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In this paper we generalize the framework proposed by Gour and Tomamichel regarding extensions
of monotones for resource theories. A monotone for a resource theory assigns a real number to each
resource in the theory signifying the utility or the value of the resource. Gour and Tomamichel studied
the problem of extending monotones using set-theoretical framework when a resource theory embeds
fully and faithfully into the larger theory. One can generalize the problem of computing monotone
extensions to scenarios when there exists a functorial transformation of one resource theory to another
instead of just a full and faithful inclusion. In this article, we show that (point-wise) Kan extensions
provide a precise categorical framework to describe and compute such extensions of monotones.
To set up monontone extensions using Kan extensions, we introduce partitioned categories (pCat)
as a framework for resource theories and pCat functors to formalize relationship between resource
theories. We describe monotones as pCat functors into ([0,∞],≤), and describe extending monotones
along any pCat functor using Kan extensions. We show how our framework works by applying
it to extend entanglement monotones for bipartite pure states to bipartite mixed states, to extend
classical divergences to the quantum setting, and to extend a non-uniformity monotone from classical
probabilistic theory to quantum theory.

1 Introduction

Resource theories [18, 6, 9] in physics model systems in which certain operations considered to be
‘free of cost’ among of the set of all operations. For example, placing a glass of chilled water at room
temperature warms up the water to the ambient temperature. In this context, operations that change the
temperature of the water to be in equilibrium with the ambient temperature are considered to be free. In
order to produce a “resourceful state” — for example, a glass of chilled water — one requires non-free
transformations, such as a fridge, which consumes electricity. Resource theories have been successfully
used to study, among other examples, thermodynamical systems [12, 24], entanglement [19, 15], and
coherence [35].

A central question in the resource-theoretic modelling of systems is: given two resources, is there
a free transformation to convert one resource into the other? The answer to this question imposes a
preorder on resources which captures their value or usefulness. Intuitively, a resource is more valuable
than another if, by possessing the former, we are given access to a larger set of resources including the
latter through free transformations. This not a partial order, because their may be different resources

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Extending resource monotones using Kan Extensions

pCat functors functors which preserve free transformations
Preorder collapse a pCat functor whose codomain category is a preorder

Monotone a pCat functor whose codomain category is ([0,∞],≤)

Op-monotone a pCat functor whose codomain category is ([0,∞],≥)

’

Table 1: Functors for resource theories

that can be converted freely into each other. Such resources are considered equivalent. In this way, we
can set up a partial order on the equivalence classes of resources. One way to define such an order is
to quantify resources by introducing monotones, which are a order-preserving maps from the set of all
resources into [0,∞] [9]. Monotones assign a value to resources that is compatible with the preorder,
viz. with their usefulness. Monotones often have a physical meaning, such as in the resource theories
of quantum thermodynamics [24], where, for systems at a fixed temperature, free energy is a monotone,
and for isolated systems, entropy is the natural monotone.

Given a monotone M for a resource theory which embeds in a larger theory, a natural question to
ask is whether the monotone M for the smaller theory can be used to quantify the resources in the larger
resource theory. This question arises from the observation that that resources exclusive to the larger
theory can possibly be converted to resources contained in the smaller theory, and vice versa. It turns out
that one can always compute the optimal upper and lower bound for the value of every resource in the
larger theory. In other words, it is possible to extend the monotone M to give optimal upper and lower
bounds respectively on the value of resources in the larger theory.

In [16], Gour and Tomamichel presented a set-theoretical framework for extending monotones from
a subset of resources to the entire set of resources. Given a monotone M over a subset of states, they
compute ‘minimal’ and ‘maximal’ extensions of the monotone to the entire set of states. In this article,
we show that these extensions are special cases of more general categorical concepts, called (point-wise)
left and right Kan extensions [20, 5, 25, 29]. Kan extensions deal with optimally extending a functor
F : X −→ A along another functor K : Y −→ A to give two functors: FK : Y −→ A called the left Kan
extension of F along K, and FK : Y −→ A called the right Kan extension of F along K. The right Kan
extension can be interpreted as the most conservative extension of F along K and the left Kan extension
as the most liberal extension of F along K.

We first introduce partitioned Categories (pCats) as a framework for resource theories. Partitioned
categories are categories with a chosen subcategory of free transformations. The subcategory includes
all the objects of the parent category, in other words, the inclusion of the subcategory into the parent
category is bijective on objects. Relationships between resource theories are set up as pCat functors.
In this article, since we consider monotones which are not necessarily additive, thus we do not demand
symmetric monoidal structure on pCats.

Given a resource theory, the necessary and sufficient conditions for transformations of resources can
be encoded as a pCat functor from the resource theory into a preorder. We call such a pCat functor
as a preorder collapse. A resource monotone is a preorder collapse into ([0,∞],≤). In resource theo-
ries, contravariant rather than covariant monotones are encountered more frequently, the reason being
if resource A can be transformed to resource B using only free transformation(s), then the value of A is
considered to be at least as high as the value of B. We refer to a contravariant resource monotone as an
op-monotone. The distinction between monotones and op-monotones is important in the computation
of monotone extensions. The categorical descriptions of pCats, pCat functors, preorder collapse, mono-
tones are discussed with various running examples in Section 3.1. Table 1, we briefly summarizes the
functors of resource theories introduced in this article.



R. Cockett, I. J. Geng, C. M. Scandolo & P. V. Srinivasan 3

Having set up monotones as pCat functors, optimal extensions of monotones along any pCat functor
are given by their left and right Kan extensions. Lemma 3.35 examines the properties of the monotone
extensions thus computed, and prove that such extensions are optimal and monotonic. In Lemma 3.37,
we show that extending a monotone along a full and faithful functor recovers the case described in [16]
by Gour and Tomamichel. We apply the Kan extension framework for monotones to extend classical
divergences to the quantum setting, to extend bipartite pure states entanglement monotone to mixed
states, and to extend Shannon entropy as a measure of non-uniformity from classical probabilistic theory
to quantum theory. Section 3.4 is dedicated to setting up the Kan extension framework for monotones,
and to studying the extension properties and its applications.

Notation: In this paper, we use bold letters X, Y, D to denote categories. We use uppercase letters to
denote both objects in the categories and functors between categories, whose meaning will be clear from
the context. Lowercase letters f ,g,h,π are reserved for maps in the categories. Let X ,Y,Z be objects,

and let X
f−→ Y , Y

g−→ Z be two arrows, we denote the composition of the two arrows X
f−→ Y

g−→ Z as f g,
and similar notations apply for the composition of functors.

2 An introduction to Kan extensions

Kan extensions [20, 5, 25, 29] are a broadly applicable notion which is quite central to category theory.
Indeed, Mac Lane in his book ‘Categories for working Mathematician’ [25] gave the chapter on Kan
extensions the title “All concepts are Kan extensions”. In this section, we provide the definition of Kan
extensions and discuss limits and colimits as an example of Kan extensions.

2.1 Left and right Kan extensions

We first provide the definition Kan extensions of a functor along another functor, and explain the univer-
sal properties.

Definition 2.1. Let F : X−→ D and K : X−→ Y be any two functors.

(i) Right Kan (minimal) extension of F along K is a functor FK : Y −→ D with a natural transfor-
mation ψ : KFK ⇒ F which is universal , see Fig. 2-(a). The right Kan extension is written as
(FK ,ψ).

(ii) Left Kan (maximal) extension of F along K is a functor FK :Y−→D with a natural transformation
ψ : F ⇒ KFK which is couniversal, see Fig. 2-(b). The left Kan extension is written as (FK ,ψ).

(a) X K //

F

FFY
FK //

ψ

��

D (b) X K //

F

FFY FK //
KS
ψ

D

Figure 1: (a) Right Kan Extension (b) Left Kan Extension

Fig. 1 shows the Kan extensions of F along K. We refer to the category D as the target, the category
X as the source categories. Functor F is extended from its source X along K. Right and Left Kan
extensions of F along K are usually written as RanK(F) and LanK(F). However, we use the notation
introduced in [16] for resource monotone extensions for uniformity.
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Let us examine the universal properties of the Kan extensions. The universal property of right Kan
extension assures that for any other functor H : Y −→ D with a natural transformation γ : KH ⇒ F ,
there exists a γ ′ : H −→ FK such that γ factors through ψ via γ ′, that is, γ = (K ⊗ γ ′)ψ (See Fig. 2-(a)).
Informally, this means the right Kan extension of F along K is the most conservative extension and that
any other extension H can be transformed to FK . In this sense, FK is the minimal extension of F along
K.

Similarly the couniversal property of left Kan extension assures that for any other functor H : Y−→D
with a natural transformation δ : F ⇒ KH, there exists a δ ′ : FK −→ H such that δ factors through ψ via
δ ′, that is, γ = ψ(K ⊗ γ ′) (See Fig. 2-(b)). Informally, this means that FK can be naturally transformed
to any other such H. In this sense, FK is the maximal extension of F along K.

The universal properties of Kan extensions assure that the extensions are optimal.

(a)
γ ′
��

X K //

F

FFY

H

��

FK

//

ψ

��

D

(b) KS

δ ′

X K //

F

FFY

H

��

FK

//
KS
ψ

D

Figure 2: (a) Right Kan Extension is universal (b) Left Kan Extension is couniversal

Example 2.2. The left and right Kan extensions of a functor F along a terminal functor (!) gives precisely
the limit and the colimit of F . The terminal functor maps all the objects and the maps of the domain
category to the single object and the single map in the terminal category (1) respectively. Any functor
proceeding from the terminal category chooses precisely one object and its identity morphism in the
codomain category.

(a) X ! //

F

FF1
F ! //

ψ

��

D (b) X ! //

F

FF1
F ! //

KS
ψ

D

The left Kan extension of F : X−→ 1 along the unique functor into 1 gives a colimiting cocone. The
functor F ! chooses precisely one object in D (hence we write the object as F !) which is the apex of the
cocone. The natural transformation ψ has components, ψX :!F(X)⇒ F ! for each X ∈ X.

Due to the couniversal property of ψ , for any other functor P : 1 −→ D with a natural transformation
γ :!P ⇒ F , there exists a unique natural transformation γ ′ : P ⇒!F ! such that γ ′ψ = γ . Hence, F ! is the
limit of diagram F .

F(A)
ϕA

&&

γA

''

// F(B)
ϕB

xx

γB

ww

F! := colimF

��
P
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Suppose D is the poset (R,≤), then in the above diagram, F ! is precisely the greatest lower bound
of {F(A),F(B)}.

Similarly, the right Kan extension gives a limiting cone. F ! is referred to as the limit of diagram
F . When D is a poset F ! is the least upper bound of the subset of R chosen by F .

2.2 How to compute Kan extensions?

In Example 2.2, it was shown that the left and right Kan extensions of a functor F along the unique
functor into the terminal category are respectively the colimit and the limit of diagram F . In this section,
we show how one can compute Kan extensions of a functor when the target category is complete (has all
small limits) and cocomplete (has all small colimits) and the intermediate category is locally small (the
arrows between any two objects in the category is a small set).

Theorem 2.3. [29, Thoerem 6.2.1] Given functors F : X −→ D and K : X −→ Y, if the category D is
cocomplete, then the left Kan extension FK exists and is defined to be:

∀Y ∈ Y, FK(Y ) := colim(K ↓ Y
πK↓Y−−−→ X F−−→ D) (2.1)

with the natural transformation ψ extracted from colimiting cocones in D.
If C is complete, then the right Kan extension FK exists and is defined to be:

∀Y ∈ Y, FK(Y ) := lim(Y ↓ K
πY↓K−−−→ X F−−→ D) (2.2)

with the natural transformation ψ extracted from limiting cones in D.

Proof. (Sketch)
Suppose F : X −→ D is any functor and D is cocomplete. Then, one can compute the left Kan

extension (FK ,ψ) of F along any functor K : X−→ Y as follows:

Defining functor FK : Y−→ D:
The left Kan extension is computed on each point (object) in Y.
For each object Y in Y, consider the slice category (K ↓ Y ). The objects in the slice category are
pairs (X , f ) where,

f : K(X)−→ Y ∈ Y

and a map m : (X , f )−→ (X , f ′) in the slice category is a map m∈X such that the following triangle
commutes:

K(X)
K(m) //

f
!!

K(X ′)

f ′||
Y

Stated informally, the slice category contains complete information on how to arrive at an object
Y ∈ Y using objects and transformations of X. The projection functor πK↓Y chooses precisely
the subcategory of X relevant to Y , see Figure 3-(a). The left Kan extension on point Y is the
colimit of the diagram F applied to this sub-category. The couniversal cocone of the diagram
πK↓Y F has a natural transformation λ : Lim(πK↓Y F) ⇒ F , with a component λX for each object
πK↓Y ( f ,K(X)) := X ∈ X.
The left extension FK is then defined as follows:
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(a) πK↓Y :

Y

K(A)

K(B)

K(C)

7−→
A

B

C
∈ X

(b)

hY

K(A)

K(B)

K(C)

Y ′

K(E) K(F)

Figure 3: (a) πK↓Y projects the shaded region of (K ↓Y ) into X (in general K ↓Y is not a subcategory of
X); (b) An arrow h : Y →Y ′ ∈Y leads to the (shaded) base of above Y ′ to be included in the (shaded) base
above Y . Hence the base of the colimiting cocone of πK↓Y F includes the shaded base of the colimiting
cone of πK↓Y F inducing a unique map colim(πK↓Y F)→ colim(πK↓Y ′F)

• For all objects Y ∈ Y, F(Y ) := colim(πK↓Y F).

• For all maps h : Y −→ Y ′, colim(πK↓Y F)−→ colim(πK↓Y ′F) is the unique arrow induced by h,
see Figure 3-(b).

Defining the natural transformation ψ : F ⇒ KFK :
For all X ∈X, ψX is the component lim(πK↓KX F)−→ F(X) of the colimiting cocone corresponding
to the initial object (1KX ,KX) ∈ (K ↓ KX).

Computing right Kan extension is dual to computing left Kan extensions. If F :X−→D is any functor
and D is complete (contains all small limits), then one can compute the right Kan extension FK ,ψ) of F
along any functor K : X−→Y by replacing the slice construction by the coslice construction, and colimits
by limits in the above procedure.

Corollary 2.4. If (FK ,ψ) is the right Kan extension of a functor F along any full and faithful functor
K, then the natural transformation ψ is an isomorphism.

Similarly, if (FK ,ψ) is the left Kan extension of a functor F along any full and faithful functor K,
then the natural transformation ψ is an isomorphism.

Proof. Note that for all X ∈ X, KF(X) = F(K(X)) := lim(πK(X)↓K)

Since K is full and faithful, every K( f ) : K(X)−→ K(X ′) ∈ Y corresponds to a unique f : X −→ X ′ ∈
X. Then for all X ∈ X, (KX ,1KX) is an initial object in the coslice category (KX ↓ K). Thereby, the
diagram πKX↓K contains all the maps radiating from X . Hence, lim(πKX↓KF) = F(X), thereby, ψ is an
isomorphism.

The argument for the left Kan extension is dual to the above proof.

We use this procedure to compute extensions of resource monotones which are functors into a posetal
category (a poset considered as a category), see Section 3.4.
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3 Kan extensions of Resource Measures

3.1 Resource Theories as partitioned Categories

We introduce partitioned Categories as a framework for resource theories, and functors for partitioned
Categories to describe relationships between resource theories.

Definition 3.1. A partitioned category (pCat) (X,Xf) consists of a category X and a chosen subcate-
gory Xf of free transformations with the inclusion being bijective on objects.

The objects of the category are interpreted as resources and the maps to be resource transforma-
tions. The subcategory includes all objects and those transformations which are designated to be free.

The following are a few examples of resource theories as pCats:

Randomness

Cryptographic protocols use randomness as an essential resource for establishing secure communication
of devices by generating random keys. The degree of randomness determines how secure the communi-
cation channel is. Randomness is also used in computer algorithms to solve certain problems. In other
words, randomness is an essential computational resource of practical use. Entropy is used as measure
of randomness: in particular, Shannon entropy quantifies randomness in that it expresses the average sur-
prisal on the outcome of a random experiment. Entropy has been studied in the context of randomness
using the category FinProb (renamed below as Detmn) [1] and [10, Example 2.5]. The following is a
resource theory of randomness:

Example 3.2. (Rand,Detmn):
(Detmn is the chosen sub-category of free transformations in Rand)

Resources: (X , p) where X is a finite set and p is a probability distribution over X .
X can be interpreted of as a set of possible states of a system and p be the probability distribution
over the states.

Resource Transformations: M : (X , p)−→ (Y,q) is a real |X |× |Y | row stochastic matrix (rows sum to
1) such that pM = q.
A resource transformation M : (X , p)−→ (Y,q) is row stochastic if and only if for all x ∈ X , Mx is
a probability distribution: suppose the system is in state x, then the stochastic process produces
states y ∈ Y with probability Mxy.The requirement that pM = q means that under the stochastic
process M, the probability of Y being in state y after process M on X is given by ∑x∈X Mxy px.

Identity transformations: Identity matrices

Composition: Suppose (X , p) M−→ (Y,q) N−→ (Z,s), then (X , p) MN−−→ (Z,s) is defined as the matrix multi-
plication

Free transformations: A resource transformation (X , p) M−→ (Y,q) is free if it is deterministic, that is,
M is simply a function X −→ Y . Hence, for all x ∈ X ,y ∈ Y , Mxy ∈ {0,1}

Non-uniformity

Pure states represent states on which the experimenter has maximum information. These conditions are
often very hard to achieve in concrete settings due to the presence of external noise. In such cases, the
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state is called mixed, and can be expressed as a convex combination of pure states. From this perspective,
it is clear that pure states represent the maximal resource and the closer a state is to a pure state, the more
resourceful it is. Therefore, the least resourceful state of any system is the maximally mixed state, which
can be expressed as a uniform probability distribution over the states of the system. [14]
Example 3.3. (Rand,Uniform):
Resources, transformations, identity and composition: Same as example 3.2

Free transformation: A map (X , p) U−→ (Y,q) is free if U is a uniform matrix. A row stochastic matrix
(X , p) M−−→ (Y,q) is uniform if for all y ∈ Y ,

∑
x∈X

Mxy = 1

The columns of M sum to |X |/|Y |. When U is a square matrix, it is doubly stochastic.
Note that, a uniform probability distribution u := (1/n,1/n,1/n, · · · ,1/n) is simply the uniform ma-

trix ({∗},(1))−→ (X ,u), which is u itself.
(Rand,Uniform) consists of classical probabilistic states. A non-uniformity theory based on quantum

states is as follows:
Example 3.4. (qRand,qUniform)

Resources: (ρ,H) where ρ : H −→H ∈ L(H) is a quantum state, also known as density matrix (a positive
semi-definite operator with trace 1), and H is a finite-dimensional Hilbert space.

Resource transformations: (ρ,H)
E−−→ (σ ,K) is a quantum channel E : L(H)−→ L(K) such that

E (ρ) = σ

Composition and Identity transformations: Usual composition of quantum channels and identity chan-
nels

Free transformations: Unital quantum channels i.e., E : L(H) −→ L(K) such that E
(

1
dim(H)1H

)
=

1
dim(K)1K , where 1H ∈ L(H) is the identity matrix. In other words, unital channels preserve maxi-
mally mixed states.

Entanglement

Entanglement is one of the most important quantum resources, and it is used in several communication
scenarios, such as quantum teleportation [3] or dense coding [4]. It is known that local operations and
classical communication (LOCC) cannot increase the entanglement of a quantum state [19]. Hence, when
entanglement is considered to be a resource, LOCC operations are precisely the free transformations of
this resource theory. The basic setting in which entanglement is studied involves quantum states over
two systems, which is referred to as “bipartite entanglement”.

A resource theory of bipartite entanglement is constructed as follows. The following resource theory
is obtained by applying the coslice (state) construction on [10, Example 3.7]:
Example 3.5. (Bip,LOCC):
Resources: ρ ∈ L(H ⊗K) is a quantum state which is a positive semi-definite operator with trace 1, and

H, K are finite-dimensional Hilbert spaces.

Resource transformations: ρ
E−−→ σ is a quantum channel (completely positive trace preserving map)

such that E (ρ) = σ

Free transformations: Local operations and classical communication
The composition is the usual composition of identity channels.
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Distinguishability

In some situations it is important to consider pairs of quantum states and evaluate how different they are
from each other. To this end, various quantifiers have been defined, such as the trace distance, the fidelity
[37] or quantum divergences [16, 13]. These quantifiers all show that, whenever the same channel is
applied to each element of a pair of quantum states, in general our ability to distinguish the resulting
states is decreased. This suggests setting up a resource theory of the distinguishability, also known as
quantum relative majorization [28, 7].

A resource theory of quantum distinguishability is given as follows [16, 13].

Example 3.6. (Distinguish, Processing):

Resources : ((ρ,σ),H) are pairs of quantum states, that is, ρ,σ ∈ L(H) where H is a finite-dimensional
Hilbert space.

Resource transformations : (E1,E2) : ((ρH ,σH),H) −→ ((ρK ,σK),K) are pairs of quantum channels
E1,E2 : L(H)−→ L(K) such that E1(ρH) = ρK and E2(σH) = σK

Composition and identity transformations : (E1,E2)(E3,E4) := (E1E3,E2E4) and identity transforma-
tions are given by pairs of identity channels

Free transformations: (E1,E2) such that E1 = E2

3.2 Relationships between Resource Theories as pCat functors

Now that we have formalized resource theories as pCats, we can formalize the relationship between
resource theories as functors of pCats. For example, classical theories of the corresponding quantum
resource theories. Physical theories defined on pure states are considered as subtheories of corresponding
mixed state theories. Such relationships can be formalized as functors of pCats.

Definition 3.7. A functor of partitioned categories (pCat), F : (X,Xf) −→ (Y,Yf), is a functor F : X
−→ Y such that if f ∈ Xf then F( f ) ∈ Yf i.e., the functor preserves free transformations.

F : (X,Xf) being a functor means that it preserves the identity transformations: F(1A) = 1F(A), and
it preserves the composition in X: F( f g) = F( f )F(g).

Figure 4 is a schematic of a pCat functor. The triangles represent non-free transformations, and the
hollow circles represent free transformations. As one can see, a pCat functor may or may not preserve a
non-free transformation.

Figure 4: Schematic for functor of pCats

Definition 3.8. A pCat functor F : (X,Xf) −→ (Y,Yf) is full if F : X −→ Y is full, and F is faithful if
F : X−→ Y is faithful.
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Let us look at a few examples of full and faithful pCat functors. For a quantum system, pure states
are considered to be a subset of mixed states since mixed states are convex combination of pure states.
The resource theory of pure states bipartite entanglement embeds in the general theory of bipartitle
entanglement through an inclusion functor, see Example 3.9. Lemma 3.10 proves that this inclusion is a
pCat functor.

Example 3.9. The resource theory of bipartite pure-state entanglement, (PureBip,LOCCp) has pure
quantum states ρ , where ρ ∈ L(H ⊗K), as resources. A resource transformation is a quantum channel
E : ρ −→ σ such that E (ρ) = σ where σ ∈ L(H ′⊗K′). The free transformations are LOCC operations
between pure bipartite states, here denoted as LOCCp.

Lemma 3.10. The inclusion i : PureBip ↪→ Bip defined to be identity on objects and maps is a full and
faithful pCat functor i : (PureBip,LOCCp) ↪→ (Bip,LOCC).

Proof. The inclusion is a pCat functor since LOCCp ↪→ LOCC. Moreover, i : PureBip ↪→ Bip is full and
faithful inclusion.

Classical theories are considered as sub-theories of quantum theories. This gives an inclusion functor
classical distinguishability into quantum distinguishability. The following is the resource theory for
classical distinguishability and is referred to as classical relative majorization in [30, 31, 32, 28, 7]:

Example 3.11. In the resource theory of classical distinguishability, (cDistinguish,cProcessing), a re-
source ((p,q),X) is a pair of probability distributions p := (p1, · · · , p|X |) and q := (q1, · · · ,q|X |) over a
finite set X . Resource transformations (M,M′) : ((p,q),X) −→ ((p′,q′),Y ) where M and M′ are pairs of
row stochastic matrices such that pM = p′ and qM′ = q′. Free transformations are (M,M′) such that
M = M′.

Example 3.12. The inclusion i : cDistinguish ↪→ Distinguish is defined as follows:

• For all resources ((p,q),X) ∈ cDistinguish, i((p,q),X) := ((ρ p,ρq),C|X |) where [ρ p]i j = δi j pi ,
1 ≤ i ≤ |X |,1 ≤ j ≤ |X |. ρ p and ρq are diagonal density matrices with the probability distributions
p and q as their diagonals respectively.

• Given a transformation (M,M′) : ((p,q),X)−→ ((p′,q′),Y ), i((M,M′)) := (E ,E ′) where E and E ′

are determined by M and M′ respectively as follows.
For any quantum state (positive semi-definite operator of trace 1 on a Hilbert Space H),

E (ρ) = ∑
i, j

Bi jρB†
i j (3.1)

where Bi j =
√

Mi j| j⟩⟨i| where 1 ≤ i, j ≤ |X | and B†
i j is its adjoint (cf. [37]). (| j⟩ is a column vector

with 1 at position j and zero elsewhere.)

Lemma 3.13. The inclusion i : cDistinguish ↪→ Distinguish defined in Example 3.12 is full and faithful
(or fully faithful) pCat functor i : (cDistinguish,cProcessing) ↪→ (Distinguish,Processing).

Example 3.14. Closely, related to Example 3.12, is the inclusion of Rand into qRand. The inclusion
i : Rand ↪→ qRand is defined as follows: for all (p,X) ∈ Rand, i((p,X)) := (ρ p,C|X |), and for row
stochastic matrices M ∈ Rand, i(M) is defined as in eqn (3.1).

Lemma 3.15. The inclusion i :Rand ↪→ qRand defined in Example 3.14 is a full and faithful pCat functor
i : (Rand,Uniform) ↪→ (qRand,qUniform).
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Figure 5: The Lorenz curve of q is majorized by the Lorenz curve of p

3.3 Preorder collapse and monotones

One of the major goals of resource theories is to the identify necessary and sufficient conditions for the
existence of a free transformation between two resources. Once such conditions are identified, one can
choose to ‘forget’ the different possible ways in which resource A can be converted to resource B freely,
and only ‘remember’ if there exists a free transformation from A to B.

The necessary and sufficient conditions for the existence of a free transformation between pairs
of resources define an equivalence class on the resource theory (freely inter-convertible resources are
considered to be equivalent) and a preorder on the equivalence classes. Such necessary and sufficient
conditions can be encoded into a pCat functor from the resource theory. On applying this functor, the
resource theory collapses into a preorder:

Definition 3.16. Given a resource theory (X,Xf) and a preorder (ob(X),order) where ob(X) refers to
the set of objects of X, a preorder collapse of the resource theory (X,Xf) is a pCat functor (X,Xf)
−→ (chaosX,orderX), where chaosX is the indiscrete (chaotic) category with the same objects as X, and
for any two objects A,B ∈ chaosX, the transformation A −→ B ∈ orderX if “A order B” is true.

Let us look at an example of a preorder collapse of (Randop,Uniform) determined by the majorization
relation [26]. Suppose p := (p1, p2, p3, · · · , pn)

↑ and q := (q1,q2,q3, · · · ,qm)
↑ such that the elements of

the distribution are in increasing order. We say q is majorized by p written as q ⪯ p if the Lorenz curve
[26, 23] of p lies either completely below the Lorenz curve of q (see Figure 5) or coincides with it. This
means that q is more uniform than p.

Lorenz curve [23, 26, 14] L(p) for a probability distribution p := (p1, p2, · · · , pn) is characterized
as the linear interpolation of points (i/n,∑i

k=1 pk), where i = 0,1, · · · ,n; see Figure 5.

Example 3.17. Define P : Rand −→ chaosRand as follows: for each probability distribution p ∈ Rand,
P(p) := p; each M : p −→ q is mapped to the unique arrow p −→ q.

The functors into chaotic categories are determined by the objects. It is straightforward that P as de-
fined above is a functor. The following theorem establishes that P : (Randop,Uniform)→ (chaosRand,⪯Rand

) is pCat functor.

Theorem 3.18. [17] Given two finite probability distributions p and q, q ⪯ p if and only if there exists a
uniform matrix U : p −→ q such that pU = q.

Corollary 3.19. The map P : (Randop,Uniform)→ (chaosRand,⪯) is a preorder collapse.
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Proof. By Theorem 3.18, if U : p −→ q ∈ Uniform, then P(q)⪯ P(p).

Given a resource theory, one can assign a real value to each resource such that the assignment respects
the preorder defined by the theory. In this respect, a monotone is a function f : R −→ [0,∞] where R is
a set of resources which preserves the preorder on the equivalence class of resources. To represent a
monotone as a pCat functor, the poset ([0,∞],≤) is defined as a pCat as follows:-

Definition 3.20. The poset ([0,∞],≤) is encoded as the pCat (chaos[0,∞],≤[0,∞]) where chaos[0,∞] is the
chaotic category with objects as r ∈ [0,∞] and the free transformations are those maps respecting the ≤
order (m −→ n ∈≤[0,∞] if and only if m ≤ n).

Definition 3.21. A monotone for a resource theory (X,Xf) is a pCat functor F : (X,Xf)−→
(
chaos[0,∞],≤[0,∞]

)
.

An op-monotone is a contravariant monotone, that is,

F : (X,Xf)−→
(
chaos[0,∞],≤[0,∞]

)op :=
(
chaosop[0,∞],≥[0,∞]

)
.

Even though op-monotones are more frequently used in resource theories, we defined the codomain
of a monotone to be (chaos[0,∞],≤[0,∞]) because, in general, an arrow a −→ b in a posetal category refers
to a ≤ b, and such ordering becomes relevant when one computes inf and sup of a subset in the poset,
see Section 3.4. Let us look at a few examples of monotones:

In information theory, Shannon entropy is a well-known measure of randomness or uncertainty in
the outcome when a random experiment (experiment with multiple outcomes) is repeated one or more
times. The value of Shannon entropy lies in [0,1] where 0 represents absolute certainty and 1 represents
maximum uncertainty. In the following example, we construct a monotone for the resource theory of
randomness, (Rand,Detmn), and an op-monotone (Rand,Uniform) based on the Shannon entropy:

Example 3.22. Define Shannon : Rand−→ chaos[0,∞] as follows:

• For all finite probability distributions, (X , p) ∈ Rand, Shannon(p) := H(p) where H(p) is the
Shannon entropy of p:

H(p) :=− ∑
1≤i≤|X |

pi log pi

• For all (X , p) Shannon−−−−−→ (X ,q) ∈ Rand, then F(M) is the unique arrow H(p)−→ H(q)

It is straightforward that Shannon :Rand−→ chaos[0,∞] is a functor. We note that the functor Shannon
acts as a monotone for (Rand,Detmn) and as an op-monotone for (Rand,Uniform).

Lemma 3.23. [11] Suppose Shannon : (X , p)−→ (Y,q) ∈ Detmn, then H(p)≥ H(q).

Corollary 3.24. The map Shannon : (Rand,Detmn) → ([0,∞],≥) defined as in Example 3.22 is an
op-monotone.

Lemma 3.25. [14, 26] Suppose Shannon : (X , p)−→ (Y,q) ∈ Uniform, then H(p)≤ H(q).

Corollary 3.26. The map Shannon : (Rand,Uniform) → ([0,∞],≤) defined as in Example 3.22 is a
monotone.

Next we describe a monotone for the resource theory, (cDistinguish,cProcessing):

Example 3.27. [16, 13, Definition 2] A classical divergence D : cDistinguish−→ chaos[0,∞] is any func-
tor, that for any resource ((p,q),X)∈ cDistinguish and a resource transformation (M,M)∈ cDistinguish,
satisfies the data processing inequality:

D(p,q)≥ D(pM,qM)
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Lemma 3.28. Any classical divergence D : (cDistinguish,cProcessing −→ (chaos[0,∞],≥[0,∞]) is an op-
monotone.

The following is a monotone for PureBip as follows [27, 37]:
Example 3.29. Define Schmidt : PureBip → chaos[0,∞] to be the following: for all resources ρHK ∈
PureBip, where ρHK ∈ L(H ⊗K) is a pure quantum state,

N
(
ρ

HK) := Rank
(
ρ

H) where, ρ
H := TrK

(
ρ

HK)
Lemma 3.30. [27, 37] N : (PureBip,LOCCp)→ (chaos[0,∞],≥[0,∞]) is an op-monotone.

3.4 Kan Extensions of monotones

Now, we set up resource theories to apply Kan extensions for extending monotones from one resource
theory to another when there exists a pCat functor between them.

Given a monotone M : (X,Xf) −→ (chaos[0,∞],≤[0,∞]) and a pCat functor K : (X,Xf) −→ (Y,Yf),
one could desire to extend M to obtain monotones on (Y,Yf). Observe that a monotone M : (X,Xf)
−→

(
chaos[0,∞],≤[0,∞]

)
is concerned only with the free transformations: if f : A −→ B ∈ Xf , then M(A)≤

M(B); otherwise M(A) −→ M(B) is the unique arrow signifying that there is no order between A and B.
Since Xf includes all the objects of X, and the monotone M is concerned with only free transformations,
in order to extend M : (X,Xf) −→

(
chaos[0,∞],≤[0,∞]

)
it suffices to extend Mf : Xf −→≤[0,∞] which is

defined as follows :-
Mf : Xf −→≤[0,∞]; A

f−−→ B 7→ M(A)≤ M(B)

Definition 3.31. Let (X,Xf)
K−−→ (Y,Yf) be a pCat functor. Let M : (X,Xf)−→ (chaos[0,∞],≤[0,∞]) be a

monotone for the resource theory (X,Xf).

(a) The minimal extension1 MK : Yf −→≤[0,∞] of M along K is the right Kan extension of the functor
Mf : Xf −→≤[0,∞] along the functor Kf : Xf −→ Yf ;Kf(h) := K(h) (see Figure 6-(a)).

(b) The maximal extension MK : Yf −→≤[0,∞] of M along K is the left Kan extension of the functor
Mf : X f −→≤[0,∞] along the functor Kf : Xf −→ Yf ;Kf(h) := K(h) (See Figure 6-(b)).

(a)

≤
��

Xf
Kf //

Mf

==
Yf

G

��

MK

//

≤

��

≤[0,∞]

(b) KS

≤

Xf
Kf //

Mf

==
Yf

G

��

MK

//
KS
≤

≤[0,∞]

Figure 6: (a) Minimal (right Kan) extension (b) Maximal (left Kan) extension

Let us unpack the definition of minimal and maximal extensions of a monotone in Definition 3.31.
Any category given by a poset with suprema and infima is both complete and cocomplete. Since
([0,∞],≤) is such a poset, by Theorem 2.3 one can compute the minimal extension (MK) and the maximal
extension (MK) using equations (2.2) and (2.1) respectively:

1We follow the naming convention in [16] for monotone extensions.
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Theorem 3.32. (a) For all Y ∈ Y, the minimal extension MK(Y ) : Yf −→≤[0,∞] is given as:

MK(Y ) := lim(πY↓KMf) = inf{M(X) | Y −→ K(X) ∈ Yf} (3.2)

(b)For all Y ∈ Y, the maximal extension MK(Y ) : Yf −→≤[0,∞] is given as:

MK(Y ) := colim(πK↓Y Mf) = sup{M(X) | K(X)−→ Y ∈ Yf} (3.3)

See Figure 7-(a) for a schematic of the minimal and maximal extensions of a monotone.
Usually for resource theories the codomain of the monotones is ([0,∞]op,≤op

[0,∞]) = ([0,∞]op,≥[0,∞]).
In the computation of extensions of op-monotones, inf is flipped to sup in equation (3.2), and sup to be
flipped to inf in equation (3.3):

Corollary 3.33. Suppose M : (X,Xf)−→
(
chaos[0,∞],≥[0,∞]

)
be a monotone and K : (X,Xf)−→ (Y,Yf).

Then,

(a) For all Y ∈ Y , the minimal extension MK(Y ) : Yf −→≥[0,∞] is given as:

MK(Y ) := colim(πY↓KMf) = sup{M(X) | Y −→ K(X) ∈ Yf} (3.4)

(b)For all Y ∈ Y , the maximal extension MK(Y ) : Yf −→≥[0,∞] is given as:

MK(Y ) := lim(πK↓Y Mf) = inf{M(X) | K(X)−→ Y ∈ Yf} (3.5)

Proof. Note that (chaos[0,∞,≥[0,∞])= (chaosop[0,∞],≤
op
[0,∞])=:

(
chaos[0,∞],≤[0,∞]

)op. Limits in
(
chaos[0,∞],≤[0,∞]

)
are colimits in

(
chaos[0,∞],≤[0,∞]

)op.

Figure 7 - (b) and (c) visualizes the difference in computation of minimal extension of a (regular)
monotone and an op-monotone.

Note that equation (3.4) is same as [16, Equation 2] and equation (3.5) is same as [16, Equation
3]. Let us have a closer look at equations (3.4) and (3.5). The minimum extension MK assigns to any
resource Y ∈ Yf the value of a resource X ∈ Xf such that the value of X is lowest among the value of all
those resources which can be transformed freely to Y under K (KX −→Y ). If there exists no such X ∈Xf

such that KX can be transformed to Y using a free transformation, then MK(Y ) = 0 (colimit of the empty
diagram is the initial object).

Similarly, the maximal extension MK assigns to any resource Y ∈ Yf the value of a resource X ′ ∈ Xf

such that the value of X ′ is the highest among the value of all those resources which Y can be transformed
to freely under K (Y −→ KX). If there does not exist any such X ∈ Xf which Y can be transformed to
using a free transformation, then MK(Y ) = ∞ (limit of the empty diagram is the terminal object).

We define what it means for the computed extensions to be optimal:

Definition 3.34. The minimal extension of a monotone is optimal if for any other monotone G : (Y,Yf)
−→

(
chaos[0,∞],≤[0,∞]

)
such that for all X ∈ X, G(K(X))≤ M(X), we have that

G(Y )≤ MK(Y )

The maximal extension of a monotone is optimal if for any other monotone G : (Y,Yf)−→
(
chaos[0,∞],≤[0,∞]

)
such that for all X ∈ X, M(X)≤ G(K(X)), we have that

MK(Y )≤ G(Y )
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(a)

Yf

Y

Kf(X)

Kf(X ′)
For maximal extension

For minimal extension

(b)
A := {M(X) | Y −→ K(X) ∈ Yf}

MK(Y ) := sup A

(c)
A := {M(X) | Y −→ K(X) ∈ Yf}

MK(Y ) := inf A

Figure 7: (a) Schematic of minimal and maximal extensions of any monotone along K; (b) Minimal
extension of monotone M; (c) Minimal extension of an op-monotone M

For the extensions of an op-monotone to be optimal, “ ≤ ” is replaced by “ ≥ ” in definition 3.34.

Theorem 3.35. Let MK and MK be minimal and maximal extensions of a monotone M : (X,Xf) −→(
chaos[0,∞],≤[0,∞]

)
along a pCat functor K : (X,Xf)−→ (Y,Yf) as per definition 3.31. Then,

(a) Reduction: For all X ∈ X,
MK(Kf(X))≤ M(X)≤ MK(Kf(X))

(b) Monotonicity: For all f : A −→ B ∈ Yf ,

MK(A)≤ MK(B) and MK(A)≤ MK(B)

(c) Optimality: MK and MK are optimal.

Proof.

(a) Since (MK ,≤) is the right Kan extension, for all X ∈X, MK(Kf(X))≤ Mf(X) = M(X) (see Figure 6-
(a)).
Since (MK ,≤) is the left Kan extension, for all X ∈ X, M(X) = Mf(X)≤ MK(Kf(X)) (see Figure 6-
(b)).

(b) Monotonicity follows from functoriality of MK and MK

(c) The extensions are optimal by construction (see Figure 6 for the universal properties).

In the above lemma, Statement (a) tells us that the minimal and maximal extensions are respectively
a lower and upper bound for M on X. Statement (b) assures that the extensions are monotonic on free
transformations. Statement (c) assures that the minimal and maximal extensions are respectively the
greatest lower bound and the least upper bound for any other extension of M along K, hence are optimal.

Corollary 3.36. Let MK and MK be minimal and maximal extensions of an op-monotone M : (X,Xf)
−→

(
chaos[0,∞],≥[0,∞]

)
along a pCat functor K : (X,Xf) −→ (Y,Yf) as per definition 3.31. Then, the

following properties hold for the extensions:

(a) Reduction: For all X ∈ X,
MK(K(X))≥ M(X)≥ MK(K(X))

(b) Monotonicity: For all f : A −→ B ∈ Yf ,

MK(A)≥ MK(B) and MK(A)≥ MK(B)
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(c) Optimality: MK and MK are optimal.

Proof.
(
chaos[0,∞],≥[0,∞]

)
=
(
chaos[0,∞],≤[0,∞]

)op
Our Corollary 3.36 corresponds to [16, Theorem 1]. However, in contrast to the proof in [16], our

proof uses only the structural properties of the extensions rather than the formula used to compute them.
Moreover, Lemma 3.35 is more general since in [16, Theorem 1], K : (X,Xf)−→ (Y,Yf) is fixed to be a
full and faithful inclusion.

[16, Theorem 1 - (a)] can be recovered precisely by fixing K to be full and faithful functor in Corol-
lary 3.36:
Corollary 3.37. If MF and MF are minimal and maximal extensions respectively of an op-monotone
M : (X,Xf)−→

(
chaos[0,∞],≥[0,∞]

)
along a full and faithful (ff) functor F : (X,Xf)−→ (Y,Yf), then:

(a) ff-Reduction: The extensions exactly preserves the value of the resources in X under the action of
F :

MF(F(X)) = M(X) = MF(F(X))

(b) ff-Optimality: For any other monotone G : (X,Xf)−→
(
chaos[0,∞],≥[0,∞]

)
, which exactly preserves

the value of the resources in X under the action of F , that is, (G(F(X)) = M(X)), then for all Y ∈Y:

MF(F(Y ))≥ G(Y )≥ MF(F(Y ))

Proof. Statement (a) follows from Lemma 2.4.
For Statement (b), it is given that for all X ∈ X, G(F(X)) = F(X). From Lemma 3.35-(c), it follows

that for all Y ∈ Y,
MF(Y )≥ G(Y )≥ MF(Y )

3.4.1 Extending bipartite entanglement monotone from pure to mixed states:

Example 3.38. We introduced the op-monotone Schmidt : (PureBip,LOCCp) −→
(
chaos[0,∞],≥[0,∞]

)
in Example 3.29. Let us extend the monotone from pure bipartite states to mixed states along i :
(PureBip,LOCCp) ↪→ (Bip,LOCC) (defined in Lemma 3.10), something that was already done in [36],
however without the general machinery for computing extensions.

Figure 8 presents the diagrams corresponding to minimal and maximal extensions of the mono-
tone Schmidt along the inclusion. The minimal and the maximal extensions are computed using equa-
tions (3.4) and (3.5) respectively.

It was pointed out in [16] that the definition for the Schmidt entanglement monotone on mixed
bipartite states introduced in [36] coincides with equation (3.5) referring to the maximal extension of
Schmidt.

3.4.2 Extending classical divergences

Next we examine the properties of extensions of classical divergences to quantum setting:
Lemma 3.39. Let D : (cDistinguish,cProcessing) −→

(
chaos[0,∞],≥[0,∞]

)
be a classical divergence as

defined in Definition 3.27. Let Di and Di be the minimal and maximal extensions respectively of D along
i : (cDistinguish,cProcessing) ↪→ (Distinguish,Processing). Then the extensions satisfy the following
properties:
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(a)

≥
��

LOCCp
� � i //

SchmidtLOCCp

==
LOCC

G

��

Schmidti

//

≥

��

≥[0,∞]

(b) KS

≥

LOCCp
� � i //

SchmidtLOCCp

==
LOCC

G

��

Schmidti

//
KS

≥

≥[0,∞]

Figure 8: (a) Minimal extension of Schmidt : (PureBip,LOCCp) along i : (PureBip,LOCCp) ↪→
(Bip,LOCC); (b) Maximal extension of Schmidt : (PureBip,LOCCp) along i : (PureBip,LOCCp) ↪→
(Bip,LOCC)

(a) Reduction: For all ((p,q),X) ∈ Distinguish, Di(p||q) = D(p||q) = Di(p||q)

(b) Monotonicity: For any M : ((p,q),X) −→ ((p′,q′),Y ), Di(p||q) ≥ Di(pM||qM) and Di(p||q) ≥
Di(pM||qM)

(c) Optimality: Suppose D′ : (Distinguish,Processing)→
(
chaos[0,∞],≥[0,∞]

)
is any pCat functor such

that for all ((p,q),X) ∈ cDistinguish, D′(i((p,q),X)) = D(((p,q),X)). Then for all ((ρ,σ),H) ∈
Distinguish,

Di(ρ||σ)≥ G(ρ||σ)≥ Di(ρ||σ) (3.6)

Proof. By Lemma 3.13, the inclusion i : cDistinguish ↪→ Distinguish is full and faithful. Hence, state-
ment (a) and Statement (c) follows directly from ff-Reduction and ff-Optimality properties respectively
in Lemma 3.35. Statement (b) follows from Monotonicity property in Lemma 3.37-(b).

In the above statement, by the Reduction property, Di and Di reduces to classical divergence D on
the classical states (pairs of density matrices with off diagonal elements to be zero). The optimality
property ensures that, for any other quantum divergence that coincides with D on the classical states,
must lie between the maximal and minimal extensions in the sense of Eqn. (3.6).

3.4.3 Extending Shannon entropy

Now we show that Kan extensions are related to some proposals of extending Shannon entropy from
classical states to states of a general physical theory [2, 34, 21, 33, 8, 22]. Specifically, a measurement
and a preparation extensions were proposed. Here, for simplicity, we will explain them in the context of
quantum theory. In more detail, the measurement entropy Hmeas of a quantum state ρ is defined as

Hmeas (ρ) := inf
F

H (q) , (3.7)

where the infimum is taken over all rank-one POVMs F :=
{

Fj
}

, and q is a probability distribution with
q j := tr Fjρ . Recall that a POVM is a collection of positive semi-definite operators

{
Fj
}

that sum to the
identity. On the other hand, the preparation entropy Hprep is defined as

Hprep (ρ) := inf
∑ j λ jψ j=ρ

H (λ ) , (3.8)
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where the infimum is over all convex decompositions ∑ j λ jψi of the state ρ in terms of pure states
ψ j (recall that a quantum state ψ is pure if ψ2 = ψ). In words, the measurement entropy Hmeas is
the smallest amount of randomness (as measured by Shannon entropy H) present in the probability
distributions generated by rank-one POVMs on ρ . On the other hand, the preparation entropy Hprep is
the smallest amount of randomness necessary to prepare ρ as an convex combination of pure states.

Let us consider the inclusion (Example 3.14) of resource theory of non-uniformity (given in Ex-
ample 3.3) into quantum non-uniformity (given in Example 3.4). Consider extending the monotone
Shannon : (Rand,Uniform)−→ (chaos[0,∞],≤[0,∞]) (given in Example 3.22) along the inclusion as shown
in Figure 9. By the Kan extensions formula in equations (3.2) and (3.3), the minimal and maximal
extension of Shannon are given as follows:

(a) Uniform
� � i //

Shannon

<<
qUniform

Shannoni

//

≤

��

≤[0,∞] (b) Uniform
� � i //

Shannon

<<
qUniform

Shannoni

//
KS
≤

≤[0,∞]

Figure 9: (a) Minimal extension of Shannon : (Rand,Uniform) along i : (Rand,Uniform) ↪→
(qRand,qUniform); (b) Maximal extension of Shannon : (Rand,Uniform) along i : (Rand,Uniform) ↪→
(qRand,qUniform)

For all ρ ∈ qUniform, the minimal extension Shannoni : qUniform−→≤[0,∞] is given as:

Shannoni(ρ) := inf{Shannon(p) | ρ −→ i(p) ∈ qUniform} (3.9)

For all ρ ∈ qUniform, the maximal extension Shannoni : qUniform−→≤[0,∞] is given as:

Shannoni(ρ) := sup{Shannon(p) | i(p)−→ ρ ∈ qUniform} (3.10)

Let us have a closer look at equation (3.9) The only unital channels from a quantum to a classical
system are given by rank 1 projective measurements {Pj}, where Pj are rank 1 orthogonal projectors.
With this in mind, eqn. (3.9) can be rewritten as follows:

Shannoni(ρ) := inf
P

H (q) ,

where the infimum is taken over all rank-one projective measurements P :=
{

Pj
}

, and q is a probability
distribution with q j := tr Pjρ . Now we are going to show that Shannoni(ρ) = Hmeas (ρ). To this end,
notice that Shannoni(ρ) ≥ Hmeas (ρ) because the infimum in the definition of Shannoni(ρ) is over a
smaller set. In theorem 5.4.15 of [33] it was shown that Hmeas (ρ) is achieved by considering the spectral
POVM, which is a rank-1 projective measurement. Being Shannoni(ρ) defined as the infimum over
rank-1 projective measurements, then we also have Shannoni(ρ) ≤ Hmeas (ρ), from which we conclude
that Shannoni(ρ) = Hmeas (ρ). Since Hmeas (ρ) is achieved by the spectral measurement, we know that
Hmeas (ρ) = H (p), where p denotes the classical vector of the spectrum of ρ . This shows that Hmeas as
defined in equation (3.7) is indeed a monotone, as it coincides with the minimal Kan extension.

Let us now have a closer look at equation (3.10). The only unital channels from a classical to a
quantum system are given by preparations of a convex combination of pure states

{
ψ j

}
associated with
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an orthonormal basis of the Hilbert Space corresponding to the quantum system, where the coefficients
are the entries of the classical state on which the channel acts. With this in mind, eqn (3.10) can be
rewritten as follows:

Shannoni(ρ) := sup
∑ j λ jψ j=ρ

H (λ ) ,

where the supremum is taken over all decompositions of ρ into orthogonal pure states. Now, we we
observe that all such decompositions are diagonalizations of ρ (that is, ρ = ∑ j λ j|ψ j⟩⟨ψ j| with λ being
a probability distribution), and therefore they have the same coefficients λ j, which are the eigenvalues
of ρ . In other words, Shannoni(ρ) = H (p), where p denotes the classical vector of the spectrum of ρ .
Since there is only one vector λ (up to permutation) to optimize over, the supremum can be replaced
with an infimum. With this in mind, we obtain an expression that is close the preparation entropy.

Shannoni(ρ) := inf
∑ j λ jψ j=ρ

H (λ ) ,

where the infimum is taken over all decompositions of ρ into orthogonal pure states. In Theorem 5.4.15
of [33] it was shown that Hprep (ρ) = H (p), from which we have that Shannoni(ρ) = Hprep (ρ). This
shows that Hmeas as defined in equation (3.8) is indeed a monotone, as it coincides with the maximal Kan
extension.

Notice that in this example, the minimal and maximal Kan extensions coincide.

4 Conclusion

In this article, we studied resource theories as partitioned categories (pCats) and relationship between
resource theories as pCat functors thereof. A partitioned category (pCat) is a category with a chosen
subcategory of free transformations. In this framework, a monotone for a resource theory can be viewed
as a pCat functor from the theory into (chaos[0,∞],≤[0,∞]) where the pCat (chaos[0,∞],≤[0,∞]) represents
the partial order ([0,∞],≤).

We showed that a monotone can be extended from one theory to another using Kan extensions. We
applied our framework to extend entanglement monotones for bipartite pure states to bipartite mixed
states, to extend classical divergences to the quantum setting, and to extend non-uniformity monotone
from classical probabilistic theory to quantum theory.

This project was inspired by Gour and Tomamichel’s work [16], which uses a set-based framework
to provide formulae for the minimal and maximal extensions of a monotone for a resource theory that
embeds (fully and faithfully) in a larger theory. The goal of our work was to present resource theories
and monotones in a framework such that the extension formulae for monotones arise naturally. We found
that they are precisely given by the well-studied notion of Kan extensions. On top of providing a natural
ground to study extensions of monotones, we should also note that our categorical framework is also
more general than the framework in [16], in that it can be used to compute monotone extensions when
the pCat functor between resource theories is not a full and faithful embedding.
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