	Abstract
	1 Introuction
	2 Monoidal Streams
	3 Delayed feedback for streams
	Acknowledgments
	References

