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Abstract
We introduce monoidal streams: a generalization of causal
stream functions to monoidal categories. In the same way
that streams provide semantics to dataflow programming
with pure functions, monoidal streams provide semantics
to dataflow programming with theories of processes repre-
sented by a symmetric monoidal category. At the same time,
monoidal streams form a feedback monoidal category, which
can be used to interpret signal flow graphs. As an example,
we study a stochastic dataflow language.

This is an extended abstract of “Monoidal Streams for
Dataflow Programming”, to appear in LiCS ’22.
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1 Introuction
Dataflow languages. Dataflow (or stream-based) pro-

gramming languages, such as Lucid [11, 22], follow a para-
digm in which every declaration represents an infinite list of
values: a stream [2, 20]. The following program in a Lucid-
like language (Figure 1) computes the Fibonacci sequence,
thanks to a Fby (“followed by”) operator.

fib = 0 Fby (fib + (1 Fby Wait(fib)))

Figure 1. The Fibonacci sequence is 0 followed by the Fibonacci
sequence plus the Fibonacci sequence preceded by a 1.

The control structure of dataflow programs is inspired
by signal flow graphs [2, 15, 18]. Signal flow graphs are dia-
grammatic specifications of processes with feedback loops,
widely used in control system engineering. In a dataflow
program, feedback loops represent how the current value of
a stream may depend on its previous values. For instance,
the previous program (Figure 1) corresponds to the signal
flow graph in Figure 2.

Feedback monoidal categories. Signal flow graphs are
the graphical syntax for feedback monoidal categories [5, 6, 9,
10, 14]: they are the string diagrams for any monoidal theory,
extended with feedback.
Yet, semantics of dataflow languages have been mostly

restricted to theories of pure functions [2, 7, 8, 16, 19, 21]:
what are called cartesian monoidal categories. We claim that
this restriction is actually inessential; dataflow programs
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fib = fbk (copy;
𝜕(1 × wait) × id;
𝜕(fby) × id;

𝜕(+);
0 × id;
fby;
copy)

Figure 2. Fibonacci: signal flow graph and morphism.
may take semantics in non-cartesian monoidal categories,
exactly as their signal flow graphs do.

Contributions. The present work provides this missing
semantics: we constructmonoidal streams (Theorem 2.3) over
a symmetric monoidal category, which form a feedback mo-
noidal category (Theorem 3.3). Monoidal streams model the
values of amonoidal dataflow language, in the same way that
streams model the values of a classical dataflow language.
This opens the door to stochastic, effectful, or quantum data-
flow languages. In particular, we give semantics and string
diagrams for a stochastic dataflow programming language,
where the following code can be run.

walk = 0 Fby (Uniform(−1, 1) + walk)

Figure 3. A stochastic dataflow program. A random walk is 0
followed by the random walk plus a stochastic stream of steps
to the left (-1) or to the right (1), sampled uniformly.
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walk = fbk (
𝜕(unif) ⊗ id;
0 ⊗ 𝜕(+);

fby;
copy)

Figure 4. Random walk: signal flow graph and morphism.

2 Monoidal Streams
The manuscript contains three main definitions in terms
of universal properties: intensional [19], extensional and ob-
servational monoidal streams (Figure 5). The latter are our
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definitive notion of streams and we refer to them as simply
monoidal streams. The present extended abstract directly
introduces the coinductive definition of monoidal streams
(Definition 2.4) and their explicit construction: observational
sequences (Definition 2.2).

Monoidal streams. Classically, type-variant streams have
a neat coinductive definition [12, 17] that says:
“A stream of type A = (𝐴0, 𝐴1, . . .) is an element of 𝐴0
together with a stream of type A+ = (𝐴1, 𝐴2, . . .)”.

Formally, streams are the final fixpoint of the equation

S(𝐴0, 𝐴1, . . .) � 𝐴0 × S(𝐴1, 𝐴2, . . .);
and this fixpoint is computed to be S(A) = ∏∞

𝑛∈N 𝐴𝑛 .
In the same vein, we want to introduce not only streams

but stream processes over a fixed theory of processes.
“A stream process fromX = (𝑋0, 𝑋1, . . .) to Y = (𝑌0, 𝑌1, . . .)
is a process from 𝑋0 to 𝑌0 communicating along a channel
𝑀 with a stream process from X+ = (𝑋1, 𝑋2, . . .) to Y+ =

(𝑌1, 𝑌2, . . .).”
Streams are recovered as stream processes on an empty input,
so we take this more general slogan as our definition of
monoidal stream (in Theorem 2.3). Formally, they are the
final fixpoint of the equation in Figure 5.

Q(X,Y) �
∫ 𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) × Q(𝑀 · X+,Y+).

Figure 5. Fixpoint equation for monoidal streams.

Remark 2.1 (Notation). Let X ∈ [N,C] be a sequence of ob-
jects (𝑋0, 𝑋1, . . .). We write X+ for its tail (𝑋1, 𝑋2, . . . ). Given
𝑀 ∈ C, we write𝑀 ·X for the sequence (𝑀 ⊗𝑋0, 𝑋1, 𝑋2, . . . );
As a consequence, we write𝑀 · X+ for (𝑀 ⊗ 𝑋1, 𝑋2, 𝑋3, . . . ).

Definition 2.2 (Observational sequence). The set of obser-
vational sequences is

Obs(X,Y) �
(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖 )

) /
≈

where (≈) is observational equivalence.

Theorem 2.3. In a productive category, the final fixpoint of
the equation in Figure 5, which is the set of monoidal streams,
coincides with the set of observational sequences.

The final fixpoint of a functor does not need to exist in
general. However, when C satisfies some extra conditions,
which we call productivity, the final fixpoint does exist and
can be computed by Adámek’s theorem [1]. This allows us
to recast the definition of monoidal streams in coinductive
terms.

Definition 2.4 (Monoidal stream). A monoidal stream 𝑓 ∈
Stream(X,Y) is a triple consisting of

• 𝑀 (𝑓 ) ∈ Obj(C), the memory,
• now(𝑓 ) ∈ hom (𝑋0, 𝑀 (𝑓 ) ⊗ 𝑌0), the first action,
• later(𝑓 ) ∈ Stream(𝑀 (𝑓 ) ·X+,Y+), the rest of the action,

quotiented by dinaturality in𝑀 .

Explicitly, monoidal streams are quotiented by the equiv-
alence relation 𝑓 ∼ 𝑔 generated by

• the existence of 𝑟 : 𝑀 (𝑔) → 𝑀 (𝑓 ),
• such that now(𝑓 ) = now(𝑔); 𝑟 ,
• and such that 𝑟 · later(𝑓 ) ∼ later(𝑔).

Here, 𝑟 · later(𝑓 ) ∈ Stream(𝑀 (𝑔) · X+,Y+) is obtained by
precomposition of the first action of later(𝑓 ) with 𝑟 .

3 Delayed feedback for streams
Monoidal streams form a feedback monoidal category with
respect to the “delay functor” 𝜕 : [N,C] → [N,C].

Definition 3.1 (Delay functor). Let 𝜕 : [N,C] → [N,C]
be the endofunctor defined on objects X = (𝑋0, 𝑋1, . . .), as
𝜕(X) = (𝐼 , 𝑋0, 𝑋1, . . .); and on morphisms f = (𝑓0, 𝑓1, . . .) as
𝜕(f) = (id𝐼 , 𝑓0, 𝑓1, . . .).

Given some stream in Stream(𝜕S ⊗ X,S ⊗ Y), we can
create a new stream in Stream(X,Y) that passes the output
in S as a memory channel that gets used as the input in
𝜕S. As a consequence, the category of monoidal streams
has a graphical calculus given by that of feedback monoidal
categories [3, 4, 9, 13, 14]. This graphical calculus is complete
for extensional equivalence.

Definition 3.2. A feedback monoidal category is a symme-
tric monoidal category (C, ⊗, 𝐼 ) endowed with a monoidal
endofunctor F : C → C and an operation

fbk𝑆 : hom (F(𝑆) ⊗ 𝑋, 𝑆 ⊗ 𝑌 ) → hom (𝑋,𝑌 )

for all 𝑆 , 𝑋 and 𝑌 objects of C; this operation needs to satisfy
the following axioms.
(A1). Tightening:𝑢 ;fbk𝑆 (𝑓 ) ;𝑣 = fbk𝑆 ((idF𝑆⊗𝑢) ;𝑓 ;(id𝑆⊗𝑣)).
(A2). Vanishing: fbk𝐼 (𝑓 ) = 𝑓 .
(A3). Joining: fbk𝑇 (fbk𝑆 (𝑓 )) = fbk𝑆⊗𝑇 (𝑓 )
(A4). Strength: fbk𝑆 (𝑓 ) ⊗ 𝑔 = fbk𝑆 (𝑓 ⊗ 𝑔).
(A5). Sliding: fbk𝑆 ((Fℎ ⊗ id𝑋 ) ; 𝑓 ) = fbk𝑇 (𝑓 ; (ℎ ⊗ id𝑌 )).

𝑓

𝐹ℎ =
𝑓

ℎ

Figure 6. The sliding axiom (A5).

Theorem 3.3. Monoidal streams over a symmetric monoidal
category form a 𝜕-feedback monoidal category.
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